用户名: 密码: 验证码:
长期施肥对水稻土和旱地红壤的肥力质量、有机碳库与团聚体形成机制的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着全球气候的变暖和现代农业的发展,生态环境的破坏和资源的日益稀缺等问题日益凸显,土壤质量的保育与土壤资源的可持续性利用已经成为当今农业科学与生态环境领域的热门研究课题。本研究以设立在江西省进贤红壤研究所内由第四纪红色粘土发育的红壤性水稻土和旱地红壤上的长期定位试验各施肥处理土壤作为研究对象,探讨不同施肥措施对土壤肥力质量、有机碳库的分布与周转和土壤团聚体的形成与稳定的影响,为指导农业生产,加强农田养分管理,实现土壤的可持续利用和农业可持续发展提供科学依据。
     本文研究结果如下:
     (1)长期施肥对红壤性水稻土和红壤旱地的肥力性质影响显著。与长期不施肥处理相比,施化学N肥处理的土壤pH值都有所降低,施用化学氮肥是导致红壤pH降低的主要原因之一,旱地红壤比水稻土酸化程度更为明显。有机无机肥配施处理(NPKOM)则较明显地抑制土壤酸化,显著提高了土壤肥力。与试验开始前相比,所有处理的有机C含量都有升高,说明土壤有机质的增加主要是来自作物根茬的返田或施用有机肥。因此,采用有机无机肥配施模式最有利于土壤肥力水平的提高和土壤的可持续利用。
     (2)应用Fuzzy综合评判法对各处理土壤的肥力质量进行数值化的综合评价表明,红壤性水稻土和旱地红壤的NPKOM处理土壤肥力质量均属于二级,水稻土其他施肥处理的土壤肥力质量均属于三级,旱地的NPK和2NPK处理的土壤肥力质量属于三级,其他处理属于四级。旱地的整体土壤肥力质量比水稻土低。两种土壤均是有机无机配施肥最有利于土壤肥力质量的提升,单施氮肥处理的土壤肥力质量都明显降低。
     (3)土地利用方式和长期施肥显著改变土壤有机碳库中颗粒有机碳的组成(cPOM、fPOM、iPOM_mM)。其中,水稻土微团聚体中的有机碳库占土壤总有机碳库的60%以上,旱地红壤矿物结合态有机C占绝大部分。通过室内59天的好气培养,C02-Ct累积量的高低顺序为微团聚体>原土>粉黏粒。旱地的土壤有机碳的半衰期基本都远远大于水稻土,周转速率比水稻土要慢。施用有机肥能提高土壤有机碳库的周转速率,促进土壤有机碳库的更新。在水田和旱地两个生态系统中,土壤固碳与有机碳投入均呈指数型增长关系,水稻土的固碳效率(ΔSOC/ΔC input)和土壤有机碳储量明显高于旱地。水淹状况下有机质的矿化速率比较低,说明在嫌气条件下,微生物活性比好气条件下要低。
     (4)对CK、NPK和NPKOM三种施肥模式的土壤团聚体进行不同方式(Water作为对照、Ammonium oxalate、DCB和H202)浸提处理后,通过分析比表面积、铁铝氧化物和有机质的关系,结果表明,水稻土0.053-0.25mm团聚体的胶结物质以游离氧化铁铝为主,其他粒级以有机质为主;早地红壤0.25-2.0mm团聚体的胶结物质以有机质为主,0.053-0.25mm团聚体以游离氧化铁铝胶结为主,铁铝氧化物为<0.053mm团聚体比表面积的主要影响因素。
     (5)不同施肥模式影响作物的生物产量和养分吸收量。籽粒产量占水稻总生物量的50%以上。与CK相比,一元施肥处理中单施P肥能够提高水稻籽粒产量,除N、K、NK处理低于CK外,其它各处理秸秆和根茬生物量都有所提高。说明磷肥在提高籽粒产量、秸秆和根茬生物量方面发挥了重要作用。NPKOM处理显著增加作物的生物量。玉米的秸秆生物量占50%左右,单施氮肥处理各器官的生物量均最低,说明单施氮肥处理导致了玉米大幅减产。SOC和土壤碱解N对水稻和玉米各器官生物量的影响均达到极显著水平。土壤全P和有效P对地上部生物产量的影响也是极显著的,土壤K养分对玉米生物量影响较小。水稻和玉米吸收的N、P养分都主要分布在籽粒中,而吸收的K主要分布在秸秆中。
Along with the global warming and the development of modern agriculture, the problems of environmental degradation and resource scarcity have been more prominent, in order to keeping the quality of soil conservation and the sustainable use of soil resources the study of soil fertility quality, soil organic carbon pools and soil structure has become an important research field. In this study, paddy and upland red soils which derived from quaternary red clay had been chosen as the research materials. Affected by different patterns of fertilization, long-term fertilization plots are located in Jiangxi Provincial Red Soil Research Institute, the soil fertility quality, soil organic carbon pools distribution and turnover rates, stability of soil aggregates and the effects on soil aggregate stability were investigated. Thereby, it is meaningful to guide the agricultural production, strengthen the farmland nutrient management and finally realize the sustainable development of agriculture.
     The main results are showed as follows:
     (1) The long-term fertilization treatments significantly affected the properties of soil. The long-term application of N fertilizer may lead to soil acidification. In upland soil the soil pH values were significantly lower than in paddy soil. Only the NPKOM treatment effectively inhibited the soil acidification and significantly improved soil fertility quality. The SOC content of all treatments increased as a result of stubble and organic fertilizer remaining in the fields since the beginning of the experiment. Therefore, the combined application of inorganic and organic fertilizer is benefited for enriching soil nutrients and the sustainable development of agriculture.
     (2) The results of evaluating on the soil fertility quality by use of the Fuzzy comprehensive assessment showed:The NPKOM treatment in paddy soil and upland soil belonged to2grade and others were in the3grade. The upland soil under NPK,2NPK treatment belonged to3grade, and others were in the4grade. However, the fertility quality of upland soil was lower than paddy soil. The results described above illustrated that the application of chemical fertilizer plus organic manure will enhance the soil fertility quality in two soils. The quality of single application of N fertilizer had a decreasing trend on both soils.
     (3) The land use and long-term fertilization significantly changed the composition of POM associated C pools (cPOM、fPOM and iPOM_mM). The C conten of mM accounted for60%in paddy soil whereas the mineral associated C was mainly in upland soil. Through59days laboratory aerobic incubation, the cumulation of CO2-Ct followed the order of microaggregate, original soil and silt clay. The half-life of upland soil was larger than paddy soil, however, soil organic carbon pool turnover rate is slower. Therefore, the application of organic fertilizer can increase soil organic carbon pool turnover rate, and promote to update soil organic carbon pool. In the two ecosystems, the results showed a growing exponentially positive correlation between soil carbon sequestration and SOC input. The higher carbon sequestration efficiency (ΔSOC/ΔC input) and SOC pools in paddy soil explained that organic matter mineralization rate is relatively low under flooded. Apparently, microbial activity in anaerobic conditions is lower than in aerobic conditions.
     (4) In this paper, we chosed three long-term fertilizer treatments (CK, NPK and NPKOM) of the paddy soil and upland soil to study the formation mechanism of soil aggregates. After extracting from four treatments (Water treatment, Oxalate treatment, DCB treatment and H2O2treatment), throgh discussing the contents of organic carbon, iron and aluminum oxides and specific surface area, the results showed:at0.053-0.25mm level, free iron and aluminum oxides instead of organic matter acted as the main cementing substance of soil aggregates in paddy soil. Unlike paddy soil, in upland soil the main cementing substance was organic matter at0.25~2mm level or iron and aluminum oxides at0.053~0.25mm level.At<0.053mm level, iron and aluminum oxides were the main factors of specific surface area.
     (5) The biomass of different organs of rice and maize were affected by different fertilization patterns. Overall, The grain yield of rice biomass accounted for more than50%. Compared with CK, only single application of P fertilizer could improve rice grain yield among one-factor fertilization. The results revealed that P fertilizer has played an important role in raising grain yield and biomass of straw and stubble. NPKOM treatment significantly improved crop biomass and promoted system productivity. Maize straw biomass of total biomass accounted for about50%. The maize biomass is the lowest under the application of N fertilizer, indicating that the application of N fertilizer may decline the production of maize.The SOC and alkalized N reached extremely significant level with all organs of maize. Total P and available P has a significantly impaction on aboveground biomass. From the point of nutrient uptake of crops, N and P uptake of rice and maize were mainly absorbed in grains, and K nutrient was in straw.
引文
[1]Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science,2004, 304(11):1623-1627.
    [2]杨景成,韩兴国,黄建辉,等.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,23(4):787-796.
    [3]邵明安,王全九,黄明斌.土壤物理学[M].高等教育出版社,2006.
    [4]黄昌勇.土壤学[M].中国农业出版社,2000.
    [5]Dexter A. Advances in characterization of soil structure[J]. Soil and Tillage Research,1988,11(3): 199-238.
    [6]Diaz-Zorita M, Perfect E, Grove J. Disruptive methods for assessing soil structure[J]. Soil and Tillage Research,2002,64(1):3-22.
    [7]赵秉强,张夫道.我国的长期肥料定位试验研究[J].植物营养与肥料学报,2002,8(3):3-8.
    [8]李成亮,孔宏敏,何园球.施肥结构对早地红壤有机质和物理性质的影响[J].水土保持学报,2004,18(6):116-119.
    [9]姜灿烂,何园球,刘晓利,等.长期施用有机肥对早地红壤团聚体结构与稳定性的影响[J].土壤学报,2010,47(4):715-722.
    [10]赖庆旺,李茶苟,黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究[J].土壤学报,1992,29(2):168-174.
    [11]史奕,陈欣,沈善敏.有机胶结形成土壤团聚体的机理及理论模型[J].应用生态学报,2002,13(11):1495-1498.
    [12]李江涛,张斌,彭新华,等.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报,2004,41(6):912-917.
    [13]袁颖红,李辉信,黄欠如,等.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-2966.
    [14]Huang S, Peng X, Huang Q, et al. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China[J]. Geoderma,2010,154(3):364-369.
    [15]徐江兵,李成亮,何园球,等.不同施肥处理对早地红壤团聚体中有机碳含量及其组分的影响[J].土壤学报,2007,44(4):675-682.
    [16]Piccolo A. Humic substances in terrestrial ecosystems[M]. Elsevier,1996.
    [17]Baldock J A, Nelson P. Soil organic matter[J]. Handbook of Soil Science, CRC Press Inc, Boca Raton, USA.1999:B25-B84.
    [18]Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature,1982, 298:156-159.
    [19]King A W, Post W M, Wullschleger S D. The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2[J]. Climatic Change,1997,35(2):199-227.
    [20]Trumbore S E. Potential responses of soil organic carbon to global environmental change[J]. Proceedings of the National Academy of Sciences,1997,94(16):8284-8291.
    [21]Edmeades D C. The long-term effects of manures and fertilisers on soil productivity and quality:a review[J]. Nutrient Cycling in Agroecosystems,2003,66(2):165-180.
    [22]Wang C, Pan G, Tian Y, et al. Changes in cropland topsoil organic carbon with different fertilizations under long-term agro-ecosystem experiments across mainland China[J]. Science China Life Sciences, 2010,53(7):858-867.
    [23]李忠佩,张桃林,陈碧云,等.红壤稻田土壤有机质的积累过程特征分析[J].土壤学报,2003,40(3):344-352.
    [24]刘畅,唐国勇,童成立,等.不同施肥措施下亚热带稻田土壤碳,氮演变特征及其耦合关系[J].应用生态学报,2008,19(7):1489-1493.
    [25]邵月红,潘剑君.长期施肥对红壤不同形态碳的影响[J].中国生态农业学报,2006,14(1):125-127.
    [26]袁颖红,南昌,黄欠如,等.长期施肥对红壤性水稻土团聚体活性有机碳的影响[J].土壤学报,2008,45(2):259-266.
    [27]赵红,吕贻忠,杨希,等.不同配肥方案对黑土有机碳含量及碳库管理指数的影响[J].中国农业科学,2009,42(9):3164-3169.
    [28]曾骏,郭天文,包兴国,等.长期施肥对土壤有机碳和无机碳的影响[J].中国土壤与肥料,2008,2:11-14.
    [29]Cai Z, Qin S. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China[J]. Geoderma,2006,136(3):708-715.
    [30]刘恩科,赵秉强,胡昌浩,等.土壤肥力的影响[J].植物营养与肥料学报,2007,13(5):789-794.
    [31]王平,李凤民,刘淑英.长期施肥对土壤生物活性有机碳库的影响[J].水土保持学报,2010,24(1):224-228.
    [32]刘梦云.半干旱山区植被恢复中的土壤质量演变[D].西北农林科技大学,2003.
    [33]Rasmussen P, Rohde C. Long-term tillage and nitrogen fertilization effects on organic nitrogen and carbon in a semiarid soil[J]. Soil Science Society of America Journal,1988,52(4):1114-1117.
    [34]李新爱,童成立,蒋平,等.长期不同施肥对稻田土壤有机质和全氮的影响[J].土壤,2006,38(3):298-303.
    [35]肖伟伟,范晓晖,杨林章,等.长期施肥对黄土旱塬黑垆土有机氮和有机碳的影响[J].农业环境科 学学报,2007,26(2):672-675.
    [36]向艳文,郑圣先,廖育林,等.双季稻种植制度下长期施肥对红壤性水稻土氮素肥力的影响[J].湖南农业大学学报,2008,34(6):704-707.
    [37]肖伟伟,范晓晖,杨林章,等.长期定位施肥对潮土有机氮组分和有机碳的影响[J].土壤学报,2009,46(2):274-280.
    [38]Omernik J M, Abernathy A, Male L. Stream nutrient levels and proximity of agricultural and forest land to streams:some relationships[J]. Journal of Soil and Water Conservation,1981,36(4):227-231.
    [39]郭胜利,党廷辉,刘守赞,等.磷素吸附特性演变及其与土壤磷素形态,土壤有机碳含量的关系[J].植物营养与肥料学报,2005,11(1):33-39.
    [40]田有国,张淑香,刘景,等.褐土耕地肥力质量与作物产量的变化及影响因素分析[J].植物营养与肥料学报,2010,16(1):105-111.
    [41]邵兴华,徐金仁,张建忠,等.长期施肥对早地红壤肥力和酶活性的影响[J].生态环境学报,2011,20(2):266-269.
    [42]陈防,鲁剑巍,万运帆,等.长期施钾对作物增产及土壤钾素含最及形态的影响[J].土壤学报,2000,37(2):233-241.
    [43]刘杏兰,高宗.有机—无机肥配施的增产效应及对土壤肥力影响的定位研究[J].土壤学报,1996,33(2):138-147.
    [44]Swarup A, Chhillar R. Build up and depletion of soil phosphorus and potassium and their uptake by rice and wheat in a long-term field experiment[J]. Plant and soil,1986,91(2):161-170.
    [45]王小彬,蔡典雄,张镜清,等.旱地玉米秸秆还田对上壤肥力的影响[J].中国农业科学,2000,33(4):54-61.
    [46]李彦慧,张丽娟,宋珍,等.浅谈土壤肥力与林业可持续发展[J].河北林业科技,2003,1:34-36.
    [47]黎孟波,张先婉.土壤肥力概念与模式—土壤肥力研究之一[A].1991,208-213.
    [48]侯光炯.农业土壤学:侯光炯在宜宾应用研究17年论文选集[M].新疆科技出版社,2001.
    [49]熊毅.我国土壤物理科学研究的回顾—土壤物理学[J].土壤,1984,16(2):41-45.
    [50]陈恩凤.黑土肥力的基础物质和土体构型的某些性质及其相互关系[J].中国科学院林业土壤研究所-土壤肥力研究论文集.沈阳:辽宁科学技术出版社,1984,1-16.
    [51]章家恩,廖宗文.试论土壤的生态肥力及其培育[J].土壤与环境,2000,9(3):253-256.
    [52]骆东奇,白洁,谢德体.论土壤肥力评价指标和方法[J].土壤与环境,2002,11(2):202-205.
    [53]章熙谷.南方红壤地区水稻土的肥力评价[J].自然资源学报,1994,9(4):341-349.
    [54]郑立臣,宇万太,马强,等.农田土壤肥力综合评价研究进展[J].生态学杂志,2004,23(5):156-161.
    [55]周勇,张海涛,汪善勤,等.江汉平原后湖地区土壤肥力综合评价方法及其应用[J].水土保持学报, 2001,15(4):70-74.
    [56]严昶升.土壤肥力研究方法[M].农业出版社,1988.
    [57]陆允甫,吕晓男.中国测土施肥工作的进展和展望[J].土壤学报,1995,32(3):241-252.
    [58]何同康.土壤(土地)资源评价的主要方法及其特点比较[J].土壤学进展,1983,11(6):1-12.
    [59]吕晓男,陆允甫.土壤肥力综合评价初步研究[J].浙江大学学报:农业与生命科学版,1999,25(4):378-382.
    [60]刘隆超.土壤数量化分级初探Ⅰ-黔东地区水稻土的肥力分级与理化性质[J].贵州农院学报,1992,94-97.
    [61]周勇,李学垣.ARC/INFO信息系统在农地分等定级中的应用[J].土壤学报,1998,35(4):450-460.
    [62]Dumanski J, Kloosterman B, Brandon S. Concepts, objectives and structure of the Canada Soil Information System[J]. Canadian Journal of Soil Science,1975,55(2):181-187.
    [63]Loh D K, Rykiel Jr E J. Integrated resource management systems:Coupling expert systems with data-base management and geographic information systems[J]. Environmental Management,1992, 16(2):167-177.
    [64]赵良菊,肖洪浪,郭天文,等.甘肃灌漠土土壤肥力的空间变异性典型研究[J].中国沙漠,2004,24(4):451-455.
    [65]王军艳,张凤荣,王茹,等.应用指数和法对潮土农田土壤肥力变化的评价研究[J].农村生态环境,2001,17(3):13-16.
    [66]孙波,张桃林.我国东南丘陵山区土壤肥力的综合评价[J].土壤学报,1995,32(4):362-369.
    [67]何文寿,毕红.应用灰色关联分析对银南灌区土壤肥力的综合评价[J].宁夏农林科技,1997,2:7-10.
    [68]唐晓平,陈健飞.Fuzzy综合评判法在紫色土肥力评价中的应用[J].福建师范大学学报:自然科学版,1996,12(2):107-113.
    [69]曹承绵,严长生,张志明,等.关于土壤肥力数值化综合评价的探讨[J].土壤通报,1983,4:13-15.
    [70]安战士.土壤质量评级指数和障碍因子综合评价初探[J].土壤通报,1987,5:195-199.
    [71]张妙玲,俞纯绅,林增杰,等.用回归分析法确定土地质量因子的评价指数[J].江苏农业科学,1984,2:38-41.
    [72]耿兴元,毛达如.土壤肥力模糊定量化评价(判)系统的建立[J].北京农业大学学报,1995,21(A01):23-28.
    [73]唐晓平.四川紫色土肥力的Fuzzy综合评判[J].土壤通报,1997,28(3):107-109.
    [74]孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展,1999,18(2):118-128.
    [75]Jaenicke E C, Lengnick L L. A soil-quality index and its relationship to efficiency and productivity growth measures:two decompositions[J]. American Journal of Agricultural Economics,1999,81(4): 881-893.
    [76]胡月明,吴谷丰,江华,等.基于GIS与灰关联综合评价模型的土壤质量评价[J].西北农林科技大学学报(自然科学版),2001,29(4):39-42.
    [77]邓聚龙.灰色系统基本方法(第一版)[M].湖北:华中工学院出版社,1987.
    [78]吴谷丰,胡月明,张少康,等.基于GIS与关联分析的土壤肥力评价[J].农业系统科学与综合研究,2002,18(3):169-171.
    [79]宿庆瑞,王鹤桥,王英.应用模糊聚类分析确定土壤肥力参评因素的探讨[J].黑龙江农业科学,1991,2:5-9.
    [80]吕新,寇金梅,李宏伟.模糊评判方法在土壤肥力综合评价中的应用研究[J].干旱地区农业研究,2004,22(3):56-59.
    [81]叶文虎,栾胜基.环境质量评价学[M].高等教育出版社,1994.
    [82]李孝芳.土地资源评价的基本原理和方法[J].地理学报,1989,44(1):128-132.
    [83]李方敏,艾天成,周治安,等.用主成分分析法评价渍害土壤肥力[J].地域研究与开发,2001,20(4):65-67.
    [84]李月芬,汤洁,李艳梅.用主成分分析和灰色关联度分析评价草原土壤质量[J].世界地质,2004,23(2):169-174.
    [85]侯文广,江聪世,熊庆文,等.基于GIS的土壤质量评价研究[J].武汉大学学报:信息科学版,2003,28(1):60-64.
    [86]陈松林.福州海岛耕作土壤质量的定量评价[J].福建师范大学学报:自然科学版,1996,12(3):84-88.
    [87]薛红霞,何江华.广东省耕地分等中的土壤肥力评价指标体系[J].生态环境,2004,13(3):461-462.
    [88]张凤荣,安萍莉,王军艳,等.耕地分等中的土壤质量指标体系与分等方法[J].资源科学,2002,24(2):71-75.
    [89]叶协锋,李亚娟,刘国顺,等.GIS支持下的植烟土壤肥力适宜性评价—以河南省许昌市为例[J].农机化研究,2007,2:47-49.
    [90]周琼华.GIS支持下的区域绿色蔬菜地适宜性及其质量评价—以厦门市同安区为例[J].中国农学通报,2006,22(7):359-364.
    [91]许树辉.地块尺度耕地质量评价与方法探讨—以湖南省浏阳市为例[J].长江流域资源与环境,2004,13(1):47-52.
    [92]隋跃宇,张兴义,谷思玉,等.论农田黑土肥力评价体系[J].农业系统科学与综合研究,2004,20(4):265-270.
    [93]章海波,骆永明,赵其国,等.香港土壤研究Ⅵ.基于改进层次分析法的土壤肥力质量综合评价 [J].土壤学报,2006,43(4):577-583.
    [94]王林,卢秀萍,肖汉乾,等.浏阳植烟土壤肥力状况的综合评价[J].河南农业大学学报,2006,40(6):597-601.
    [95]许自成,刘国顺,刘金海,等.铜山烟区生态因素和烟叶质量特点[J].生态学报,2005,25(7):1748-1753.
    [96]Kononova M M. Soil organic matter, its nature, its role in soil formation and in soil fertility[J]. Soil organic matter, its nature, its role in soil formation and in soil fertility,1961,5-20.
    [97]Christensen B T. Physical fractionation of soil and organic matter in primary particle size and density separates[M]. Advances in soil science. Springer.1992:1-90.
    [98]武天云,Schoenau J J,李凤民,等.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4):717-722.
    [99]佟小刚.长期施肥下我国典型农田土壤有机碳库变化特征[D].中国农业科学院,2008.
    [100]潘根兴,赵其国,蔡祖聪.《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J].中国基础科学,2005,7(2):12-18.
    [101]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,15(5):330-332.
    [102]方精云,刘国华,徐嵩龄,等.中国陆地生态系统的碳库[J].温室气体浓度和排放监测及相关过程北京:中国环境科学出版社,1996,109-128.
    [103]Ni J. Carbon storage in terrestrial ecosystems of China:estimates at different spatial resolutions and their responses to climate change[J]. Climatic Change,2001,49(3):339-358.
    [104]李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学D辑,2003,33(1):72-80.
    [105]解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    [106]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    [107]潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-618.
    [108]Jenkinson D, Powlson D S. The effects of biocidal treatments on metabolism in soil-V:a method for measuring soil biomass[J]. Soil Biology and Biochemistry,1976,8(3):209-213.
    [109]Anderson T H, Domsch K. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology and Biochemistry,1989,21(4):471-479.
    [110]Anderson T H, Domsch K. Application of eco-physiological quotients on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry,1990,22(2):251-255.
    [111]Insam H, Parkinson D, Domsch K. Influence of macroclimate on soil microbial biomass[J]. Soil Biology and Biochemistry,1989,21(2):211-221.
    [112]彭佩钦,张文菊,童成立,等.洞庭湖典型湿地土壤碳,氮和微生物碳,氮及其垂直分布[J].水土保持学报,2005,19(1):49-53.
    [113]武雪萍,刘增俊,赵跃华,等.施用芝麻饼肥对植烟根际土壤酶活性和微生物碳,氮的影响[J].植物营养与肥料学报,2005,11(4):541-546.
    [114]Gregorich E, Monreal C, Carter M, et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils[J]. Canadian Journal of Soil Science,1994,74(4):367-385.
    [115]Hattenschwiler S, Vitousek P M. The role of polyphenols in terrestrial ecosystem nutrient cycling[J]. Trends in Ecology and Evolution,2000,15(6):238-243.
    [116]Bailey V L, Smith J L, Bolton Jr H. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration[J]. Soil Biology and Biochemistry,2002,34(7):997-1007.
    [117]Stevenson F J. Humus chemistry:genesis, composition, reactions[M]. John Wiley and Sons,1994.
    [118]Anderson D, Paul E. Organo-mineral complexes and their study by radiocarbon dating[J]. Soil Science Society of America Journal,1984,48(2):298-301.
    [119]武天云,李凤民,钱佩源,等.利用离心法进行土壤颗粒分级[J].应用生态学报,2004,15(3):477-481.
    [120]何云峰,徐建民.有机无机复合作用对红壤团聚体组成及腐殖质氧化稳定性的影响[J].浙江农业学报,1998,10(4):197-200.
    [121]姜岩,吴景贵.非腐解有机物培肥对草甸黑土型水稻土腐殖质结合形态的影响[J].土壤通报,1998,29(5):203-205.
    [122]吴景贵,姜岩.非腐解有机物培肥对苏打草甸水稻土腐殖质结合形态的影响[J].吉林农业大学学报,1998,20(2):46-50.
    []23]傅积平.土壤结合态腐殖质分组测定[J].土壤通报,1983,14(2):36-37.
    [124]王旭东,胡田田,张一平.不同腐解期玉米秸秆对缕土胡敏酸基本性质及级分变异的影响[J].生态学报,2001,21(6):404--411.
    [125]Buyanovsky G, Aslam M, Wagner G. Carbon turnover in soil physical fractions[J]. Soil Science Society of America Journal,1994,58(4):1167-1173.
    [126]Anderson D, Saggar S, Bettany J, et al. Particle size fractions and their use in studies of soil organic matter:I. The nature and distribution of forms of carbon, nitrogen, and sulfur[J]. Soil Science Society of America Journal,1981,45(4):767-812.
    [127]Loginow W, Wisniewski W, Gonet S S, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science,1987,20:47-521.
    [128]Lefroy R D, Blair G J, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[M]. Plant Nutrition from Genetic Engineering to Field Practice. Springer.1993:551-554.
    [129]Whitbread A, Lefroy R D, Blair G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J]. Australian Journal of Soil Research,1998,36(4): 669-681.
    [130]刘树堂,韩晓日,姚源喜,等.长期定位施肥对非石灰性潮土水分保持及腐殖质组成的影响[J].中国农学通报,2005,21(5):272-274.
    [131]史吉平,张夫道,林葆.长期定位施肥对土壤腐殖质理化性质的影响[J].中国农业科学,2002,35(2):174-180.
    [132]史吉平,张夫道,林葆.长期定位施肥对土壤腐殖质结合形态的影响[J].土壤肥料,2002,6:8-12.
    [133]杨丽霞,潘剑君,苑韶峰.森林土壤有机碳库组分定量化研究[J].土壤通报,2006,37(2):241-243.
    [134]Tisdall J, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982,33(2):141-163.
    [135]Tisdall J, Oades J. The management of ryegrass to stabilise aggregates of a red brown earth[J]. Soil Research,1980,18(4):415-422.
    [136]Six J, Paustian K, Elliott E, et al. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal,2000,64(2): 681-689.
    [137]Six J, Elliott E, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal,1998,62(5):1367-1377.
    [138]Golchin A, Oades J, Skjemstad J, et al. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy[J]. Soil Research, 1994,32(2):285-299.
    [139]Jastrow J. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology and Biochemistry,1996,28(4):665-676.
    [140]Jastrow J, Miller R, Boutton T. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance[J]. Soil Science Society of America Journal,1996,60(3):801-807.
    [141]Six J, Elliott E, Paustian K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry,2000,32(14):2 099-2103.
    [142]Chan K, Heenan D, Oates A. Soil carbon fractions and relationship to soil quality under different tillage and stubble management[J]. Soil and Tillage Research,2002,63(3):133-139.
    [143]Lehmann J, da Silva Cravo M, Zech W. Organic matter stabilization in a Xanthic Ferralsol of the central Amazon as affected by single trees:chemical characterization of density, aggregate, and particle size fractions[J]. Geoderma,2001,99(1):147-168.
    [144]王义祥.不同经营措施下果园土壤有机碳库特性及固碳潜力研究[D].福建农林大学,2011.
    [145]Davidson E A, Trumbore S E, Amundson R. Biogeochemistry:soil warming and organic carbon content[J]. Nature,2000,408(6814):789-790.
    [146]李甜甜,季宏兵,孙媛媛,等.我国土壤有机碳储量及影响因素研究进展[J].首都师范大学学报:自然科学版,2007,28(1):93-97.
    [147]Dalal R, Strong W, Cooper J, et al. Prediction of grain protein in wheat and barley in a subtropical environment from available water and nitrogen in Vertisols at sowing[J]. Animal Production Science, 1997,37(3):351-357.
    [148]Homann P S, Kapchinske J S, Boyce A. Relations of mineral-soil C and N to climate and texture: regional differences within the conterminous USA[J]. Biogeochemistry,2007,85(3):303-316.
    [149]Dai W, Huang Y. Relation of soil organic matter concentration to climate and altitude in zonal soils of China[J]. Catena,2006,65(1):87-94.
    [150]黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002,13(6):709-714.
    [151]高鲁鹏,梁文举,赵军,等.气候变化对黑土有机碳库影响模拟研究[J].辽宁工程技术大学学报,2005,24(2):288-291.
    [152]Dalal R. Soil microbial biomass-what do the numbers really mean[J]. Animal Production Science, 1998,38(7):649-665.
    [153]Ayanaba A, Jenkinson D. Decomposition of carbon-14 labeled ryegrass and maize under tropical conditions[J]. Soil Science Society of America Journal,1990,54(1):112-115.
    [154]Kern J S, Turner D P, Dodson R F. Spatial patterns in soil organic carbon pool size in the Northwestern United States[J]. Soil processes and the carbon cycle,1998,29-43.
    [155]Nichols J. Relation of organic carbon to soil properties and climate in the southern Great Plains[J]. Soil Science Society of America Journal,1984,48(6):1382-1384.
    [156]Liang B, Gregorich E, Schnitzer M, et al. Retention and turnover of corn residue carbon in some eastern Canadian soils[J]. Soil Science Society of America Journal,1998,62(5):1361-1366.
    [157]Skjemstad J, Dalal R, Janik L J, et al. Changes in chemical nature of soil organic carbon in Vertisols under wheat in south-eastern Queensland[J]. Soil Research,2001,39(2):343-359.
    [158]Bayer C, Martin-Neto L, Mielniczuk J, et al. Changes in soil organic matter fractions under subtropical no-till cropping systems[J]. Soil Science Society of America Journal,2001,65(5):1473-1478.
    [159]Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter:association with minerals or chemical recalcitrance[J]. Biogeochemistry,2006,77(1):25-56.
    [160]Campbell C, McConkey B, Zentner R, et al. Carbon sequestration in a Brown Chernozem as affected by tillage and rotation[J]. Canadian Journal of Soil Science,1995,75(4):449-458.
    [161]Gregorich E, Greer K, Anderson D, et al. Carbon distribution and losses:erosion and deposition effects[J]. Soil and Tillage Research,1998,47(3):291-302.
    [162]Anderson D W. Decomposition of organic matter and carbon emissions from soils[M]. Boca Raton, CRC Lewis Publishers,1995.
    [163]Paustian K, Collins H P, Paul EA. Management controls on soil carbon[J]. Soil organic matter in temperate agroecosystems:Long-term experiments in North America CRC Press, Boca Raton, FL, 1997,15-49.
    [164]Beare M, Hendrix P, Cabrera M, et al. Aggregate-protected and unprotected organic matter pools in conventional-and no-tillage soils[J]. Soil Science Society of America Journal,1994,58(3):787-795.
    [165]Zielke R, Christenson D. Organic carbon and nitrogen changes in soil under selected cropping systems[J]. Soil Science Society of America Journal,1986,50(2):363-367.
    [166]Buyanovsky G, Wagner G. Crop residue input to soil organic matter on Sanborn Field[J]. Soil organic matter in temperate agroecosystems:Long-term experiments in North America CRC Press, Boca Raton, F L,1997,73-83.
    [167]李贵华.不同施肥条件下灰漠地肥力的变异与肥效的研究[J].土壤肥料,1974,5:1-5.
    [168]史吉平,张夫道,林葆.长期施肥对土壤有机质及生物学特性的影响[J].土壤肥料,1998,3:7-11.
    [169]窦森,孙宏德.黑土有机培肥与腐殖质特性[J].吉林农业大学学报,1995,17(1):46-51.
    [170]杨长明,欧阳竹,董玉红.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响[J].生态学杂志,2005,24(8):887-892.
    [171]杨学明,张晓平,方华军,等.用RothC-26.3模型模拟玉米连作下长期施肥对黑土有机碳的影响[J].中国农业科学,2003,36(11):1318-1324.
    [172]沈善敏.国外的长期肥料试验(一)[J].土壤通报,1984,15(2):85-91.
    [173]林葆.化肥与无公害农业[M].中国农业出版社,2003.
    [174]解惠光,李庆荣,李秀南.黑土肥力监测及肥效定位试验研究[J].黑龙江农业科学,1992,5:1-7.
    [175]周广业,丁宁平.旱塬黑垆土肥料长期定位研究[J].土壤肥料,1991,1:10-13.
    [176]张夫道.长期施肥条件下土壤养分的动态和平衡[J].植物营养与肥料学报,1996,2(1):39-48.
    [177]赖庆旺,黄庆海,李茶苟,等.无机肥连施对红壤性水稻土有机质消长的影响[J].土壤肥料,1991,1:4-7.
    [178]Mineev V, Gomonova N, Ovchinnikova M. Improvement of humus state of sward podzolic soils after prolonged USe of mineral fertilizers[J]. Soviet agricultural sciences,1988,11:12-16.
    [179]Solov'eva E, Khisameeva T. Effect of lengthy systematic application of different fertilizer systems on the variation of agrochemical properties of sod-Podzol soils of different mechanical composition[J]. Moscow University soil science bulletin,1985,40(1):62-67.
    [180]郭胜利.黄土早塬农田土壤有机碳,氮的演变与模拟[D].西北农林科技大学,2001.
    [181]戴万宏.黄土肥力与肥料效益定位研究[J].西北农业学报,1999,8(6):93-97.
    [182]郑剑英,赵更生,吴瑞俊.连续施用有机肥与化肥对黄绵土的培肥效应[J].水土保持研究,1996,3(2):18-22.
    [183]吕家珑,张一平,王旭东,等.农田生态对土壤肥力的保护效应[J].生态学报,2001,21(4):613-6]6.
    [184]林藤,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].1994,
    [185]党廷辉.黄土早塬区轮作培肥试验研究[J].土壤侵蚀与水土保持学报,1998,4(3):44-47.
    [186]陈福兴,秦道珠,谢良商.长期施用有机肥对土壤养分平衡及增产作用-肥料效应监测试验结果[J].土壤肥料,1991,1:13-16.
    [187]沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,1998,7(1):1-5.
    [188]Raich J, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B,1992,44(2):81-99.
    [189]Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global change biology,1995,1(1):77-91.
    [190]Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change[J]. Science,1996,272:393-395.
    [191]崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001,21(2):315-325.
    [192]Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry,2000, 48(1):7-20.
    [193]黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报,1999,19(3):324-328.
    [194]鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,2000.
    [195]陈四清,崔骁勇.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的C02排放速率研究[J].植物学报:英文版,1999,41(6):645-650.
    [196]王娓,郭继勋.东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放C02贡献量[J].生态学报,2012,22(5):655-660.
    [197]李凌浩,王其兵.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报,2000,24(6):680-686.
    [198]纪宝明,王艳芬,李香真,等.内蒙古锡林河流域主要类型草原土壤中CH4和C02浓度的变化[J]. 植物生态学报,2001,25(3):371-374.
    [199]崔骁勇,陈四清,陈佐忠.大针茅典型草原土壤CO2排放规律的研究[J].应用生态学报,2000,11(3):390-394.
    [200]董云社,章申,齐玉春,等.内蒙古典型草地CO2,N2O,CH4通量的同时观测及其日变化[J].科学通报,2000,45(3):318-322.
    [201]张金霞,曹广民,周党卫,等.退化草地暗沃寒冻雏形土CO2释放的日变化和季节动态[J].土壤学报,2001,38(1):32-39.
    [202]冷延慧.长期施肥对棕壤,黑土团聚体组成及其稳定性的影响[D].沈阳农业大学,2008.
    [203]Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility:I. Theory and methodology[J]. European Journal of Soil Science,1996,47(4):425-437.
    [204]Oades J, Waters A. Aggregate hierarchy in soils[J].Soil Research,1991,29(6):815-828.
    [205]Six J, Elliott E, Paustian K. Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy[J]. Soil Science Society of America Journal,2000,64(3):1042-1049.
    [206]Edwards A, Bremner J. Dispersion of soil particles by sonic vibration[J]. Journal of Soil Science,1967, 18(1):47-63.
    [207]Tisdall J. Possible role of soil microorganisms in aggregation in soils[J]. Plant and soil,1994,159(1): 115-121.
    [208]Emerson W, Foster R, Oades J. Organo-mineral complexes in relation to soil aggregation and structure[J]. Interactions of soil minerals with natural organics and microbes,1986, interactionsofs): 521-548.
    [209]Edwards A P, Bremner J. Microaggregates in soils[J]. Journal of Soil Science,1967,18(1):64-73.
    [210]Elliott E, Coleman D. Let the soil work for us[J]. Ecological bulletins,1988,23-32.
    [211]Arduino E, Barberis E, Boero V. Iron oxides and particle aggregation in B horizons of some Italian soils[J]. Geoderma,1989,45(3):319-329.
    [212]Lynch J, Bragg E. Microorganisms and soil aggregate stability[M]. Advances in soil science. Springer. 1985:133-171.
    [213]Acton C, Rennie D, Paul E. The relationship of polysaccharides to soil aggregation[J]. Canadian Journal of Soil Science,1963,43(2):201-209.
    [214]Skinner F. Rothamsted studies of soil structure VII[J]. Journal of Soil Science,1979,30(3):473-481.
    [215]Elliott E. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal,1986,50(3):627-633.
    [216]刘广深,许中坚,徐冬梅.酸沉降对土壤团聚体及土壤可蚀性的影响[J].水土保持通报,2001,21(4):70-74.
    [217]Elliott E, Palm C, Reuss D, et al. Organic matter contained in soil aggregates from a tropical chronosequence:correction for sand and light fraction[J]. Agriculture, Ecosystems and Environment, 1991,34(1):443-451.
    [218]Kabir Z, Koide R. The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize[J]. Agriculture, Ecosystems and Environment,2000,78(2):167-174.
    [219]Winsome T, McColl JG. Changes in chemistry and aggregation of a California forest soil worked by the earthworm Argilophilus papillifer Eisen (Megascolecidae)[J]. Soil Biology and Biochemistry,1998, 30(13):1677-1687.
    [220]Puget P, Chenu C, Balesdent J. Total and young organic matter distributions in aggregates of silty cultivated soils[J]. European Journal of Soil Science,1995,46(3):449-459.
    [221]Chantigny M H, Angers D A, Prevost D, et al. Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems[J]. Soil Science Society of America Journal,1997,61(1): 262-267.
    [222]Cambardella C, Elliott E. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal,1992,56(3):777-783.
    [223]Angers D, Giroux M. Recently deposited organic matter in soil water-stable aggregates[J]. Soil Science Society of America Journal,1996,60(5):1547-1551.
    [224]Cambardella C, Elliott E. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils[J]. Soil Science Society of America Journal,1994,58(1):123-130.
    [225]霍琳.长期施肥对黄土高原早地黑垆土团聚体的影响[D].甘肃农业大学,2007.
    [226]Haynes R, Swift R. Stability of soil aggregates in relation to organic constituents and soil water content[J]. Journal of Soil Science,1990,41(1):73-83.
    [227]Haynes R. Labile organic matter fractions and aggregate stability under short-term, grass-based leys[J]. Soil Biology and Biochemistry,1999,31(13):1821-1830.
    [228]Christensen B T. Straw incorporation and soil organic matter in macro-aggregates and particle size separates[J]. Journal of Soil Science,1986,37(1):125-135.
    [229]Haynes R, Beare M. Influence of six crop species on aggregate stability and some labile organic matter fractions[J]. Soil Biology and Biochemistry,1997,29(11):1647-1653.
    [230]关连珠,张伯泉,颜丽.不同肥力黑土,棕壤微团聚体组成及其胶结物质的研究[J].土壤学报,1991,28(3):260-267.
    [231]殷明.长期不同施肥对黑土基本性状及土壤有机碳组成的影响[D].南京农业大学,2010.
    [232]Jastrow J, Miller R, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie 1 [J]. Soil Biology and Biochemistry,1998,30(7):905-916.
    [233]Puget P, Angers D, Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils[J]. Soil Biology and Biochemistry,1998,31(1):55-63.
    [234]王俊儒,尉庆丰,曲东,等.土壤多糖在肥力上的意义(二)[J].土壤通报,1995,26(6):274-275.
    [235]Tisdall J, Oades J. The effect of crop rotation on aggregation in a red-brown earth[J]. Soil Research, 1980,18(4):423-433.
    [236]Aspiras R, Allen O, Chesters Q et al. Chemical and physical stability of microbially stabilized aggregates[J]. Soil Science Society of America Journal,1971,35(2):283-286.
    [237]Lehrsch G, Sojka R, Carter D, et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter[J]. Soil Science Society of America Journal,1991,55(5):1401-1406.
    [238]Staricka J, Benoit G. Freeze-drying effects on wet and dry soil aggregate stability [J]. Soil Science Society of America Journal,1995,59(1):218-223.
    [239]Chamberlain EJ. Frost susceptibility of soil [M]. CRREL Monograph,1982.
    [240]Mikha M M, Rice C W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen[J]. Soil Science Society of America Journal,2004,68(3):809-816.
    [241]Chaney K, Swift R. Studies on aggregate stability.Ⅰ. Reformation of soil aggregates[J]. Journal of Soil Science,1986,37(2):329-335.
    [242]Chaney K, Swift R. Studies on aggregate stability.11. The effect of humic substances on the stability of reformed soil aggregates[J]. Journal of Soil Science,1986,37(2):337-343.
    [243]Beare M, Hendrix P, Coleman D. Water-stable aggregates and organic matter fractions in conventional and no-tillage soils[J]. Soil Science Society of America Journal,1994,58(3):777-786.
    [244]张琪.红壤团聚体特征与物理化学性质相互作用机理及其对侵蚀过程的影响[D].华中农业大学,2003.
    [245]Chenu C, Le Bissonnais Y, Arrouays D. Organic matter influence on clay wettability and soil aggregate stability[J]. Soil Science Society of America Journal,2000,64(4):1479-1486.
    [246]Caron J, Espindola C, Angers D. Soil structural stability during rapid wetting:Influence of land use on some aggregate properties[J]. Soil Science Society of America Journal,1996,60(3):901-908.
    [247]Heil D, Sposito G. Organic matter role in illitic soil colloids flocculation:Ⅱ. Surface charge[J]. Soil Science Society of America Journal,1993,57(5):1246-1253.
    [248]Boix-Fayos C, Calvo-Cases A, Imeson A, et al. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators[J]. Catena,2001,44(1):47-67.
    [249]魏朝富,高明.有机肥对紫色水稻土水稻性团聚体的影响[J].土壤通报,1995,26(3):114-116.
    [250]章明奎,何振立.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报,1997,34(4): 359-366.
    [251]Le Bissonnais Y, Arrouays D. Aggregate stability and assessment of soil crustability and erodibility:Ⅱ. Application to humic loamy soils with various organic carbon contents[J]. European Journal of Soil Science,1997,48(1):39-48.
    [252]Chefetz B, Chen Y, Clapp C E, et al. Characterization of organic matter in soils by thermochemolysis using tetramethylammonium hydroxide (TMAH)[J]. Soil Science Society of America Journal,2000, 64(2):583-589.
    [253]Shang C, Tiessen H. Organic matter stabilization in two semiarid tropical soils:size, density, and magnetic separations[J]. Soil Science Society of America Journal,1998,62(5):1247-1257.
    [254]Zech W, Senesi N, Guggenberger G, et al. Factors controlling humification and mineralization of soil organic matter in the tropics[J]. Geoderma,1997,79(1):117-161.
    [255]李映强.有机物质与土壤结构[J].热带亚热带土壤科学,1997,6(1):45-50.
    [256]Greenland D. Interactions between humic and fulvic acids and clays[J]. Soil Science,1971,111(1): 34-41.
    [257]Goldberg S. Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties:a review[J]. Communications in soil science and plant analysis,1989,20(11-12):1181-1 207.
    [258]Duiker S W, Rhoton F E, Torrent J, et al. Iron (hydr) oxide crystallinity effects on soil aggregation[J]. Soil Science Society of America Journal,2003,67(2):606-611.
    [259]Arca M, Weed S. Soil Aggreation and Porosity in Relation to Contents of Free Iron Oxide and Clay[J]. Soil Science,1966,101(3):164-170.
    [260]胡国成,章明奎.氧化铁对土粒强胶结作用的矿物学证据[J].土壤通报,2002,33(1):25-27.
    [261]Deshpande T, Greenland D, Quirk J. Role of iron oxides in the bonding of soil particles[J].1964,201: 107-108.
    [262]姚贤良,许绣云,于德芬.不同利用方式下红壤结构的形成[J].土壤学报,1990,27(1):25-33.
    [263]Zhang B, Horn R. Mechanisms of aggregate stabilization in Ultisols from subtropical China[J]. Geoderma,2001,99(1):123-145.
    [264]Shainberg I, Levy G, Rengasamy P, et al. Aggregate stability and seal formation as affected by drops' impact energy and soil amendments[J]. Soil Science,1992,154(2):113-119.
    [265]Amezketa E. Soil aggregate stability:a review[J]. Journal of sustainable agriculture,1999,14(2-3): 83-151.
    [266]Curtin D, Campbell C, Zentner R, et al. Long-term management and clay dispersibility in two Haploborolls in Saskatchewan[J]. Soil Science Society of America Journal,1994,58(3):962-967.
    [267]Ternan J, Elmes A, Williams A, et al. Aggregate stability of soils in central Spain and the role of land management!J]. Earth Surface Processes and Landforms,1996,21(2):181-193.
    [268]Nadler A, Levy G, Keren R, et al. Sodic calcareous soil reclamation as affected by water chemical composition and flow rate[J]. Soil Science Society of America Journal,1996,60(1):252-257.
    [269]郑晓萍.表征富铁土土壤侵蚀的团聚体稳定性及其物理学机制研究[D].浙江大学,2005.
    [270]Amezketa E, Singer M, Le Bissonnais Y. Testing a new procedure for measuring water-stable aggregation[J]. Soil Science Society of America Journal,1996,60(3):888-894.
    [271]Six J, Callewaert P, Lenders S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal,2002,66(6):1981-1987.
    [272]Zimmerman A R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J]. Environmental science and technology,2010,44(4):1295-1301.
    [273]Guo J, Liu X, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. science,2010, 327(5968):1008-1110.
    [274]蔡泽江,孙楠,王伯仁,等.长期施肥对红壤pH,作物产量及氮,磷,钾养分吸收的影响[J].植物营养与肥料学报,2011,17(1):71-78.
    [275]王伯仁,徐明岗,文石林.长期不同施肥对早地红壤性质和作物生长的影响[J].水土保持学报,2005,19(1):97-100.
    [276]Bi L D, Zhang B, Liu G R., et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China[J]. Agriculture Ecosystems & Environment,2009, 129:534-541.
    [277]Cai Z C, Qin S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China[J]. Geoderma,2006,136(3-4):708-715.
    [278]Fan T L, Xu M G, Song S Y, et al. Trends in grain yields and soil organic C in a long-term fertilization experiment in the China Loess Plateau[J]. Journal of Plant Nutrient and Soil Science,2008,171: 448-457.
    [279]Zhang W J, Xu G, Wang X J, et al. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China[J]. Journal of Soils and Sediments,2012,12:457-470.
    [280]Li Z P, Liu M, Wu X C, et al. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China[J]. Soil and Tillage Research,2010,106(2):268-274.
    [281]Yan X Y, Gong W. The role of chemical and organic fertilizers on yield, yield variability and carbon sequestration-results of a 19-year experiment[J]. Plant and Soil,2010,331:471-480.
    [282]Feng L, Tong C L, Shi H, et al. Effect of fertilization on the absorption, partition and accumulation of carbon and nitrogen of rice under the equal N conditions[J]. Environmental Science,2011,32: 574-579.
    [283]Fan T, Stewart B, Yong W, et al. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China[J]. Agriculture, Ecosystems and Environment, 2005,106(4):313-329.
    [284]Gen Xing P, Zhou P, Zhang X H, et al. Effect of different fertilization practices on crop carbon assimilation and soil carbon sequestration:A case of a paddy under a long-term fertilization trial from the Tai Lake region[J]. China,2006,11:3704-3710.
    [285]Six J, Conant R, Paul E, et al. Stabilization mechanisms of soil organic matter:implications for C-saturation of soils[J]. Plant and soil,2002,241(2):155-176.
    [286]Wang W J, Baldock J A, Dalal R C, et al. Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemcial analysis[J]. Soil Biology and Biochemistry,2004,36:2045-2058.
    [287]Sahrawat K L. Organic matter accumulation in submerged soils[J]. Advances in Agronomy,2004,81: 169-201.
    [288]Kong A Y Y, Six J, Bryant D C, et al. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems[J]. Soil Science Society of America Journal,2005,69:1078-1085.
    [289]Rillig M C, Mummey D L. Mycorrhizas and soil structure[J]. New Phytologist,2006,171:41-53.
    [290]Blouin M, Hodson M E, Delgado E, et al. A review of earthworm impact on soil function and ecosystem services [J]. European Journal of Soil Science,2013,64:161-182.
    [291]Angers D A, Caron J. Plant-induced changes in soil structure:processes and feedbacks[M]. Plant-induced soil changes:Processes and feedbacks. Springer.1998:55-72.
    [292]Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research,2004,79(1):7-31.
    [293]Yan X, Zhou H, Zhu Q, et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China[J]. Soil and Tillage Research,2013,130:42-51.
    [294]Klute A. Methods of soil analysis. Part 1. Physical and mineralogical methods[M]. American Society of Agronomy,1986.
    [295]Kogel-Knabner 1, Guggenberger G, Kleber M, et al. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry[J]. Journal of Plant Nutrition and Soil Science,2008,171(1):61-82.
    [296]Manna M, Swarup A, Wanjari R, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India[J]. Field Crops Research,2005,93(2):264-280.
    [297]陈惟财,谢小立,王凯荣.不同施肥模式下红壤性水稻土中磷的分布及其有效性[J].水土保持学报,2008,22(3):87-90.
    [298]于天一,李玉义,逢焕成,等.长期不施磷肥对早地红壤养分比例与玉米产量的影响[J].中国土壤与肥料,2010,002):25-28.
    [299]张杨珠,吴岳轩,刘学军,等.新辟红壤性稻田不同施肥模式的效应[J].湖南农学院学报,1994,20(2):106-113.
    [300]段英华,徐明岗,王伯仁,等.红壤长期不同施肥对玉米氮肥回收率的影响[J].植物营养与肥料学报,2010,16(5):1108-1113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700