用户名: 密码: 验证码:
基于纤维素能源利用的芦竹生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素类能源草(简称“能源草”)是指以植物体内的纤维素为主要能量来源的草本植物。笔者通过对我国热带和亚热带地区能源草的三轮筛选(文献工作筛选、野外观察筛选和田间试验筛选)和综合评价,确定芦竹为最佳者,然后对芦竹的形态结构、药用成分和ISSR、ITS及纤维素合成酶基因等分子水平的特征进行了研究。主要研究结果如下:
     1、芦竹等纤维素类能源草资源调查与引种栽培
     按照“高大,多年生,丛生性好,适应性较强,属于草本植物”的自拟标准,通过查阅工具书、植物标本和中国植物志在线数据库,初步筛选出64种纤维素类能源草,隶属于8科31属,其中6种为我国温带分布种,58种为热带与亚热带分布种。在对我国热带和亚热带地区的能源草的野外调查中,观察到拥有一千平方米以上自然居群且植株高度超过1.5m的只有芒、五节芒、斑茅、南荻、河八王、象草、甜根子草、芦竹、芦苇、光高梁、龙须草和拟高粱等12种。对它们进行了引种栽培。
     2、芦竹作为能源草的分析与评价
     通过对芒、五节芒、斑茅、河八王、象草、芦竹、芦苇、光高梁和拟高粱等9种能源草的物候期、抗逆性、农艺性状、年干物质产量、热值、灰分含量、光合特性、纤维素和木质素含量等方面的比较研究,构建了能源草的评价体系,采用指数和法,得出9种能源草的评价总得分为:芦竹>芒>象草>斑茅>五节芒>河八王>光高粱>拟高粱>芦苇,因此,在这9种能源草中,以芦竹最佳,其次是芒和象草。
     3、芦竹形态结构与几种重要成分的研究
     观察发现,不同产地的芦竹在茎、叶、花等器官的形态上有较大的差异,表现出丰富的多样性。结合生物碱的组织化学定位研究,观察了芦竹根状茎和茎的解剖结构,生物碱在芦竹中的分布部位主要是维管组织。
     分别采用酸碱洗涤法和Klason法测定了8个居群芦竹成熟期的纤维素和木质素含量,并测定了芦竹2个居群在不同生长期的纤维素和木质素含量。结果表明:(1)芦竹同一居群不同部位的纤维素与木质素含量由高到低均为:秆>枝>叶;(2)8个居群芦竹纤维素含量由高到低依次为:浙江嵊州芦竹>南京市郊西解芦竹>湖南衡阳芦竹>浙江慈溪芦竹>江苏阜宁芦竹>湖南凤凰芦竹>贵州铜仁芦竹>云南洱源芦竹;纤维素含量最高的是采自浙江嵊州的样品,为49.2%;(3)8个居群芦竹木质素含量由高到低依次是:湖南凤凰芦竹>贵州铜仁芦竹>云南洱源芦竹>浙江嵊州芦竹>南京西解芦竹>湖南衡阳芦竹>江苏阜宁芦竹>浙江慈溪芦竹,木质素含量最高的是采自湖南凤凰县的样品,为27.7%。(4)随着生长期的延长,芦竹的纤维素和木质素含量都有不同程度的提高,在生长期2-6个月时增长快,此后6个月增长缓慢。
     采用HPLC法测定了5个不同芦竹居群的芦竹碱和芦竹胺的含量,结果表明:(1)同一居群不同器官的芦竹碱和芦竹胺含量由高到低依次为:根状茎>茎>叶。因此,芦竹的药用部位以根状茎最佳。(2)在5个居群中,以江苏南京芦竹样品的芦竹碱和芦竹胺含量最高。
     4、不同居群芦竹遗传多样性的ISSR分析
     从UBC801~900中筛选出7个有效引物对芦竹11个居群89个样品进行了ISSR扩增,结果表明:11个居群的芦竹平均遗传多样度Ht=0.3376,居群间遗传分化系数Gst为0.8815,平均基因流为0.0672。芦竹居群内的遗传多样性极低,但物种水平的遗传多样性较高。UPGMA法聚类结果显示:不同居群芦竹的亲缘关系与它们的地理位置有一定的关系,但不完全一致。
     5、不同居群芦竹及其近缘种的ITS序列分析
     对芦竹、象草、五节芒、斑茅、河八王、光高粱和拟高粱等7种高大禾草的11个个体的rDNA ITS区进行了克隆和测序,并登录于GenBank数据库。采用DNASTAR、CLUSTAL X和MEGA等软件分析其遗传关系聚类图。结果表明:ITS区序列长度为597~601bp,GC含量为58.6~67.8%,5.8S只有5个变异位点;同一物种的不同种群ITS序列只有0~10个碱基的差异。聚类分析结果与经典分类基本一致。ITS分子标记可作为禾本科的亚科以下类群的分类佐证。
     6、芦竹纤维素合成酶基因克隆与表达分析
     根据已报道的纤维素合成酶基因的特点设计上、下游引物,对芦竹的纤维素合成酶基因进行了PCR扩增、克隆和测序,得到1379个碱基组成的纤维素合成酶基因片段。通过在GenBank做Blast比对分析,与已报道的所有物种的纤维素合成酶基因的序列高度同源,可以认定此序列为纤维素合成酶基因片段。分析表明,此序列中有四个内含子区。
Cellulosic bioenergy grasses (abbreviated form "bioenergy grass") refers to the grass with cellulose as the main source of energy. Through three times of screening (screening by literature search, field observation and field experiment) and comprehensive evaluation to the cellulosic energy grasses in tropical and subtropical regions of China, we conclude that Arundo donax is the best. And then, we studied its morphology, structure, medicinal components and molecular features such as ISSR, ITS and cellulose synthase genes. The main results are as follows:
     1. the investigation and introduction and cultivation of energy grass resource
     In accordance with the standard of" tall, perennial, tufted and good, strong adaptability and belonging to grass", by consulting the reference books, plants specimen and flora of China online database,64kinds of cellulosic energy grass belonging to31genus and8families were initial screened out, of which6species are kinds of temperate species,58are kinds of tropical and subtropical species. In the field investigation of energy grass to the tropical and subtropical regions of our country, we found that only12species had one or more natural populations with distribution areas over one thousand square meters and the height of plants were more than1.5m, i.e., Miscanthus sinensis, Miscanthus floridulus, Saccharum arundinaceum, Triarrhena lutarioriparia, Narenga porphyrocoma, Pennisetum purpureum, Saccharum spontaneum, Arundo donax, Phragmites communi, Sorghum nitidum, Eulaliopsis binata, and Sorghum propinquum. All of them were introduced and cultivated.
     2. analyse and comprehensive evaluation among Arundo donax and other energy grasses
     By comparative study of phenophase, resistance, agronomic traits, dry matter yield, calorific value, ash content, photosynthetic characteristics, cellulose and lignin content and other aspects of9kinds of energy grasses Miscanthus sinensis, Miscanthus floridulus, Saccharum arundinaceum, Narenga porphyrocoma, Pennisetum purpureum, Arundo donax, Phragmites communi, Sorghum nitidum and Sorghum propinquum, and their evaluation systems was constructed. Using the index method, the total evaluation score of9energy grasses were obtained. Their scores from the hightest to the lowest were Arundo donax, Miscanthus sinensis, Pennisetum purpureum, Saccharum arundinaceum, Miscanthus floridulus,Narenga porphyrocoma, Sorghum nitidum, Sorghum propinquum, Phragmite communis, respectively. Therefore, among these9energy grasses, Arundo donax was the best, followed by Miscanthus sinensis and Pennisetum purpureum.
     3. the study of morphology, structure and some important components of Arundo donax
     The different populations of Arundo donax had great differences in the morphology of stem, leaf and flower, and exhibit great diversity. Combined with histochemical localization of alkaloids, the anatomical structure of rhizomes and stem of Arundo donax were observed. It showed that the distribution of gramine in Arundo donax was mainly in vascular tissue.
     The methods of acid-base washing procedure and Klason procedure were used to measure the contents of cellulose and lignin of eight different habitats of Arundo donax respectively, and the contents of cellulose and lignin of two populations of Arundo donax at different stages of growth were measured. The results showed that:(1) in the same population, the contents of cellulose and lignin from the highest to the lowest were all stem, branch and leave.(2) As for the stems of all samples, the contents of cellulose from the highest to the lowest were the habitats collected from Shengzhou of Zhejiang Province, Xijie of Nanjing, Hengyang of Hunan, Cixi of Zhejiang, Funing of Jiangsu, Tongren of Guizhou and Eryuan of Yunnan Province, respectively. The sample of Shengzhou had the highest cellulose content which was49.2%.(3) From the highest content of lignin to the lowest, they were habitats of Hengyang in Hunan Province, Eryuan of Yunnan, Xijie of Nanjing, Tongren of Guizhou, Shengzhou of Zhejiang, Funing of Jiangsu, Hengyang of Hunan and Cixi of Zhejiang Province, respectively. Stems in Fenghuang had the highest lignin content, which was27.7%.(4) The contents of cellulose and lignin from eight populations increased at different degrees with the growth of time, and they increased very fast in2-6months, and then increased very slowly.
     Using the HPLC method, the content of gramine and amine from5different populations of Arundo donax were determined. The results showed that:(1) the content of gramine and amine from the same population but different organs are different, from the highest to the lowest is rhizome, stem and leaf. Thus, the best medicinal part of Arundo donax is its rhizome.(2) in5populations, the sample from Nanjing Jiangsu province had the highest content of gramine and amine.
     4. ISSR analysis of genetic diversity of Arundo donax
     From UBC801-900,7efficient ISSR primers were screened, by which89samples from11populations of Arundo donax were analyzed. The results showed that:the average genetic diversity of11populations of Arundo donax is Ht=0.3376.The coefficient of genetic differentiation between populations is Gst=0.8815. The average gene flow was0.0672. The genetic distance within different individuals of Arundo donax is little, whereas it is high between different populations. The clustering results by UPGMA method showed that the phylogenetic among different populations of Arundo donax had some relationships with their geographical location, but not completely consistent.
     5. ITS sequence analysis of different populations of Arundo donax and related species
     The internal transcribed spacer (ITS) regions of nuclear ribosomal DNA from11individuals of7species Arundo donax, Pennisetum purpureum, Miscanthus floridulus, Saccharum arundinaceum, Narenga porphyrocoma, Sorghum nitidum and Sorghum propinquum were cloned and sequenced, and the sequences were submitted to the Genbank database. The phylogenetic tree of the11species was studied by DNASTAR, CLUSTALX and MEGA software. Results showed that the length of the ITS regions among7species ranged from597to601bp and the contents of G+C in ITS(ITS1+5.8S+ITS2) regions ranged from58.6to67.8%;5.8S was very conservative with only5variable sites. There were a total of184variable sites and160informative sites in ITS regions among7species, but there were only zero to ten different bases among populations of the same species. The cluster analysis result was consistent with classical taxonomy on the whole. Therefore, ITS molecular marker can be used as an evidence of classification to the taxons below subfamilies of Gramineae.
     6. the analysis of cloned cellulose synthase gene sequence of Arundo donax
     Based on the reported characteristics of cellulose synthase gene, the upstream and downstream primers for cloning cellulose synthase gene of Arundo donax were designed, and then, the cellulose synthase gene of Arundo donax was amplified, cloned and sequenced. We gained a fragment of cellulose synthase gene of1379bases. Through blast analysis on the line of GenBank, we found that it had very high homologous with the sequences of cellulose synthase genes of all reported species.
引文
鲍雅静,李政海.内蒙古羊草草原群落主要植物的热值动态[J].生态学报,2003,23(3):606-613.
    柴华,沙伟.地衣的ITS序列系统发育分析和DNA条形码的初探[J].生物技术,2011,21(1):1-4.
    陈洪章.纤维素生物技术[M].北京:化学工业出版社,2005.
    陈辉,范源洪,向余劲攻,等.从核糖体DNA ITS区序列研究甘蔗属及其近缘属种的系统发育关系[J].作物学报,2003,29(3):379-385.
    陈少风,董穗穗,吴伟,等.基于ITS序列探讨荻属及其近缘植物的系统发育关系[J].武汉植物学研其原因究,2007,25(3):239-244.
    陈为健,程贤,陈跃先,等.硫酸法测定花生壳中木质素的含量[J].闽江学院学报,2002,23(2):72-74.
    陈英明,肖波.能源植物资源开发与应用[J].氨基酸和生物资源,2005,27(4):1-5.
    陈志彤,黄勤楼,潘伟彬,等.狼尾草属牧草rDNA的ITS序列分析.草业学报,2010,19(4):135-141.
    代莹,郭和蓉,张兴龙,等.一年生黑麦草制取燃料酒精发酵工艺的初步研究[J].草业学报,2012,21(1):220-228.
    丹晨.芒草.火电厂新燃料[J].生态经济.2005,(12):12-13.
    丁玲玲,王守凯,臧娜.HPLC法测定芦竹碱[J].精细化工中间体.2006,(5):70-71.
    杜栋,庞庆华.现代综合评价方法和案例精选[M].北京:清华大学出版社,2005:1-98.
    杜宁.国内外能源植物的利用与开发[J].世界农业,2006,(4):57-59
    范希峰,左海涛,侯新村,等.芒和荻作为草本能源植物的潜力分析[J].中国农学通报,2010,26(14):381-387.
    费世民,张旭东.国内外能源植物资源及其开发利用现状[J].四川林业科技,2005,26(3):20-26
    广西植物研究所.广西植物名录(第三册)[M].1973:13-172.
    冯金朝,周宜君,石莎,等.国内外能源植物的开发利用[J].中央民族大学学报(自然科学版).2008,(3):1-6.
    傅登祺,黄宏文.能源植物资源及其开发利用简况[J].武汉植物学研究,2006,24(2):183-190.
    国家中医药管理局.中华本草[M].上海:上海科学技术出版社,1999,6459-6450.
    韩建国,樊奋成,李枫.禾本科植物的起源、进化及分布[J].植物学通报,1996,13(1):9-13.
    韩志萍,胡晓斌,胡正海.芦竹修复镉汞污染湿地的研究[J].应用生态学报,2005,16(5):945-950.
    侯新村,范希峰,武菊英,等.纤维素类能源草在京郊地区的经济效益与生态价值评价[J].草业学报,2011,20(6):12-17.
    胡正海.药用植物的结构、发育与其主要药用成分积累关系的研究[J].中国野生植物资源,2005,24(1):8-12.
    胡宗渊.合理利用非木材纤维资源[J].中华纸业.2004,25(12):12-15.
    胡宗渊.我国造纸工业草浆企业又一发展之路:利用草类原料清洁制浆新技术构建“农、浆、纸、肥产业链”新模式——再论合理利用非木纤维原料资源[J].中华纸业,2009,30(6),7-9.
    胡宗渊.我国造纸工业亟需认真应对原料的短缺[J].造纸信息,2006,(3):7-9.
    黄家雍,廖江雄,诸葛莹.甘蔗与河八王、五节芒、滇蔗茅属间交配性及杂种F1无性系的形态学和同工酶分析[J].西南农业学报,1997,10(3):92-98.
    黄瑛,晃真真,贾艾玲,等.反相离子对高效液相色谱法测定去感热注射液中芦竹辛的含量[J].药物分析杂志.2006,26(6):817-819.
    晃真真.去感热注射液和芦竹根药材指纹图谱的研究[D].成都:四川大学,2004.
    孔垂华,胡飞,陈雄辉,等.作物化感品种资源的评价利用[J]中国农业科学,2002,35(9):1159-1164.
    匡廷云,马克平.生物质能研发展望[J].中国科学基金,2005,(6):326-331
    黎秀丽,杨柳,晁若冰.芦竹根中双吲哚生物碱的分离鉴定及药效研究[J].华西药学杂志,2007,22(5):522-524
    黎秀丽.芦竹根中双吲哚生物碱arundamine的分离鉴定、药效考察及其在药材和制剂中的含量测定[D].成都:四川大学,2007.
    李昌珠,蒋丽娟.生物柴油[M].北京:化学工业出版社,2005.
    李昌珠,蒋丽娟等.野生木本植物油——光皮树油制取生物柴油的研究.生物加工过程,2005,3(1):42-.44.
    李飞飞,崔大方,羊海军,等.中国新疆紫花苜蓿复合体3个种的遗传多样性及亲缘关系研究[J].草业学报,2012,21(1):190-198.
    李高扬,李建龙,王艳,等.利用高产牧草柳枝稷产清洁生物质能源的研究进展[J].草业科学,2008,25(5):16.
    李军,吴平治,李美茹,等.能源植物的研究进展及发展趋势[J1.自然杂志,2006,29(1):21-25.
    李培建.中国造纸业发展趋势研究[J].造纸信息,2008,(7):15-19.
    李婷婷,陈斌,陈省平,等.江蓠属和龙须菜属5种海藻 ITS序列分子系统学分析[J].中山大学学报(自然科学版),2012,51(4):97-105.
    廖庆喜,田波平,舒彩霞.4ZG-2.1芦竹收获机的研制[J].农业机械学报,2007,38(6):86-90.
    林泉.浙江植物志(第七卷)[M].杭州:浙江科学技术出版社,1993:135-232.
    刘刚毅.生物农药研究进展[N].邵阳学院学报.2003,2(2):131-135.
    刘欢,慕平,赵桂琴.燕麦种质资源遗传多样性ISSR研究[J].草业学报,2012,21(4):116-124.
    刘亮,朱明,朱太平.芒荻类植物资源的开发和利用[J].自然资源学报,2001,16(6):562-563.
    刘亮.高粱族一中国植物志(第十卷第二分册)[M].北京:科学出版社1997,4-55。
    刘昔辉,方锋学,张荣华,等.甘蔗与河八王属间杂种的SSR标记鉴定[J].西南农业学报,2012.25(1):38-43.
    卢庆善,朱凯,张志鹏,等.高粱的野生近缘种及其利用价值[J].杂粮作物.2006,26(5):322-325.
    罗万春,慕立义,李云寿.植物源生物碱的杀虫作用[J].农药.1997,16(7):11-15.
    毛秀云,乐也国,孙淑华.应用 SLQ-6型测定仪法测定粗纤维[J].黑龙江粮食,2004(1):40-41.
    欧委会通过生物质能行动计划.中国生物工程杂志,2006
    彭斯文,张明生,王玉芳.杜鹃兰生物碱组织化学定位初步研究.中药研究,2009,11(5):728-730
    潘一晨,李阳,王艳.能源禾草的初步筛选[J].沈阳师范大学学报(自然科学版).2011,29(4):571-573.
    祁承经,喻勋林.湖南种子植物总览[M].长沙:湖南科学技术出版社,2002:513-589.
    屈彬,赵德丰.利用煤焦油中的吲哚制取芦竹碱[J].燃料与化T.2005,(2):46-47.
    去感热注射液.四川康特能药业有限公司.Http://www.scktn.com/toubiaoShow.asp?ID=18.
    商成祥.国内外纤维素燃料生物汽油发展综述[J].化学工程与装备,2009,(11):131-132.
    宋宏伟.金润农业公司进行芦竹产业化开发[J].造纸信息,2003,(9):22.
    宋俊东.晨鸣集团建设芦竹基地[J].造纸信息,2001(10):17.
    苏同福,高玉珍,刘霞,等.木质素的测定方法研究进展[J].河南农业大学学报,2007,41(3):356-363.
    孙智谋,蒋磊,张俊波,等.世界各国木质纤维原料生物转化燃料乙醇的工业化进程[J].酿酒科技.2007,(1):91-94.
    汤俊兵,肖燕,安树青.根茎克隆植物生态学研究进展[J].生态学报,2010,30(11):3028—3036.
    田春龙,郭斌,刘春潮.能源植物研究现状和展望.生物加工过程,2005,3(1):14-19
    [1]永明.内蒙古农牧交错区草地资源可持续利用定量评价研究[D].呼和浩特:内蒙古农业大学,2005:47-53.
    文仕知,李铁华,陈亮明.湘中紫色页岩区芦竹生物量及养分分布规律研究[J].中南林业科技大学学报,2008,28(5):1-5.
    汪琛颖,李大林,赵建成.基于核核糖体DNA ITS序列的真藓科系统发育新证据[J].植物研究,2011,31(6):664-673.
    王建波,张文驹,陈家宽.核rDNA的ITS序列在被子植物系统与进化研究中的应用[J].植物分类学报.1999,37(4):407-416.
    王建波.2002ISSR分子标记及其在植物遗传学研究中的应用[J].遗传,24(5):613-616
    王莉衡.关于开发能源植物问题的思考[J].陕西农业科学.2010,(4):123-126.
    王连锁,潘铮,窦田芬,等.芦竹的开发前景分析[J].天津农林科技.2004,(5):11.
    王淑美,梁生旺,周开亚.牛膝的rDNA ITS序列分析[J].中草药,2004(5):553-559.
    王涛.中国主要生物质燃料油木本能源植物资源概况与展望.科技导报,2005,23(5):12-15
    王天桃,张应阔,钱万红,等.芦竹碱合成新工艺研究[J].化工时刊.2002,(03):49-50.
    王效华.江苏省生物质能资源调查与评估方案设计[J].农业工程学报,2012,28(4):204-207.
    王晓丽,凡星,张春,等.用nrDNA ITS序列探讨小麦族含StH基因组物种的系统发育[J].草业学报,2009,18(6):82-90.
    王晓敏,张燕,龚德勇.能源植物象草的综合利用和栽培技术[J].河北农业科学.2010,14(4):96-97.
    王仲颖.我国可再生能源发展现状,目标和政策[J].资源节约与环保,2007,23(4):14-16.
    文仕知,李铁华,陈亮明.湘中紫色页岩区芦竹生物量及养分分布规律研究[J].中南林业科技大学学报,2008,28(5):1-5.
    吴国江,刘杰.能源植物的研究现状及发展建议.中国科学院院刊,2006,21(1):53-57
    吴强华.生物质能源的利用潜力与前景——香山科学会议第256次学术讨论会综述.中国高校科技与产业化,2005(9):35-37
    吴武汉.芦竹,一种高产优质的造纸原料[J].天津造纸.1993,(4).28-29.
    虞道耿,刘国道,白昌军,等.海南野生禾本科牧草种质资源调查、收集与鉴定[J].植物遗传资源学报,2007,8(3):289-293.
    夏立群,李建强,李伟.论克隆植物的遗传多样性[J].植物学通报,2002,19(4):425-431.
    谢光辉,郭兴强,王鑫,等.能源作物资源现状与发展前景[J].资源科学.2007,29,(5):74-80.
    徐颖,刘鸿雁.能源植物的开发利用与展望[J].中国农学通报.2009,25(3):297-300.
    鄢家俊,白史且,梁绪振,等.生物质能源潜力植物—斑茅种质资源考察与收集[J].草业与畜牧.2009,160(3):29-31.
    杨保平,邢杰,等.二羟基芦竹碱新型环保防污涂料的研制[J].现代涂料与涂装.2010,(10):3-5.
    杨柳,颜挺,晁若冰.薄层色谱法鉴别芦竹根药材中的生物碱[J].华西药学杂志.2009,24(1):97-99.
    杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报,1995,37(2):147-153.
    杨泽新,唐成斌,刘世凡,等.贵州天然禾本科牧草种质资源研究[J].草业科学,1996,13(1):11-15.
    姚穆.纺织材料学(第三版)[M].北京:中国纺织出版社,2009.
    叶艳平,周玉杰,丁一刚,等.青霉纤维素酶酶解芦竹的研究[J].2012,29(5):化学与生物工程.22-25.
    易自力.芒属能源植物资源的开发与利用[J].湖南农业大学学报(自然科学版),2012,38(5):455-463.
    易秋艳,黄瑛,刘仲义.去感热注射液指纹图谱进样方式的研究[J].西南军医.2008,10(6):30-31.
    于辉,向佐湘,杨知建.草本能源植物资源的开发与利用[J].草业科学.2008,25(12):46-50.
    余醉,李高扬,李建龙,等.不同预处理对草本芦竹生产燃料乙醇糖化效果比较[J].贵州农业科学.2008,36(6):117-119.
    余醉,李建龙,李高扬.芦竹作为清洁生物质能源牧草开发的潜力分析[J].草业科学.2009,26(6):62-69.
    曾汉元,杨洋,姚元枝,等.不同居群芦竹纤维素和木质素含量的比较研究[J].中国农学通报,2012,28(19):225-228.
    曾宪录,廖富林,温冠儒,等.梅州地区主要能源草分布及生长情况调查[J].广东农业科学,2008,(7):25-28.
    詹秋文,李杰勤,汪保华,等.42份高梁与苏丹草及其2个杂交种DNA指纹图谱的构建[J]草业学报,2008,17(6):85-92.
    詹世雄,曾宪威.植物核心种质构建方法研究进展[J].中国农学通报,2010,26(3):279-282.
    张丽英.饲料分析及饲料质量检测技术(第2版)[M].中国农业大学出版社,2007,65-66,349,353.
    张利,周永红,丁春邦,等.基于ITS序列分析仲彬草属植物的亲缘关系[J].西北植物学报,2007,27(3):490-496.
    张联伟,徐勇,黄书娥,等.微山湖区芦竹引种栽培技术[J].中国林副特产.2010,(6):61-62.
    张卫明.植物资源开发研究与应用[M].东南大学出版社出版,2005
    张玉芬,张大勇.克隆植物的无性与有性繁殖对策[J].植物生态学报,2006,30(1)174-183.
    张云武,龙火生,范源洪,等.2002.甘蔗属及其近缘属种的thcL基因序列变异和系统发育初步研究[J].云南植物研究,24(1):29-36
    赵丽萍,许卉.芦竹在滨海盐碱地的开发应用及栽培技术[J].北方园艺,2007(7):164-165.
    甄国庆,张庆涛,陈凯,等.芦竹引种及栽培技术[J].林业实用技术.2005,(9):35-36.
    郑艳,徐珞珊,王峥涛.组织化学在药用植物研究中的应用[J].现代中药研究与实践,2007,22(3):61-64
    中国科学院能源战略研究组.中国能源可持续发展战略专题研究[M].北京:科学出版社,2006.
    中国新能源网.布什签署能源法案提高乙醇用量.http://www.china5e.com/news/newpower
    中国新能源网.生物燃料.http://www.newenergy.com.cn/html/2007-11/2007118_14701.html.
    中国新能源网.我国第一台秸秆直燃发电项目浚县并网发电.http://www.newenergy.com.cn/html/ 2007-11/20071112_14724.html.
    中国新能源网.我国燃料乙醇业发展概况http://www.newenergy.com.cn/html/2007-11/
    中国新能源网.我国燃料乙醇业发展概况[DB].http://www.newenergy.com.cn/html/2007-11/2007117-14690.html.
    中国植物志编辑委员会.中国植物志第九卷13分册,第十卷12分册[M].北京:科学出版社,1997-2002.
    中国植物志编委会.中国植物志第十六卷第二分册[M].北京:科学出版社,1981.
    周良虹,黄亚晶.国外生物柴油产业与应用状况[J].可再生能源.2005,(4):62-67.
    周中仁,吴文良.生物质能研究现状展望.农业工程学报,2005,21(12):12-16
    Ahmad R, Liow P S, Spencer D F, et al. Molecular evidence for a single genetic clone of invasive Arundo donax in the United States[J]. Aquatic Botany,2008,88(2):113-120.
    Anatoly A. Shatalov, Helena Pereira. Xylose production from giant reed (Arundo donax L.):Modeling and optimization Of dilute acid hydrolysis[J]. Carbohydrate Polymers,2012,87:210-217.
    Anna Maria Raspolli Galletti, Claudia Antonetti, Erika Ribcchini, et al. From giant reed to levulinic acid and gamma-valerolactone:A high yield catalytic route to valeric biofuels[J]. [EB/OL] http://www.sciencedircct.com/ science/article/pii/S0306261912004370.
    Arcade A, Anselin F., RamPant PF, et al. Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch[J].Theor Appl Genet,2000,100:299-307.
    Azadeh Haddadchi, C.L. Gross, Mohammad Fatemi. The expansion of sterile Arundo donax (Poaceae) in southeastern Australia is accompanied by genotypic variation[J]. EB/OL] http://www.sciencedirect.com/science/ article/pi i/S0304377012001271.
    Balogh E, John M H J, Czak6 M, et al. Defective development of male and female gametophytes in Arundo donax L. (Poaceae) [J].Biomass and Bioenergy,2012,45:265-269.
    Barry D. Solomon, Justin R. Barnes, Kathleen E. Halvorsen. Grain and cellulosic ethanol:History, economics, and energy policy. Biomass and Bioenergy,2007,31(6):416-425.
    Barsoum N. Relative contributions of sexual and asexual regeneration strategies in Populus nigra and Salix alba during the first years of establishment on a braided gravel bed river [J]. Evol. Ecol.,2002,15:255-279.
    Cassida K A, Muir J P, Hussey M A, Read J C, Venuto B C, Ocumpaugh W R. Biofuel component concentrations and yields of switchgrass in South central U. S. environments. Crop Science,2005,45(2):682-692.
    Danilo Scordia, Salvatorc L. Cosentino, Jae-Won Lee, et al. Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054[J]. Biomass and Bioenergy,2012, 39:296-305.
    Danilo Scordia, Salvatore L. Cosentino, Jae-Won Lee, et al. Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.)[J].Biomass and Bioenergy,2011,35(7):3018-3024.
    Dirlewanger E, Pronier V, Parvery C. Genetic linkage map of Peach (Prunus persizea L.) using morphological and molecular markers [J].Theor Appl Genet,1998,97:888-89.
    Doyle J J. Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf material [J]. Phytochem. Bull, 1987,19:11-15.
    Eleni G. Papazoglou. Arundo donax L. stress tolerance under irrigation with heavy metal aqueous solutions [J].Desalination,2007,211:304-313.
    Erika Balogh, John M. Herr Jr., Mihaly Czak6,et al. Defective development of male and female gametophytes in Arundo donax L. (Poaceae) [J].Biomass and Bioenergy,2012,45:265-269.
    Erika Ribechini. Marco Zanaboni, Anna Maria Raspolli Galletti, et al. Py-GC/MS characterization of a wild and a selected clone of Arundo donax, and of its residues after catalytic hydrothennal conversion to high added-value products[J]. Journal of Analytical and Applied Pyrolysis,2012,94:223-229.
    European Biomass Association:http://www.ecop.ucl.ac.be/aebiom/
    Fernandez M E, Figueiras A M, BenitoC. The use of ISSR and RAPD markers for detecting DNA Polymorphism, genotype identification and genetic diversity among Barley cultivars with known origin[J].Theor Appl Genet, 2002,104:845-851.
    Ghosal S, Bhattacharya SK. Arundo donax L (Gramine). Phyto-chemical and pharmacological evaluation[J]. JM ed Chem,1969,12(3):480-483.
    Godwin ID, Aitken EA, Smith LW.AP placation of inter simple sequence repeat(ISSR)markers to Plant geneties[J].EleetroPhoresis,1997,18:1524-1528.
    GUO Qiongxia, HUANG Kehui, YU Yun, et al. Phylogenetic relationships of Sorghum and Related Species inferred from Sequence Analysis of the nrDNA ITS Region [J]. Agricultural Sciences in China,2006,5(4):250-256.
    Haddadchi A, Gross C L, Fatemi M. The expansion of sterile Arundo donax (Poaceae) in southeastern Australia is accompanied by genotypic variation[J].Aquatic Botany,2013,104:153-161.
    Hamelink C N, Hooijdonk G V, Faaij A P C. Ethanol from lingo-cellulosic biomass:techno-economic performance in short-, middle-, long-term [J].Biomass and Bioenergy,2005,28:384-410.
    Hodkinson T R, Renvoize S A, Nichonghaile G, et al. A comparison of ITS nuclear rDNA sequence data and AFLP markers for Phylogenetic studies in Phyllostachys (Bambusoideae, Poaceae)[J]. Journal of Plant Research,2000, 113:259-269.
    http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE= BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome)
    H.W. Zub, S. Arnoult, M. Brancourt-Hulmel. Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass and Bioenergy,2011,35 (1) 637-651
    Juan Jose Villaverde, Pablo Ligero, Alberto de Vega. Formic and acetic acid as agents for a cleaner fractionation of Miscanthus x giganteus. Journal of Cleaner Production,2010,18(4):395-401
    Laser M, Larson E, Dale B, Wang M. Comparative analysis of efficiency, environmental impact, and process economics for mature biomass refining scenarios. Biofuels, Bioproducts and Biorefining-Biofpr,2009, 3(2):247-270.
    Lemus R, Lal R. Bioenergy crops an d carbon sequestration[J].Cnitical Reviews in Plant Science.2005,24(1):1-21.
    Lewandowski I,Kieherer A,VOnier P.CO2-balance for the cultivation and combustion of Miscanthus[J]..Biomass and Bioenergy.1995,8(2):81-90.
    Lewandowski I, Scurlock J M O, Lindvall E, et al. The development and current status of Perennial rhizomatous grasses as energy crops in the US and Europe [J].Biomass and Bioenergy,2003,25(4):335-361.
    Lewandowski I., Clifton-Brown J. C, Scurlock J. M. O., et al. Miscanthus:European experience with a novel energy crop[J].Biomass and Bioenergy,2000,19(4):209-227.
    Lewandowski I., Schmidt U.. Nitrogen, energy and land use efficiencies of Miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agriculture, Ecosystems & Environment,2006,112(4):335-346.
    Lewandowski I.,Clifton-Brown J. C., Scurlock J. M. O., Huisman W.. Miscanthus:European experience with a novel energy crop. Biomass and Bioenergy,2000,19(4):209-227.
    Luciana G A, Lucia C, Nicoletta N D N, et al.. Comparison of Arundo donax L. and Miscanthus×giganteus in a long-term field experiment in Central Italy:Analysis of productive characteristics and energy balance [J]. Biomass and Bioenergy,2009,33(4):635-643.
    Liu Q L, Ge S, Tang H B, et al. Phylogenetic relationships in Elymus (Poaceae:Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast tmL-F sequences [J]. New Phytologist,2006,170:411-420.
    Mani S, Tabil L G, Sokhansanj S. Grinding performane and physical properties of wheat and barley straws, corn stover and switchgrass[J]. Biomass and Bioenergy,2004,27:339-352
    Mejdi Jeguirim, Gwenaelle Trouve. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresource Technology,2009,100 (17):4026-4031
    Mejdi Jeguirim,Gwenaelle Trouvd. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis [J].Bioresource Technology,2009,100(17):4026-4031.
    Mukherjee S K. Origin and distribution of Saccharum [J].Bot Gaz,1957,119:55-61.
    N. El Bassam.,James & James. Energy Plant Species [M]. Science Publishers,2007
    N. Nassi o Di Nasso, L.G. Angelini, E. Bonari. Influence of fertilisation and harvest time on fuel quality of giant reed (Arundo donax L.) in central Italy. European Journal of Agronomy,2010,32 (3):219-227
    Nicholas G. Danalatos, Sotiris V. Archontoulis, Ioannis Mitsios. Potential growth and biomass productivity of Miscanthus×giganteus as affected by plant density and N-fertilization in central Greece. Biomass and Bioenergy, 2007,31(2):145-152.
    Obernberger I, Biedermann F, Widmann W, Riedl R. Concentrations of inorganic elements in biomass fuels and recovery in the different ashfractions. Biomass and Bioenergy,1997,12(3):211-224.
    P. Ligero, A. Vega, J.J. Villavcrde. Delignification of Miscanthus×Giganteus by the Milox process. Bioresource Technology,2010,101 (9):3188-3193
    Riaz Ahmad, Pui-Sze Liow, David F. Spencer, et al. Molecular evidence for a single genetic clone of invasive Arundo donax in the United States[J]. Aquatic Botany,2008,88(2):113-120.
    Richard J. Pyter, Frank G. Dohleman, Thomas B. Voigt. Effects of rhizome size, depth of planting and cold storage on Miscanthus x giganteus establishment in the Midwestern USA. Biomass and Bioenergy,2010,34(10):1466-1470
    Roland El Hage, Laurent Chrusciel, Lyne Desharnais. Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresource Technology,2010,101 (23):9321-9329
    Salvatore L. Cosentino, Cristina Patane, Emanuele Sanzone, Venera Copani. Effects of soil water content and nitrogen supply on the productivity of Miscanthus x giganteus in a Mediterranean environment. Industrial Crops and Products,2007,25(1):75-88.
    Scmere T., Slater F. M. (2007a). Invertebrate populations in miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass and Bioenergy,31(1):30-39.
    Semere T., Slater F. M. (2007b). Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus xgiganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass and Bioenergy,31(1):20-29.
    Shiro Tsuyuzaki. Miscanthus sinensis grassland is an indicator plant community to predict forest regeneration and development on ski slopes in Japan. Ecological Indicators,2005,5(2):109-115.
    STEWART G R,LEE J A.The role of proline accumulation in haophytes[J]. Planta.1974,120:279-289.
    Stone K C, Hunt P G, Cantrell K B, Ro K S. The potential impacts of biomass feedstock production on water resource availability. BioresourceTechnology,2001,101 (6):2014-2025.
    Tamura K, Dudley J, Nei M & Kumar S MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J].Molecular Biology and Evolution,2007,24:1596-1599.
    Tamura K, Nei M & Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method[J].Proceedings of the National Academy of Sciences (USA).2004,101:11030-11035.
    Tevfik Aysu, Mehmet Ma$uk Kucuk. Liquefaction of giant reed (Arundo donax L.) by supercritical fluid extraction[J]. [EB/OL]http://dx.doi.org/10.1016/j.fuel.2012.07.00I.
    Thompson D N, Shaw P G, Lacey J A. Post-harvest processing methods for reduction of silica and alkali metals in wheat straw. Applied Biochemistry and Biotechnology,2003,105(1/3):205-218.
    Turhollow A F. Screening herbaceous lignocellulosic energy crops in temperate region of the United States[J]. Bioresource and Technology,1991,36:247-252.
    U.S. Department of Energy:http://wwwl.eere.energy.gov/biomass/
    Ugo De Corato, Neeta Sharma, Oliviero Maccioni. Suppressiveness of steam-exploded biomass of Miscanthus sinensis var. giganteus against soil-borne plant pathogens. Crop Protection,2011,30 (2):146-152
    Venturi P, Venturi G. Analysis of energy comparison for crops in European agricultural systems[J].Biomass and Bioenergy,2003,25(3):235-255.
    Yu H Q, Fan X, Zhang C, et al. Phylogenetic relationships of species in Pseudoroegneria (Poaceae:Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences[J]. Biologia,2008,63: 498-505.
    Yuanyuan Sun, Qinyan Yue, Baoyu Gao, et al. Comparison of activated carbons from Arundo donax Linn with H4P2O7 activation by conventional and microwave heating methods[J]. Chemical Engineering Journal,2012, 192:308-314.
    Zhalolov L,Khuzhaev VU. Alkaloids of Arundo donax.Ⅷ.3-Al-kylindole derivatives in Arundo donax[J].Chem N at Comp,2000,36(5):528-530.
    Zhen Li, Paul W. Bohn, Jonathan V. Sweedler. Comparison of sample pre-treatments for laser desorption ionization and secondary ion mass spectrometry imaging of Miscanthus×giganteus. Bioresource Technology,2010,101(14): 5578-5585

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700