用户名: 密码: 验证码:
阿维菌素与甲维盐的稳定性及农田环境安全性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿维菌素及甲维盐药性广谱、高效,并能与多数农药混配使用,是我国目前用量最大、使用范围最广的杀虫剂之一。虽然阿维菌素及甲维盐的残效期短,但是这两种农药均对水生生物的毒性高,出现突发性污染事故也是可能的,因此对这两种农药的残留毒理,环境行为和环境安全性系统研究很有必要。本文研究了稻米、水和土壤样品中阿维菌素及甲维盐的多残留检测方法,衍生化样品溶液的保存条件及时间;阿维菌素及甲维盐标准溶液、制剂和蔬菜样品中残留物的贮存稳定性;探究了阿维菌素及甲维盐光解产物;进一步研究了阿维菌素及甲维盐在稻田水土环境中的时空分布规律;土壤中的迁移释放规律;稻米和稻田环境中的残留规律;并全面评价阿维菌素及甲维盐在农田环境的安全性;提出了减排控污防治水体污染的有效措施。具体研究结论如下:
     1、本研究建立了测定大米、水和土样品中阿维菌素及甲维盐残留量的灵敏、稳定、适用的HPLC-FLD方法。该方法测定大米、水和土样品最小检出浓度依次为:1μg/kg、0.1μg/L、1μg/kg;加标回收率:87.34%-101.81%;变异系数:1.40%-7.64%.。可用于我国科研、农产品质量检测、环境监测部门对稻米、水、土壤中阿维菌素及甲维盐残留量的检测。
     2、阿维菌素及甲维盐残留量分析测定中,光照对衍生化影响比较大,相同浓度阿维菌素避光衍生化与不避光衍生化相比较,检测回收率要高50.49%,而甲维盐检测回收率要高60.84%。并且提取液衍生化后放置时间对检测的准确性也有较大的影响。在常温避光条件下,阿维菌素及甲维盐提取液衍生化后,应分别在180mmin和360min内检测完毕。不能及时检测的衍生化样品溶液,应在冷藏(4℃)或冷冻(-20℃)条件下保存,但冷藏保存时间不能超过1d,冷冻保存时间可达5d。
     3、本论文对标准溶液、制剂以及蔬菜(花椰菜)中阿维菌素及甲维盐的稳定性进行了研究。低浓度(0.1mg/L)的阿维菌素及甲维盐标准溶液在4℃冷藏条件贮存时间不能超过1个月;高浓度(100mg/L)的阿维菌素及甲维盐标准溶液在4℃冷藏条件贮存时间不能超过9个月。三种剂型(乳油、水乳剂、微囊悬浮剂)农药有效成分阿维菌素和甲维盐在启封之后常温贮存时间不能超过7个月。花椰菜(蔬菜)中阿维菌素及甲维盐在常温下消解很快,半衰期为1.74d~3.04d,在冷藏(4℃)条件下消解半衰期在4.30d-9.40d,所以蔬菜在常温下和冷藏(4℃)有利于降低蔬菜中的阿维菌素及甲维盐残留量;但含有阿维菌素及甲维盐的科研样品蔬菜必须放在冷冻(-20℃)冰箱中贮存,才能保持农药残留水平的真实性,而保存时间也不要超过4个月。
     4.三种剂型农药中有效成分阿维菌素和甲维盐在水上中的持效性均表现为:微囊悬浮剂>水乳剂>乳油。阿维菌素及甲维盐微囊悬浮剂的有效成分半衰期较长,也就是持效期较长。在防治害虫时,阿维菌素及甲维盐微囊悬浮剂比其他剂型可以延长药效期,延长防治害虫时间,提高防治效果。
     5、阿维菌素及甲维盐标准溶液(乙腈)光解试验结果表明:阿维菌素及甲维盐标准溶液(乙腈)光解产物中C25H34O5(414)、C12H22O7(278)、C24H35O8(451)、C17H33O4(301)4种产物在现有文献中已有报道,而C15H29O4(273)、C19H21O6(345)、C24H37O4(389). C16H28O3(268)、C39H60O13(736), C17H29O6(329)6种未见研究报道。从分子结构和化学键的特性分析,在太阳光和高压汞灯下光解主要途径有:分子C14、C21位碳碳键和碳氧键断裂;分子C8、C17位大环断裂;分子C4、C13位齐墩果糖基断裂;阿维菌素分子C8。位上的杂环氧化,生成羟基后进一步氧化为碳基:分子C3’位和C3”位上脱烷(甲)基;分子C1位上酯键断裂,生成酸和醇;分子C12、C15位碳碳键断裂等。
     6、阿维菌素及甲维盐的三种水稻土土壤吸附实验表明:红壤土、水稻土和黑土对阿维菌素及甲维盐吸附平衡时间为1h左右:三种土壤对阿维菌素及甲维盐的吸附能力强弱为黑土>红壤>水稻土。三种土壤中阿维菌素及甲维盐的解吸能力依次为:红壤>水稻土>黑土。进一步对阿维菌素及甲维盐在稻田水土中的迁移释放试验进行了研究,结果表明:阿维菌素及甲维盐施入稻田水中,会随时间的延长逐渐向土壤中迁移(被吸附),土壤中阿维菌素含量最大值出现在施药后第1d,而土壤中甲维盐含量最大值出现在施药后第3d;阿维菌素及甲维盐施入稻田土壤中,灌水后阿维菌素及甲维盐向稻田水中的释放迁移,稻田水中阿维菌素的最高含量出现在灌水后第2d,浓度为0.0340mg/L,甲维盐的最高含量出现在灌水后第5h,浓度为0.0132mg/L;原始有效浓度相同的情况下,灌水后7h,水中阿维菌素浓度比甲维盐高。在释放试验中,阿维菌素和甲维盐在稻田水中的浓度要比迁移试验浓度低一个数量级。
     7、通过施药后对阿维菌素和甲维盐在稻田水土中的时空分布规律研究得出:当对水面直接施药时,阿维菌素和甲维盐从水面向下层扩散,并且向土壤迁移;对土壤施药时,阿维菌素及甲维盐主要分布在土壤层中,土壤中的阿维菌素和甲维盐逐渐向稻田水释放。两种施药方式下,在24h内,稻田水体中阿维菌素和甲维盐的分布不均匀;稻田土壤中阿维菌素和甲维盐的分布集中在表层4cm深的土壤中,表明阿维菌素和甲维盐被土壤吸附后,不容易淋溶,不会对地下水造成污染。
     由于阿维菌素和甲维盐在稻田水体中分布不均匀,施药后24h,需要排水时,设置排水堰高度为3cm,排放稻田中70%的水量(原水深10cm),而水体中的阿维菌素和甲维盐的减排率在33.38%~39.32%。可以减少稻田水体中阿维菌素和甲维盐流入其他水体环境。
     在相同的施药浓度下,排水堰高度为0cm、3cm、7cm、9cm时,土壤施药方式比水面施药方式阿维菌素在各排水堰的减排率分别为:78.49%、86.54%、94.88%、98.44%;各排水堰对甲维盐的减排率分别为:74.16%、84.31%、94.26%、98.29%。因此当选用阿维菌素和甲维盐防治水稻病虫害时,在稻田无水时施药,施药后1h再灌水,既能保证病虫害防治效果,又能更好的防止农药从稻田水体流入其他水体环境。
The efficacy of abamectin and emamectin benzoate is broad-spectrum and high efficiency. They can be made into mixture with most of the pesticides. They is one of the largest amount and the most widely used insecticides in China currently. Although the residual period of abamectin and emamectin benzoate is short, it is possible to occur sudden pollution accident because both pesticides are the high toxicity to aquatic organisms. So it is necessary to study the residue toxicology, environmental behavior and environmental safety of these two insecticides. In this study we set up the method of detecting abamectin and emamectin benzoate in rice, water and soil, and explored the store condition of the derivative solution and the storage stability of abamectin and emamectin benzoate standard samples, preparation and broccoli sample. It can provide a basis for more comprehensive detection of abamectin and emamectin benzoate. At the same time, we also study the degradation laws. migration and release laws, temporal and spatial distribution of abamectin and emamectin benzoate in soil and water. Based on the above results, this dissertation indepth discuss the specific measures to control abamectin and emamectin benzoate polluted the water environment.Combining the research about the photolysis products of avermectin and emamectin benzoate standard samples, the safeties of avermectin and emamectin benzoate in farmland environment were comprehensive evaluated The specific research results are as follows:
     1. A sensitive, stable, applicable multi-residue analytical method was established. It adapted to detection of abamectin and emamectin benzoate in rice.water and soil. The minimum detectable concentrations of in rice, water and soil samples were:1μg/kg,0.1μg/L,1μg/kg, respectively. The adding recovery rates of this method were87.34%~101.81%. and the relative standard deviation was1.40%~7.64%. It Can be used for the departments about research, quality inspection of agricultural products, environmental monitoring to detect the avermectin and emamectin benzoate in rice, water and soil.
     2. The light have greater impact on the derivatization of avermectin and emamectin benzoate. When derivatized avoiding light, the detection recovery rates of the avermectin were higher to50.49%,and the detection recovery rates of emamectin benzoate were higher to60.84%than derivatized under light in the same concentration. The storage time of derivative solution also have greater impact on the accuracy of the detection. At room temperature, the derivative sample solution of avermectin and emamectin benzoate must be detected in180min and360min respectively. Those can not be detected in time should be refrigerated (4℃) or cryopreserved (-20℃), refrigerated storage time can not be exceed Id, the cryopreservation time can be prolong to5days.
     3. In this thesis, the stabilities of avermectin and emamectin benzoate in standard samples, preparation and vegetables (broccoli) were studied. Avermectin and emamectin benzoate standard samples had different levels of degradation under refrigerated conditions. In order to ensure the accuracy and reliability of the test data, low concentration (0.1mg/L) avermectin and emamectin benzoate standard samples stored under the4℃refrigerated conditions can not be more than1month, and high concentration (100mg/L) storage time can not be more than9months under the4℃refrigerated conditions. The shelf life of the three formulations of abamectin and emamectin benzoate (EC, water emulsion, microcapsule suspension) were about7months after unsealing. The digestion half-life avermectin and emamectin benzoate in vegetables (broccoli) were1.74d to3.04d at room temperature.and4.30d to9.40d under the4℃refrigerated conditions.So it can reduce the abamectin and emamectin benzoate residues in vegetable at room temperature.and under the4℃refrigerated conditions.Although it can maintain the freshness of vegetables that stored in refrigerated (4℃), the digestion of pesticide residues in vegetables slow down at the same time. The research samples of avermectin and emamectin benzoate must be storaged at-20℃,and the storage time was not more than4months.
     4. The persistence of abamectin and emamectin benzoate in three formulations in soil and water were microcapsule suspension> emulsion in water> emulsifiable concentration. When we use the microcapsule suspension of avermectin and emamectin benzoate, which can prolong the efficacy period, and improve the control effect.
     5. The photolysis results of avermectin and emamectin benzoate standard solution (acetonitrile) showed that:the photolysis products of avermectin and emamectin benzoate standard solution (acetonitrile) were C25H34O5(414). C1H22O7(278), C24H35O8(451) C17H33O4(301), C15H29O4(273), C19H21O6(345), C24H37O4(389), C16H28O3(268), C39H60O13(736), C17H29O6(329). According to the characteristics of the molecular structure and chemical bonding, under sunlight and high-pressure mercury lamp. the photolysis ways of avermectin and emamectin benzoate were molecular C14, and C21carbon-carbon and carboxyhemoglobin key fracture, C8and C17macrocyclic key fracture, G4and C13oleandrosyl fracture, C8a bit on the heterocyclic oxidation, further oxidized to generate hydroxyl and generate carbonyl at last, the molecular C33' and C3" dealkylation and so on..
     6. The oscillation balance method was used to research the adsorption and desorption in three kinds of soils. The results showed that the adsorption equilibrium time of abamectin and emamectin benzoate in three kinds of soils was about1hour. The adsorption capacity sequence of three kinds of soils to abamectin and emamectin benzoate was black soil> red soil> paddy soil. However, The order of three kinds of soils desorbed abamectin and emamectin benzoate was red soil> paddy soil> black soil.
     The migration and release laws of abamectin and emamectin benzoate in paddy water and soil were researched. Avermectin and emamectin benzoate which were applied to paddy water would migrate to the soil gradually. The maximum content of avermectin in the soil appeared on the third day after application, and the maximum content of emamectin benzoate appeared on the first day after application. When avermectin and emamectin benzoate was applied in paddy soil, avermectin and emamectin benzoate in soil could release to paddy water after irrigation. The maximum content of avermectin in paddy water appeared on the second day after irrigation, and the concentration was0.0340mg/L. The maximum content of emamectin benzoate in paddy water appeared in the fifth hours after irrigation, and the concentration was0.0132mg/L. At the same original effective concentration. the concentration of avermectin in water was higher than emamectin benzoate. after7hours of irrigation. The concentration of abamectin and emamectin benzoate in paddy water at migration test was higher than the release test.
     7. Through further researchs of the temporal and spatial distribution of abamectin and emamectin benzoate in paddy water and soil. The results showed that avermectin and emamectin benzoate diffused from the surface water to lower water, and migrated to soil, when spraying on the surface of the water directly. On soil treatment, avermectin and emamectin benzoate was mainly distributed in the soil layer, and avermectin and emamectin benzoate in soil would release to the paddy water gradually. Spraying in two ways, within24hours, the distribution of avermectin and emamectin benzoate in paddy water was uneven. Abamectin and emamectin benzoate distribution is concentrated at the top4cm deep paddy soil. It was indicated that avermectin and emamectin benzoate were adsorbed by soil, would not cause the pollution of groundwater. Because the distribution of avermectin and emamectin benzoate in paddy water was uneven, and24hours after application, when drainage is needed to set the height of the drainage weir for3cm, the emissions of paddy water for70%(water depth of10cm), and the reduction rates of avermectin and emamectin benzoate emission for33.38%to39.32%, It can reduce avermectin and emamectin benzoate from paddy water to the other water environment.
     In the same pesticide concentration, when the drainage weir height was0cm,3cm,7cm,9cm,spraying the avermectin and emamectin benzoate on the paddy soil could reduce the emission of them than spraying on the surface of paddy water, the reduction rates of avermectin were:78.49%.86.54%,94.88%,98.44%at each drainage weir.and the reduction rates of emamectin benzoate were:74.16%,84.31%,94.26%,98.29%at each drainage weir. When we elected avermectin and emamectin benzoate to control the diseases and insect pest of rice, we sprayed pesticides at the field without water, and then irrigated after spraying1h. It not only can ensure the effect of pest control, but also can better prevent pesticides to flow from paddy water to other aquatic environment.
引文
[1]孙娟,孟水强.阿维菌素的中国市场现状及发展趋势[J].世界农药,2009,31(2):18-21.
    [2]孙娟.阿维菌素类产业论坛共商阿维菌素发展大计[J].农药科学与管理,2009,30(11):19-20.
    [3]孙娟,孟水强,刘幽良.甲氨基阿维菌素苯甲酸盐的产业史和发展前景[J].世界农药,,2010,32(S):50-51.
    [4]孙娟.阿维菌素行情重现回暖[J].农药科学与管理,2010,31(7):56-57
    [5]Seaman J T, Eagleson J S, Carrigan M J, etal. Avermectin B1 toxicity in a herd of Murray Grey cattle[J]. Australian Veterinary Journal,1987,64(9):284-285.
    [6]吴立强,胡业佳,姜海明,等.阿维菌素中毒18例临床分析[J].滨州医学院学报,2009,32(1):80.
    [7]王明兴.大家畜阿维菌素中毒诊治[J].甘肃畜牧兽医,2000.3(3):25-26.
    [8]于利,王爱梅.一次性大剂量喂饲伊维菌素致小鼠听觉功能下降的研究报告[J].辽宁医学院学报,2008,29(2):410-411.
    [9]Celik O C., Tekcan M. Sati L. etal. Abamectin pesticide exposure and male infertility: human exposure studies supported by animal studies point out a considerable relationship[J]. Fertility and Sterility.2009,92(3):137-139.
    [10]张明月,齐秀英,张静,等.阿维菌素原药诱导大鼠肝组织热应激蛋白70基因表达的研究[J].环境与健康,2008,25(3):218-220.
    [11]任锐.李本长,郑晶,等.阿维菌素对大鼠大脑皮层中神经代谢酶的影响[J].环境与健康,2009,26(2):116-118.
    [12]王宇新.任锐.阿维菌素致突变作用实验研究[J].中国公共卫生,2006,22(8):997-998.
    [13]刘彤,朱蓓蕾.阿维菌素对小鼠早期精细胞的微核效应[J].畜牧兽医学报,1998,29(6):531-535.
    [14]刘彤,朱蓓蕾,刘立宝.阿维菌素对小鼠初级精母细胞致突变性的研究[J].2001,31(4):11.
    [15]刘彤,朱蓓莆.阿维菌素对小鼠次级精母细胞致突变性的研究[J].中国兽医科 技.2003,33(5):40.
    [16]杨桂香.朱蓓蕾.阿维菌素对小鼠雌性生殖细胞的致突变性研究[J].畜牧兽医学报,1997,28(2):159-164.
    [17]LANKAS G R,C ART WRIGHT M E,UMBERHAUER D R.P-glycoprotein deficiency in a subpopulation of CF-1 mice enhances avermectin-induced neurotoxicity[J].Toxicology and Applied Pharmacology.1997(02):127-130.
    [18]Borges F A, Silva H C. Buzzulini C, Endectocide activity of a new long-action formulation containing 2.25% ivermectin+1.25% abamectin in cattle[J]. Veterinary Parasitology,2008.155(8):299-307.
    [19]Alaa K, Saleh Al-Dosary, Samy Ibrahim. Degradation of the acaricides abamectin, flufenoxuron and amitraz on Saudi Arabian dates[J] Food Chemistry, 2007,100(4):1590-1593.
    [20]Ahmed E. Sahar I D. Assessment of antifertility activities of abamectin pesticide in male rats[J].Ecotoxicology and Environmental Safety.2003.55(3):307-313.
    [21]Su Du-Zong, Hu Ching-Hung, Huang Bu-Min, et al. Abamectin effects on aspartate aminotransferase and nitric oxide in rats[J]. Toxicology,2001,165(3):189-193.
    [22]王静,张静,姜文玲.阿维菌素原药对小鼠致畸性的研究[J].癌变,畸变,突变,2003,15(4):242-243.
    [23]王锡珍,陆宏达.阿维菌素对几种淡水水生动物的急性毒性作用[J].环境与健康杂志,2009,26(7):593-597
    [24]门振,温沛宏,徐波勇,等.生物源杀虫剂-甲氨基阿维菌素苯甲酸盐[J].农药,2001,40(5):42-45.
    [25]邢彩虹,常平,张林林,等.甲氨基阿维菌素的毒性试验[J].卫生毒理学杂志,2001,15(1):45-46.
    [26]刘永霞,李岩,李茂进,等.甲氨基阿维菌素苯甲酸盐原药的慢性毒性研究[J].毒理学杂志,2006,20(2):113-114.
    [27]王碧颖,张亚华.甲氨基阿维菌素苯甲酸盐中毒致呼吸衰竭的护理研究[J].护理研究,2008,22(4):1067-1068.
    [28]魏方林,朱金文,李少南,等.甲氨基阿维菌素苯甲酸盐乳油对环境生物的急性毒性 研究[J].农药科学与管理,2008,29(3):19-24.
    [29]苍涛,赵学平,吴长兴,等.甲氨基阿维菌素苯甲酸盐对4种非靶生物毒性及安全性评价[J].农药,2007,46(7):481-483.
    [30]郑明奇,邱立红,王成菊,等.9种含阿维菌素或甲氨基阿维菌素的农药对蜜蜂安全性评价[J].安徽农业科学,2005,33(6):980-981.
    [31]李贤宾,魏方林,李少南,等.甲氨基阿维菌素苯甲酸盐对鹌鹑的急性及蓄积毒性研究[J].农药.2007,46(5):341-344.
    [32]Wise LD, Allen HL, Hoe CM, et al. Developmental Neurotoxicity Evaluation of the Avermectin Pesticide, Emamectin Benzoate, in Sprague-Dawley Rats[J]. Neurotoxicology and Teratology,1997,19(4):315-326
    [33]姜利人,王子文,岳红霞,等.大剂量纳洛酮成功救治甲维盐中毒1例分析[J].中国误诊学杂志,2007,7(7):1648-1649.
    [34]郑明奇,邱立红,王成菊,等.9种含阿维菌素或甲氨基阿维菌素的农药对蜜蜂安全性评价[J].安徽农业科学,2005,33(6):980-981.
    [35]张卫.农药阿维菌素在环境中降解和代谢研究[D].浙江大学,2004
    [36]孔德洋,石利利,单正军,等.甲氨基阿维菌素苯甲酸盐的降解性研究[J].生态与农村环境学报,2009,25(4):88-91.
    [37]钱婧,花日茂,汤锋,等.甲氨基阿维菌素苯甲酸盐在水中的光解研究[J].安徽农业科学,2009,37(27):1 3211-13213
    [38]Mushtaq M, Chukwudebe A C,Wrzesinski C, et al. Photogradation of Emamectin Benzoate in Aqueous Solutions[J].Journal of Agricultural and Food Chemistry, 1998,46(3):1181-1191.
    [39]Mushtaq M, Chukwudebe A C,Wrzesinski C, et al. Photodegradation of Emamectin Benzoate in Aqueous Solutions[J]. Journal of Agricultural and Food Chemistry,1998,46:1181-1191
    [40]Feely W F, Crouch L S,Arison B H. et al. Photodegradation of 4"-(epi methylamino)-4"-deoxyavermectin Bla Thin Films on Glass [J]. Journal of Agricultural and Food Chemistry,1992,40:691-696
    [41]Wrzesinski C L, Arison B H,Smith J, et al. Isolation and Identification of Residues of 4"-(epi-methylamino)-4"-deoxyavermectin Bla Benzoate from the Surface of Cabbage[J]. Journal of Agricultural and Food Chemistry,1996,44:304-312
    [42]Mouvet C, Jesnnot R, Riolland H, et al. Stability of isoproturon, baltazone, terbuthylazine and alaxhlor in natural groundwater, soil water and surface water samples stored under laboratory conditions[J]. Chemosphere,1997,35:1083-1097
    [43]Barcelo D. House W, Maier E, et al. Preparation,homogeneity and stability of fxeezed-dried water containing pesticides[J]. International Journal ofenvironmental analytical chemistry,1994,57(3):237-254.
    [44]Martin A, Fernandez P, Cantata C. The preparation of a certified reference material of polar pesticides in freezed-dried water[J]. Fresenins J Anal Chem,1999,363:632-640.
    [45]Sabik H, Jeannot R. Stability of organophosphorus insecticides on graphitized carbon black extraction cartridges used for large volumes of surface water[J]. Journal of Chromatography A.2000,879:73-82
    [46]Crescenzi C, Corcin A, Madbonly M D, et al. Pesticide stability studies upon storage in a graphitized carbon black extraction cartridge[J]. Environmental Science and Technology,1995,29(9):2185-2190
    [47]Ferrer I, Barcelo D. Stability of pesticides stored on polymeric solid-phase extraction cartridges[J]. Journal of Chromatography,1997,778:161-170
    [48]Patsias J, Papadopoulou M E. Development of an automated on-line solid-phaso extraction-high performance liquid chromatographic method for the analysis of aniline, phenol, caffeine and various selected substimtod aniline and phenol compounds in aqueous matrices[J]. Journal of Chromatography,2000,904: 171-188
    [49]Chee K K, Wong M K, Lee H K. Determination of organochlorine pesticide in water by membranous solid-phase extraction and in sediment by microwave-assisted solvent extraction with gas chromatography end electron-capture and mass spectrometric detection[J]. Journal of chromatography,1996,736:211-218
    [50]Lyytikainen M, Kukkonen J V K, Lydy M J. Analysis of pesticides in water end sediment under different storage conditions using gas chromatography[J]. Archives of Environmental Contamination and Toxicology,2003,44(4):437-444.
    [51]Scott A S. Terry L L, John D M. Desiccation effects on stability of pesticides stored on solid-phase extraction disk[J].Anal Chem,1995,67:3064-3068.
    [52]Deplagne.J, Vial J, Pichon V, et al. Feasibility study of a reference material for water chenmtry:Long term stability of triazine and phenylurea residues stored in vials or polymeric sorbents[J]. Journal of Chromatography,2006.1123:30-37
    [53]Martinez E, Barcelo D. The stability of selected herbicides preconeantrated from estuarine river waters on solid-phase extraction disks[J]. Chromatographia, 1996,42(1):72-76
    [54]Senseman S A, Lavy T L, Mattice J D, et al. Stabifity of various pesticides on membranons solid-phese extraction media[J]. Environmental Science and Technology,1993,27(3):516-519.
    [55]Webster G R B, Reimer G J. Cold storage degradation of the herbicide metribuzin in field soil samples awaiting analysis. Pestle. Sci,1976,7:292-300
    [56]Pothuluri J V, Moorman T B, Obenhuber D C, et al. Aerobic and anaerobic degradation of alachlor in samples from a surface-to-groundwater profile[J]. Joumal of Environmental Quality,1990,19:525-530
    [57]Burgard D J, Dowdy R H, Koskinen W C, et al. Movement of metribuzin a loamy sand soil under irrigated potato production[J]. Weed Sci.1994,42:446-452
    [58]Miehele P, Gareth H, Michael L, et al. Pestieide-contaminated soil sample during frozen storage[J]. Journal of Environmental Quailty,1999.28:726-729
    [59]Helmut R, Andreas P L, Marion H, et al. Behavior of PAHs during cold storage of historically contaminated soil samples[J]. Chemosphere,2002,49:1239-1246
    [60]Pan G F, Cao Y Z, Fan C L, et al. Modification of AOAC Multiresidue Method for determining synthetic pyrethroid residues in fruits, vegetables, and grains. Part3: Studies of Analyte Stability and Method Ruggedness[J]. Journal of AOAC International,1997,80:63-73
    [61]Egli H. Storage stability ofpesticide residues[J]. Journal of Agriculture and Food Chemistry,1982,30:861-866
    [62]Irshad A K. Zahida P. Masud S Z. Stability of organophosphate and pyrethroid pesticides on wheat in storage[J]. Journal of stored products research-2001,37: 199-204
    [63]Noble R W, Hamilton D J, Osboroe W J. Stability of pyrethroids on wheat storage[J]. Pestle Sei,1982,13:246.252
    [64]John P L, Elizabeth A C. nc degradation ofpirimiphos-methyl on stored grains[J]. Pestlc Sci,1982,13:467-474
    [65]Yukari T H, Tonogai Y. Nakamura Y, et al. Residue levels of dichlorvas, chlorpropham,and pyrethrim in postharvest-treated potatoes during storage or processing into starch[J]. Journal of Agricultare and Food Chemistry.1992,40: 1240-1244
    [66]Kobayashi H, Nishida M, Matano O, et al. Effect of Cysteine on the Stabifity of ethylenethiourea and ethylenebis(dithiocarbamate) in crops during storage and/or analysis[J]. Journal of Agriculture and Food Chemistry,1992,40:76-80
    [67]Davio W,Randall R W. Accuracy of pesticide reference standard solutions. Part Ⅰ. Factors affecting organic solvent evaporation[J]. Journal of AOAC International. 1982,65:89-93
    [68]Davio W, John F T, Randall R W. Accuracy of ousticide reference standard solutions. Part Ⅱ. Chemical smbflity under four storage conditions[J]. Journal of AOAC International,1982,65:94-102
    [69]Mastovska K, Lehotay S J. Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues[J]. Journal of Chromatography,2004,1040:259-272
    [70]Bemal J L, Nozal M J, Jimenez J J. Influence of solvent and storage condations on the stability of acaricide standard stock solutions[J]. Journal of Chromatography,1997, 765:109-114
    [71]Elizabeth J A. Long-term stability of pure standard and stock standard solutions for the determination of pesticide residues using gas chromatography[J]. Journal of Chromatography,2005,1080:166.176
    [72]王飞.农药水乳剂稳定性影响因素的探讨[J].安徽化工,2010,36(5):53-58
    [73]黄国强,李凌,李鑫钢.农药在土壤中迁移转化及模型方法研究进展[J].农业环境保护,2002,21(4):375-377
    [74]马庆立,陈鹤鑫,徐进,等.土壤中农药吸附一解吸的研究方法[J].农药译丛,1989,(5):45-47
    [75]方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94-97
    [76]安凤春,莫汉宏.杨克武,等.农药在土壤中迁移的研究方法[J].环境化学,1994,13(3):214-217
    [77]郑世英.农药对农田土壤生态及农产品质量的影响[J].石河子大学学报(自然科学版),2002,6(3):255-258
    [78]吴平霄,廖宗文.农药在蒙脱石层间域中的环境化学行为[J].环境科学进展,1999.7(3):70-77
    [79]丁敬祥,朱炎.有机污染物在土壤一水体系中的分配理论[J].农村生态环境,1997,13(3):42-45
    [80]Dyson J S, Beulke S, Brown C D, Adsorption and Degradation of the Weak Acid Mesotrione in Soil and Environmental Fate Implications[J]. Journal of Environmental Quality,2002,31:613-618
    [81]罗玲,欧晓明,廖晓兰.农药在土壤中的吸附机理及其影响因子研究概况[J].化工技术与开发,2004,33(1):12-16
    [82]应兴华,徐霞.影响农药在土壤与沉积物上吸附作用的研究[J].中国农学通报,2005,21(8):393-396
    [83]张伟,王进军,张忠明,等.烟嘧磺隆在土壤中的吸附及与土壤性质的相关性研究[J].农药学学报,2006.8(3):265-371
    [84]张瑾,闫书军.农药在土壤中淋溶迁移影响因素研究进展[J].安徽建筑工业学院学报(自然科学版),2008,16(4):38-45
    [85]郑和辉,叶常明.乙草胺和丁草胺在土壤中的移动性[J].环境科学,2001,22(5):117-121.
    [86]Youbin S. Kazuhiro T, Akio L,atle. Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils[J].Pest Management Science,2009,65: 956-962
    [87]李海山,谭鑫,刘铁铮.农药污染现状及对策[J].河北果树.2012(1):34-35
    [88]刘起丽,段长勇,张嫣紫、等.秸秆还田技术研究进展[J].河南科技学院学报,2012,40(6):25-27
    [89]李少平,李文海,吕海军.浅谈秸秆饲料的开发利用[J].中国畜禽种业,2010,(3):71-72
    [90]李砚飞.秸秆沼气工程技术探索与研究[J].农业工程技术,2012,(5):22-25
    [91]朱虹,赵海瑞.国内秸秆综合利用技术分析[J].农业技术与装备,2012,(16):28-30;
    [92]郭冬生,彭小兰,龚群辉,等.畜禽粪便污染与治理利用方法研究进展[J].浙江农业学报,2012,24(6):1164-1170.
    [93]朱万斌,王海滨,林长松,等.中国生态农业与面源污染减排[J].中国农学通报,2007,23(10):184-187
    [94]冯国禄.减排降污控制稻田面源污染物排放总量的技术研究[D].湖南农业大学,2011
    [95]刘泉民.发展生物农药是减少农业面源污染的必由之路[J].农业环境与发展,2006,(1):45-49
    [96]傅强,杨仁斌,廖海玉,等.阿维菌素在柑桔和土壤中的消解动态研究[J].分析科学学报,2011,27(1):85-88
    [97]任晓静.甲维盐·多杀菌素3%乳油高效液相色谱分析[J].农药科学与管理,2010,31(12):40-42
    [98]Javier H B, Lidia M R, Estrella M H,et al.Determination of Abamectin Residues in Avocados by Microwave-Assisted Extraction and HPLC with Fluorescence Detection[J].Chromatographia,2008,67(2):69-75
    [99]柳工荣,杨仁斌,黄尧,等.甲维盐在水稻环境中的残留分析方法[J].农药,2011,50(5):362-364
    [100]Javier H B, Lidia M R, Estrella M H, etal. Analysis of abamectin residues in avocados by high-performance liquid chromatography with fluorescence detection[J]. Journal of Chromatography A,2007,1165(2):52-57.
    [101]Hernandez B J, Ravelo L M. Hernandez E M, etal. Analysis of abamectin residues in avocados by high-performance liquid chromatography with fluorescence detection[J]. Journal of Chromatography A,2007,1165:52-57.
    [102]Kolar L, Kuzner J, Erzjen N K. Determination of abamectin and doramectin in sheep faeces using HPLC with fluorescence detection[J]. Biomedical Chromatography,2004,18:117-124.
    [103]Sher A M. Sun T. McLeroy G E, etal. Simultaneous determination of eprinomectin, moxidectin. abamectin, doramectin, and ivermectin in beef liver by LC with fluorescence detection[J]. Journal of AOAC International.2000,83(1):31-38.
    [104]Valenzuela A I, Redondo M J. Pico Y, et al. Determination of abamectin in citrus fruits by liquid chromatography—electrospray ionization mass spectrometry[J]. Journal of Chromatography A,2000,871(2):57-65.
    [105]Pozo O J, Marin J M, Sancho J V, et al. Determination of abamectin and azadirachtin residues in orange samples by liquid chromatography—electrospray tandem mass spectrometry[J]. Journal of Chromatography A,2003,992(2):133-140.
    [106]宫小明,董静,孙军,等.动物源食品中阿维菌素类药物残留的QuEChERS-液质联用法测定[J].分析测试学报,2010,29(9):933-937
    [107]蒋宏,胡贝贞,宋伟华.微波辅助萃取-液相色谱-串联质谱法测定植物源产品中的阿维菌素B1a残留量[J].化学分析计量,2012,21(2):45-48
    [108]杨方,杨守深,林永辉,等.超高效液相色谱-电喷雾电离串联质谱联用法测定茶叶中阿维菌素类药物残留[J].色谱,2009,,30(4):127-130.
    [109]何红梅,赵华,张春荣,等.超高效液相色谱-串联质谱法测定水稻基质中阿维菌素残留量[J].分析化学,2012,40(1):140-144.
    [110]张卫.农药阿维菌素在环境中降解和代谢研究[D].浙江大学,2004
    [111]钱婧,花日茂,汤锋,等.甲氨基阿维菌素苯甲酸盐在水中的光解研究[J].安徽农业科学,2009,37(27):13211-13213
    [112]徐虎,徐凤波.甲氨基阿维菌素苯甲酸盐的光解研究与进展[J].农药,2003,42(10):5-8.
    [113]MUSHTAQ M, CHUKWUDEBE A C, WRZESINSKI C, et al. Photogradation of Emamectin Benzoate in Aqueous Solutions[J].Journal of Agricultural and Food Chemistry.1998,46(3):1181-1191.
    [114]Mushtaq M, Chukwudebe A C,Wrzesinski C, et al. Photodegradation of Emamectin Benzoate in Aqueous Solutions[J]. Journal of Agricultural and Food Chemistry,1998,46:1181-1191
    [115]Feely W F. Crouch L S,Arison B H. el al. Photodegradation of 4"-(epi methylamino)-4"-deoxyavermectin Bla Thin Films on Glass [J]. Journal of Agricultural and Food Chemistry,1992,40:691-696
    [116]Wrzesinski C L. Arison B H,Smith J, et al. Isolation and Identification of Residues of 4"-(epi-methylamino)-4"-deoxyavermectin Bla Benzoate from the Surface of Cabbage[J]. Journal of Agricultural and Food Chemistry,1996,44:304-312
    [117]刘玉莹.农药污染概况及食物中农药残留分析方法研究进展[J].职业与健康,2006,22(3):178-180.
    [118]唐浩,熊丽君,黄沈发,等.农业面源污染防治研究现状与发展[J].环境科学与技术,2011,34(12):107-112.
    [119]尹丽辉,刘钦云,谢可军,等.湖南省农业面源污染现状与防控对策[J].湖南农业科学,2011,(23):61-64.
    [120]赵兴敏,王春玲,董德明,等.重金属和有机氯农药在沈阳郊区农田土壤中的吸附和迁移[J].环境科学学报,2010,30(9):1880-1887.
    [121]王心义,赵明坤,潘文维.河南焦作市土壤有机氯农药污染状况调查[J].土壤通报,2009,40(2)415-419.
    [122]王锡珍,陆宏达.阿维菌素对几种淡水水生动物的急性毒性作用[J].环境与健康杂志,2009.26(7):593-597..
    [123]苍涛,赵学平,吴长兴,等.甲氨基阿维菌素苯甲酸盐对4种非靶生物毒性及安全性评价[J].农药,2007,46(7):481-483.
    [124]工成菊,邱立红,郑明奇,等.阿维菌素及其混配制剂对蜜蜂的安全性评价[J].农业环境科学学报,2006,,25(1):229-231.
    [125]郑明奇,邱立红,王成菊等.9种含阿维菌素或甲氨基阿维菌素的农药对蜜蜂安全性评价[J].安徽农业科学.2005,33(6):980-981.
    [126]Wang Hai. Wang Zi-jian, Liu Su-ying, et al. Rapid method for multi-residue determination of avermectins in bovine liver using high-performance liquid chromatography with fluorescence detection[J]. Bull Environ Contam Toxicol, 2009, 82:395-398
    [127]Borges J H, Ravelo-Pe'rez L M, Herna 'ndez-Sua' rezl E M, et al. Determination of abamectin residues in avocados by microwave-assisted extraction and HPLC with fluorescence detection[J]. Chromatographia,2008,67(1):69-75
    [128]赵莉,谢显传.占绣萍.高效液相色谱-荧光法同时检测蔬菜中阿维菌素甲氨基阿维菌素苯甲酸盐和伊维菌素的多残留量[J].中国农业科学,2010.43(16):3467-3472.
    [129]柳王荣,杨仁斌,黄尧,等.甲维盐在水稻环境中的残留分析方法[J].农药,2011.50(5):362-364
    [130]张卫,林匡飞,蔡兰坤.等.阿维菌素在不同类型土壤中的吸附研究[J].生态环境,2006,15(1):37-39.
    [131]张明娜.甲氨基阿维菌素苯甲酸盐在甘蓝和土壤中残留消解动态及在土壤中吸附行为研究[D].安徽:安徽农业大学,2008
    [132]谢显传,张少华,王冬生.等.阿维菌素土壤吸附特性研究[J].中国农业科学.2007,40(9):1959-1963.
    [133]张冲,葛峰,单正军,等.五种土壤吸附喹乙醇特性的研究[J].中国环境科学,2011,31(1):84-89.
    [134]张中明,张伟,蒋凡,等,甲磺隆在土壤中的吸附-解吸特性[J].西南大学学报(自然科学版),2009,31(3):154-163.
    [135]顾宝根,程燕,周军英.等.美国农药生态风险评价技术[J].农药学学报.2009,11(3):283-290
    [136]孙肖瑜,王静,金永堂.我国水环境农药污染现状及健康影响研究进展[J].环境与健康杂志,2009,26(7):649-652
    [137]宋宁慧.卜元卿,单正军.农药对地表水污染状况研究概述[J].生态与农村环境学报,2010,26(Spl):49-57
    [138]Sun J, Feng J, Liu Q, et al. Distribution and sources of organochlorine pesticides (OCPs) in sediments from upper reach of Huaihe River, East China[J]. Journal of Hazardous Materials,2010.184(1-3):141-146
    [139]Feng J, Zhai M, Liu Q, et al. Residues of organochlorine pesticides (OCPs) in upper reach of the Huaihe River, East China[J]. Ecotoxicology and Environmental Safety,2011,74(8):2252-2257
    [140]Gong X, Qi S, Wang Y. et al. Historical contamination and sources of organochlorine pesticides in sediment cores from Quanzhou Bay, Southeast China[J]. Marine Pollution Bulletin,2007,54(9):1434-1440
    [141]Yang H, Xue B, Yu P, et al. Residues and enantiomeric profiling of organochlorine pesticides in sediments from Yueqing Bay and Sanmen Bay, East China Sea[J]. Chemosphere,2010,80(6):652-659
    [142]Maskaoui K, Zhou J, Zheng T, et al. Organochlorine micropollutants in the Jiulong River Estuary and Western Xiamen Sea, China[J]. Marine Pollution Bulletin, 2005,51(12):950-959
    [143]张家泉,肖宇伦.我国湖泊水环境中有机氯农药污染的研究进展[J].2012.28(1):22-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700