用户名: 密码: 验证码:
渭河流域水土流失变化对梯田措施响应的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人口增加、人类活动加剧,世界上很多河流出现降雨不减少、径流锐减甚至断流,严重影响流域及区域社会经济发展,使得人类活动特别是水土保持对河流的影响这一科学问题越来越受到关注。本研究选取具有典型意义的缺水高含沙重污染渭河作为研究对象,针对水土保持措施对河流影响研究的薄弱环节,开发了具有自主知识产权的水土保持梯田措施过程模拟模型并成功嵌入世界上广泛应用的SWAT模型当中,在对模型进行系统验证的基础上,研究了渭河区域水土流失与生态基流对梯田措施的响应,提出了基于水沙耦合及经济分析相结合的渭河流域水土保持梯田措施优化配置技术,初步构建了水土保持梯田措施模拟基本理论。取得的主要成果如下:
     (1)初步提出了“流域自响应理论”的概念,开发了具有自主知识产权的水土保持梯田措施过程模拟模型。提出了“流域自响应理论”的概念,认为流域系统内各部分是互相联系和运动的,运动的目标是追求系统的平衡。当系统平衡受到破坏,其系统将朝着建立新的平衡方向发展。在此基础上,设计了针对不同梯田类型的概化和分坡段模拟算法,并使用FORTRAN语言编译嵌入到SWAT流域水文模型中(第488版,累计新增代码1.8万行),实现了梯田措施对流域水土流失变化影响的模拟技术,补充了大型流域模型中水土保持措施对河流影响过程模拟的不足。
     (2)验证结果表明,新嵌入梯田模块的SWAT模型模拟精度较高,满足评价坡面及流域水土流失对梯田响应的技术要求。采用国内外梯田及黄土高原小流域水、沙、养分及作物产量实测资料对开发模型进行验证,结果表明:平衡偏差指标均小于0.1%,模型系统各部分功能均正常运行;反映坡面水土流失模拟值与实际符合程度的纳什系数(Nash-Sutcliffe Efficiency)在大多数条件下高于0.5,表明所开发模型能够反映坡面产流产沙及养分流失过程;梯田模块模拟的流域降水产流、产沙输沙过程偏差(PBIAS)介于-16.2%-11.2%,梯田调控效应模拟与实测结果基本吻合。表明水土保持梯田措施数学模型开发较为成功,模拟精度较好,可用于坡面及流域水、沙及养分流失过程的模拟。
     (3)利用基于“流域自响应理论”的新嵌入梯田模块SWAT模型对渭河径流泥沙进行初步模拟,结果表明现有水利水保措施对减少渭河河床淤积意义重大。利用上世纪60年代渭河来水来沙变化较为剧烈的资料,对模型进行参数提取和验证,结果表明模型计算纳什系数(NS)以及相对偏差(PBIAS)分别介于0.52-0.93和-16.21%-28.35%之间,该模型可较好的模拟渭河中上游地区水沙剧烈变化过程。基于1960-2009共计50年气象资料模拟结果表明,渭河干流中上游集中了渭河枯水期径流量的89.4%,对生态基流保障意义重大;而且反映出汛期来沙量占全年输沙量的86.4%,水土流失主要发生在汛期;如果不对渭河流域进行治理,渭河上中下游干流区域河床年均抬升将达到4cm、10cm和20cm,约为实测多年平均值的1.5倍,河床淤积剧烈,说明现有水土保持等措施对减少渭河河床淤积意义重大。
     (4)利用所建立模型,在系统研究渭河流域水土保持梯田措施对流域水沙影响的基础上,重点研究了梯田措施对河流生态基流的影响。结果表明梯田措施蓄洪补枯、削减侵蚀、防止淤积、增加生态基流。2000年规模梯田(约占干流面积10%)可减少流域年均总产流量约0.37亿m3,减少咸阳站年均输沙量1620万t,但增加咸阳站最枯月径流量3.5%,减少近期和远期生态基流不满足天数3.1和5.5天,分别占不满足总天数的26.3%和27.2%。自上世纪70年代至2009年,梯田修建已累计减少渭河上游和中游干流区域泥沙淤积1.01亿t和0.66亿t,防止河床抬升9.1cm和22.8cm,对于渭河上中游干流治理、洪水防治以及河流水质的改善具有重要的现实意义。
     (5)基于新嵌入梯田模块的SWAT模型及水沙耦合经济分析的流域优化配置技术可为水土保持梯田措施优化、规划配置及智能决策提供技术支撑。基于对四种典型优化配置模式进行初步分析结果表明,水平梯田减沙及减少河流泥沙浓度的能力大于隔坡梯田,但隔坡梯田投入产出比显著高于水平梯田。建议在黄土高原生态环境建设过程中首先判定侵蚀关键区域,对水土保持措施进行前期优化及合理布局,同时适量建设隔坡梯田,以达到更好的治理效果和投入产出比例。
In recent years, runoff in many rivers of the world has been declined rapidly and even broken off due to population growth and the accelerated human activity influence. This problem has seriously affected regional social and economic development, which focuses people's sight on the scientific question about the influence of human activity such as soil and water conservation measures toward rivers. Therefore, this research took the Weihe River as research object, which is a typical river with characteristics such as gross pollution, water shortage and high sediment concentration. Based on the research weakness of the soil and water conservation effects on rivers, this study developed a process-based terrace algorithm with independent intellectual property rights and incorporated it into the widely used Soil and Water Assessment Tool (SWAT) model. The response of soil and water loss and ecological base flow toward terraces of the Weihe River basin were detected using the newly developed model after its systematic verification. And an optimization technology was given based on the terrace model and the combined water and sediment analytical method and the economy analytical method. The above achievements preliminarily formed the basic theory for terrace simulation. The main conclusions were as follows:
     (1) A process-based terrace algorithm within the SWAT model was developed based on the preliminary "Watershed Self-response Theory" proposed in this research. This research proposed the concept of "Watershed Self-response Theory", which indicated that all parts of the watershed were connected and moving with the purpose of a balance statuse. The system will moving toward a new balance if the old one was interrupted. Based on this theory, a terrace simulation theory and method was developed with physical and mathematical models as the basic tools after analyzing the requirements of modelling terrace effects on river. The goal of the simulation theory was to reveal the water and nutrient cycle in the watershed level. Description method for different types of terraces and the segment simulation method were designed and incorporated into the SWAT model (version488with about18,000lines of newly added codes) using FORTRAN. The accomplishment of the terrace simulation technology fulfilled the tool needs of simulating the terrace effects toward soil and water losses in the watershed scale, which also improved the process-based effects simulation techology of soil and water conservation measures towards rivers.
     (2) The verification result indicted the satisfactory accuracy of the newly developed model and the feasibility of using the model for evaluating the soil and water loss response to terrace in both field and watershed scale. Observed runoff, sediment, nutrients and crop yield data of terraces in China and the U.S.A, and runoff and erosion data in typical small watershed in the Loess Plateau were employed for testing the newly developed model. The average balance testing indicators were less than0.1%which indicated that all functionalities of the model worked well. The field scale soil and water loss simulation Nash-Sutcliff Efficiency was usually higher than0.5which demonstrated that the model could reveal the runoff, sediment and nutrients loss processes in the field scale. The predicted runoff and erosion percent bias (PBIAS) in watershed level were between-16.2%and11.2%, and the modeled terrace regulation rate were similar to the measured data. Verification result proved the successful development of the new SWAT model and its accuracy in simulating runoff, sediment and nutrients yields from terrace in both field and watershed scale.
     (3) The newly developed SWAT model based on the "Watershed Self-response Theory" was used to simulated the runoff and sediment in the Weihe River and indicated the important effects of water conservation and conservancy measures on stopping river bed rising. The SWAT model was calibrated and validated using the highly varied runoff and sediment data collected in the1960s. The model could give satisfactory prediction for the main Weihe River runoff and sediment with NS and PBIAS ranging between0.52-0.93and-16.21%-28.35%. Based on the50years simulation result from1960to2009, the upstream and middle stream runoff in the drought season accounted for about89.4%of the whole river which was important for guaranteeing the ecological flow. The erosion mainly happened in the flood season which accounted for about86.4%of the annual sediment. The model also indicated that the up, middle and down-stream of the main river bed would have a4cm,10cm and20cm annual rise and lead to serious river deposition without human regulation, which was about1.5times of the observed value. This result indicated that the completed water conservation and other measures had great impact on stopping river bed rising.
     (4) Terrace in the main Weihe River basin could delay the flood and add the drought season runoff, prevent erosion and decrease river deposition, which were helpful for preventing soil and water loss and guaranteeing ecological base flow. Terrace in2000(about10%of the total basin area) could decrease about37million m3annual water yield in the whole watershed, and reduce16million tons of annual sediment transported in the Xianyang station. The most dry month runoff increased by3.5%and the short-term and long-term substandard days for ecological flow decreased by3.1and5.5days (accounted for26.3%and27.2%of the total substandard days) due to terrace practices. During1970s and2009, the construction of terraces had decreased upstream and middle stream sediment deposition by101and66million tons, which equals to9.1cm and22.8cm river bed lifting respectively. These effects were important for the main river controlling, flood preventing and water quality improving.
     (5) Optimization technology was achieved based on the terrace model and the combined water and sediment analytical method and the economy analytical method, which provided technical support for terrace distribution and structure optimizing, watershed planning and the smart decision. Based on the analysis result of4typical terrace optimization scenarios, the runoff and sediment reduction capacity of the bench terrace were higher than normal terrace, while the input-output ratio of the normal terrace was significant higher due to its cheaper price. It was recommended that erosion critical area should be firstly located for soil and water conservation measures optimization and reasonable distribution. Normal terrace should also be a consideration in the Loess Plateau eco-environmental construction for better erosion controlling effect and input-output ratio.
引文
陈浩,梁广林,周金星,蔡强国,陆中臣,黄建国.2005.黄河中游植被恢复对流域侵蚀产沙的影响与治理前景.中国科学D辑,35(5):452-463
    陈建国,胡春宏,戴清.2002.渭河下游近期河道萎缩特点及治理对策.泥沙研究,2002(6):45-52
    陈家琦,王浩.1996.水资源学概论.北京:中国水利水电出版社:16-19
    陈江南,张胜利,赵业安,王国庆.2005.清涧河流域水利水保措施控制洪水条件分析.泥沙研究,2005(1):14-20
    代俊峰,陈家宙,崔远来,何园球,马吉刚.2006.不同林草系统对集水区水量平衡的影响研究.水科学进展,17(4):435-443
    邓湘雯.2007.不同年龄阶段会同杉木林水文学过程定位研究.[硕士学位论文].长沙:中南林业科技大学
    杜丽娟,王秀茹,刘钰.2010.水土保持生态补偿标准的计算.水利学报,41(11):1346-1352
    符素华,刘宝元,路炳军,袁爱萍,王楠.2009.官厅水库上游水土保持措施的减水减沙效益.中国水土保持科学,7(2):18-23
    高岗,秦富仓,姚云峰,崔明,刘权,张小芬.2009.东北农牧交错带小流域不同林草植被类型水源涵养功能综合评价.干旱区资源与环境,23(6):132-135
    高建恩.1993.推移质输沙规律的再探讨.水利学报,1993(4):62-69
    高建恩.2005.地表径流调控与模拟试验研究.[博士学位论文].北京:中国科学院
    高建恩.2009.关中地区农业用水对渭河生态基流影响的初步研究.水资源与可持续发展高层论坛:220
    高建恩,吴普特,牛文全,冯浩,樊恒辉,杨世伟.2005.黄土高原小流域水力侵蚀模拟试验设计与验证.农业工程学报,21(10):41-45
    高建恩,杨世伟,吴普特,王广周,舒若杰.2006.水力侵蚀调控物理模拟试验相似律的初步确定.农业工程学报,22(1):27-31
    高晓玲,蒋定生.1994.隔坡梯田优化设计试验研究.水土保持研究,1(1):89-98
    郭忠升,邵明安.2003.半干旱区人工林草地土壤旱化与土壤水分植被承载力.生态学报,23(8):1640-1647
    韩玉国,李叙勇,段淑怀,袁爱萍,路炳军.2010.水土保持措施对径流泥沙及养分流失的影响.中国水土保持,2012(12):34-36
    侯琳.2009.关中地区水资源承载力测评与时空差异分析.[硕士学位论文].西安:陕西师范大学
    黄金柏,付强,桧谷治,王斌,郑纪勇.2011.黄土高原小流域淤地坝系统水收支过程的数值解析.农业工程学报,27(7):51-57
    黄自强.2000.关于黄土高原地区沟道坝系生态工程建设的实践与构想.中国水土保持,2000(10):14
    贾仰文,周祖昊,雷晓辉,杨贵羽,仇亚琴.2010.渭河流域水循环模拟与水资源调度.北京:中国水利水电出版社:34-35
    解河海,郝振纯,杨红卫,杨涛.2008.岔巴沟流域分布式产流产沙的计算机模拟.系统仿真学报,20(13):3393-3400
    李常斌,秦将为,李金标.2008.计算CN值及其在黄土高原典型流域降雨-径流模拟中的应用.干旱区资源与环境,22(8):67-70
    李家科,刘健,秦耀民,李怀恩.2008.基于SWAT模型的渭河流域非点源氮污染分布式模拟.西安理工大学学报,24(3):278-285
    李丽娟,郑红星.2003.海滦河流域河流系统生态环境需水量计算.海河水利,2003(1):6-8
    李立铮.2009.基于DEM的分布式水文模拟模型及应用.水电能源科学,27(1):28-31
    李林育,焦菊英,陈杨.2009.泥沙输移比的研究方法及成果分析.中国水土保持科学,7(6):113-122
    李鸣,梁其春,常福双,田杏芳.2002.梯田工程概算定额编制研究.中国水土保持,2002(2):20-21
    李书钦,高建恩,邵辉,赵春红,杨世伟,梁改革.2009.选沙对水力侵蚀比尺模拟试验侵蚀过程相似的影响.水土保持学报,23(3):6-10
    李文学,张翠萍,姜乃迁,王平.2003.潼关高程变化及其对渭河下游淤积的影响.泥沙研究,2003(3):24-29
    李星,徐学选,宁苗子,李波,赵娇娜.2012. SWAT模型在黄土丘陵区燕沟流域的应用研究.水土保持通报.32(3):141-144
    李义天.1989.河道平面二维泥沙数学模型研究.水利学报,1982(2):26-35
    李瑜琴,黄春长,查小春,庞奖励.2009.泾河中游龙山文化晚期特大洪水水文学研究.地理学报,64(5):541-552
    李志,刘文兆,张勋昌,郑粉莉.2009.未来气候变化对黄土高原黑河流域水资源的影响.生态学报,29(7):3456-3464
    李志,刘文兆,张勋昌,郑粉莉.2010.气候变化对黄土高原黑河流域水资源影响的评估与调控.中国科学:地理科学,40(3):352-362
    李子君,李秀彬.2008.水利水保措施对潮河流域年径流量的影响——基于经验统计模型的评价估.地理学报,63(9):958-968
    林启才,李怀恩.2010.宝鸡峡引水对渭河生态基流的影响及其保障研究.干旱区资源与环境.24(11):114-119
    梁改革,高建恩,韩浩,孟岩,幸定武,赵文君.2011.基于作物需水与降雨径流调控的隔坡梯田结构优化.中国水土保持科学,9(1):24-32
    刘博,徐宗学.2011.基于SWAT模型的北京沙河水库流域非点源污染模拟.农业工程学报,27(5):52-61
    刘昌明,钟骏襄.1978.黄土高原森林对年径流影响的初步分析.地理学报,33(2):112-127
    刘家宏,王光谦.2006.基于数字流域的淤地坝规划减水减沙效果模拟.中国水土保持,2006(8):20-22
    刘家宏,王光谦,李铁键.2006.黄河数字流域模型的建立和应用.水科学进展,17(2):186-195
    刘静玲,杨志峰,肖芳,孙涛.2005.河流生态基流量整合计算模型.环境科学学报,25(4):436-441
    刘贤赵,康绍忠,刘德林,张晓萍.2005.基于地理信息的SCS模型及其在黄土高原典型流域降雨-径流关系中的应用.24(6):57-61
    刘绪军,刘丙友,景国臣,陈棣,周艳明.2007.新修梯田对土壤理化性质及作物产量的影响.水土保持研究,14(1):276-280
    马雪华.1987.四川米亚罗地区高山冷杉林水文作用的研究.林业科学,23(3):253-265
    莫放,贾忠华,罗纨,李怀恩.2005.基于水蚀模型WEPP和GIS的高原小流域侵蚀模拟——以延安地区向阳沟小流域为例.水资源与水工程学报,16(4):41-45
    穆兴民,巴桑赤烈,Zhang Lu,高鹏,王飞,张晓萍.2007.黄河河口镇至龙门区间来水来沙变化及其对水利水保措施的响应.泥沙研究,2007(2):36-41
    庞靖鹏,刘昌明,徐宗学.2010.密云水库流域土地利用变化对产流和产沙的影响.北京师范大学学报(自然科学版),46(3):290-299
    秦富仓,余新晓,张满良,谢嫒嫒.2005.小流域林草植被控制土壤侵蚀机理研究.应用生态学报,16(9):1618-1622
    冉大川.2006.黄河中游水土保持措施的减水减沙作用研究.资源科学,28(1):93-100
    冉大川,罗全华,刘斌,王宏.2004.黄河中游地区淤地坝减洪减沙及减蚀作用研究.水利学报,2004(5):7-13
    冉大川,赵力仪,王宏,刘斌,白志刚,马勇.2005.黄河中游地区梯田减洪减沙作用分析.人民黄河,27(1):51-53
    邵辉,高建恩,张元星.2009.流域水利水保措施对渭河生态基流影响的初步研究.国家科技重大专项“水体污染控制与治理”研讨会,2:698-703
    邵辉,高建恩,张元星,郝连安,王飞.2010.基于GIS的黄土高原流域坡地资源分析评价.中国农业工程学会农业水土工程专业委员会第六届学术年会论文集:现代节水高效农业与生态灌区建设,2:36-44
    石生新.1996.整地造林措施对强化降雨入渗和减沙的影响.土壤侵蚀与水土保持学报,2(4):54-59
    史婉丽,杨勤科,张光辉.2006WEPP模型的最新研究进展.干旱地区农业研究,24(6):173-177
    宋艳华,马金辉.2007SWAT模型在陇西黄土高原地区的适用性研究.30(6):933-938
    宋艳华,马金辉.2008SWAT模型辅助下的生态恢复水文响应——以陇西黄土高原华家岭南河流域为例.生态学报,28(2):636-644
    孙庆艳,余新晓,胡淑萍,肖洋.2008.基于SWAT模型的半城子水库流域径流模拟.北京林业大学学报,30(S2):148-154
    唐克丽.1993.黄河流域的侵蚀与径流泥沙变化.北京:中国科学技术出版社:107-129
    田栋,高建恩,吴普特,舒若杰,杨世伟,唐小娟.2007.林草措施调控坡面降雨径流输沙效应的初步研究.灌溉排水学报,26(3):19-22
    王改玲,石生新,王青杵,庄丽.2012.晋北黄土丘陵区不同林草措施的蓄水保土和土壤水分效应研究.干旱区资源与环境,26(11):172-177
    王光谦,李铁键.2007.黄河数字流域模型.中国科技论文在线,2(7):492-499
    王国重,梅亚东,双瑞,屈建钢,贾爱卿,荣耀,王代长.2010.豫西山区淤地坝泥沙淤积过程及流域产沙模型.武汉大学学报(工学版),43(5):558-561
    王晗生,刘国彬,王青宁.2000.流域植被整体防蚀作用及景观结构剖析.水土保持学报,14(5):73-97
    王宏,张智忠,马勇.1995.SCS模型在削洪减沙效益计算中的应用.水土保持科技情报,1995(3):40-42
    王红雷,王秀茹,王希,姜丽娟.2012.采用SCS-CN水文模型和GIS确定雨水集蓄工程的位置.农业工程学报,28(22):108-114
    王建勋,郑粉莉.2007WEPP模型坡面版在黄土丘陵区的适用性评价.水土保持通报,27(2):6
    王萍,王克勤,李太兴,李云蛟.2011.反坡水平阶对坡耕地径流和泥沙的调控作用.应用生态学报,22(5):1261-1267
    王盛萍,张志强,唐寅,郭军庭.2010.MIKE-SHE与MUSLE耦合模拟小流域侵蚀产沙空间分布特征.农业工程学报,26(3):92-98
    王秀英,曹文洪,付玲燕,马永.2001.分布式流域产流数学模型的研究.水土保持学报,15(3):38-80
    王兮之,索安宁,洪军,毕晓丽,葛剑平.2006.黄土高原泾河流域水沙特征分析.水土保持学报,20(2):22-25
    王瑗,盛连喜,李科,孙弘颜.2008.中国水资源现状分析与可持续发展对策研究.水资源与水工程学报,19(3):10-14
    王月仪.2007.水资源及水生态的现状及治理.福建建设科技,2007(3):61-62
    王云璋,王昌高,康玲玲.2004.水利水保工程措施实施对局地降水影响初析.水土保持通报,24(4):6-13
    王中根,刘昌明,黄友波.2003SWAT模型的原理、结构及应用研究.地理科学进展,22(1):79-87
    魏怀斌,张占庞,杨金鹏.2007SWAT模型土壤数据库建立方法.水利水电技术,38(6):15-18
    卫三平,张治国,刘志刚.2003.梯田地集流补灌措施对玉米产量的影响.干旱地区农业研究,21(3):82-85
    吴发启,张玉斌,佘雕,宋娟丽.2003.黄土高原南部梯田土壤水分环境效应研究.水土保持研究,10(4):128-130
    吴普特,高建恩.2006.黄土高原水土保持新论——基于降雨地表径流调控利用的水土保持学.黄河水利出版社:171-201
    吴淑芳,吴普特,宋维秀,卜崇峰.2010.黄土坡面径流剥离土壤的水动力过程研究.土壤学报,27(2):223-228
    吴险峰,刘昌明.2002.流域水文模型研究的若干进展.地理科学进展,21(4):341-348
    幸定武,高建恩.2008WEPP在黄土高原坡面径流调控中的适用性研究.人民黄河,30(4):66-67
    徐佳,刘普灵,邓瑞芬,刘栋.2012.黄土坡面不同植被恢复阶段的减流减沙效益研究.地理科学,32(11):1391-1396
    徐学选,刘普灵,琚彤军,史新合,宇苗子.2012.黄土丘陵区燕沟流域水土流失治理的水沙效应.农业工程学报,28(3):113-117
    许炯心.2004.流域因素与人类活动对黄河下游河道输沙功能的影响.中国科学D辑34(8):775-781
    许炯心,孙季.2003.近50年来降水变化和人类活动对黄河入海径流通量的影响.水科学进展,14(6):690-695
    薛惠霞.2009.渭河流域水资源开发利用存在的问题及解决对策.陕西水利,(5):127-128
    杨娟,葛剑平,李庆斌.2006.基于GIS和USLE的卧龙地区小流域土壤侵蚀预报.清华大学学报(自然科学版),46(9):1526-1529
    杨志峰,刘静玲,肖芳,姜杰,林超.2005.海河流域河流生态基流量整合计算.环境科学学报,25(4):442-448
    姚琳.2008.水资源生态补偿机制研究现状与发展趋势.菏泽学院学报,30(2):90-94
    叶爱中,夏军,乔云峰,王纲胜.2008.分布式小流域侵蚀模型及应用.应用基础与工程科学学报,16(3):328-340
    叶芝菡,刘宝元,符素华,曾宪勤.2009.王壤侵蚀过程中的养分富集率研究综述.中国水土保持科学,7(1):124-130
    余汉章.1992.黄土高原水资源特征与利用对策.干旱区地理,15(3):59-64
    余新晓,张晓明,武思宏,魏天兴,张学培.2006.黄土区林草植被与降水对坡面径流和侵蚀产沙的影响.山地学报,24(1):19-26
    袁希平,雷廷武.2004.水土保持措施及其减水减沙效益分析.农业工程学报,20(2):296-300
    张红武,赵连军,王光谦,江恩惠.2003.黄河下游河道准二维泥沙数学模型研究.水利学报,2003(4):1-7
    张红艺,周赤建,张欧阳,张红武.2004.高含沙水流挟沙力计算公式研究.水力发电学报,23(1):74-78
    张建云.2002.非点源污染模型研究.水科学进展.13(5):547-551
    张胜利,于一鸣,姚文艺.1996.水土保持减水减沙效益计算方法.北京:中国环境出版社:37-75
    张兴昌,邵明安.2001.侵蚀泥沙、有机质和全氮富集规律研究.应用生态学报,12(4):541-544
    张雪松,郝芳华,程红光,杨志峰.2004.亚流域划分对分布式水文模型模拟结果的影响.水利学报.2004(7):119-124
    张岩,刘宝元,史培军,江忠善.2001.黄土高原土壤侵蚀作物覆盖因子计算.生态学报.21(7):1050-1056
    张银辉.2005SWAT模型及其应用研究进展.地理科学进展,24(5):121-130
    张钰娴,穆兴民,王飞.2008.径流曲线数模型(SCS-CN)参数λ在黄土丘陵区的率定.干旱区农业研究.26(5):124-128
    张钰娴,王飞,穆兴民.2009.地理环境要素与渭河流域水沙关系的定量研究.西北农林科技大学学报(自然科学版),37(1):61-65
    张展羽,张卫,杨洁,吴云聪,汪邦稳,张杰.2012.不同尺度下梯田果园地表径流养分流失特征分析.农业工程学报,28(11):105-109
    张志强,王礼先,余新晓,Hofer E K.2001.森林植被影响径流形成机制研究进展.自然资源学报,16(1):79-84
    赵建军.2008.基于多Agent的流域洪水预报系统研究与应用.[硕士学位论文].陕西杨陵:西北农林科技大学
    赵景波,李瑜琴.2005.陕西黄土高原土壤干层对植树造林的影响.中国沙漠,25(3):370-373
    赵芹珍,蔡继清.2012.微集流种植对旱作梯田作物生长与产量性状的影响.山西农业科学,40(6):624-627
    赵人俊.1984.流域水文模型——新安江模型与陕北模型.北京:水利水电出版社:1-10
    郑红星,刘昌明,丰华丽.2004.生态需水的理论内涵探讨.水科学进展,15(05):626-633
    中华人民共和国水利部.2008.土壤侵蚀分级分类标准.SL190-2007:8
    周翠宁,任树梅,闫美俊.2008.曲线数值法(SCS模型)在北京温榆河流域降雨-径流关系中的应用研究.农业工程学报,24(3):87-90
    朱冰冰,李占斌,李鹏,游珍.2010.草本植被覆盖对坡面降雨径流侵蚀影响的试验研究.土壤学报,47(3):401-407
    朱雪梅.2007.丽水市靖居口水文站高水位时流量偏差的分析与研究.浙江水利科技,3:56-59
    左德鹏,徐宗学.2012.基于SWAT模型和SUFI-2算法的渭河流域月径流分布式模拟.北京师范大学学报(自然科学版),48(5):490-496.
    Arabi M, Frankenberger J R, Engel B A, Arnold J G.2007. Representation of agricultural conservation practices with SWAT. Hydrological Processes. DOI:10.1002/hyp.6890
    Arnold J G, Fohrer N.2005. SWAT2000:Current Capabilities and Research Opportunities in Applied Watershed Modelling. Hydrological Processes,19 (3):563-572
    Arnold J G, Kiniry J R, Srinivasan R, Williams J R, Haney E B, Haney S L.2011. Soil and Water Assessment Tool Input/Output File Documentation Version 2009. College Station, Texas:Texas A&M University System:184-209
    Baron J S, Poff N L, Angermeier P L, Dahm C N, Gleick P H, Hairston N G, Jackson R B, Johnston C A, Richter B D, Steinman A D.2002. Meeting Ecological and Societal Needs for Freshwater. Ecological Applications,12(5):1247-1260
    Bergquist P L, Hardiman E M, Ferrari B C, Winsley T.2009. Applications of Flow Cytometry in Environmental Microbiology and Biotechnology. Extremophiles,13(3):389-401
    Bracmort K S, Arabi M, Frankenberger J R, Engel B A, Arnold J G.2006. Modeling Long-Term Water Quality Impact of Structural BMPs. Transactions of the ASABE,49 (2):367-374
    Chapra S C.1996. Surface Water-Quality Modelling. [Master] Boston:WCB/McGraw-Hill
    Chen M, Chen J, Sun F.2008. Agricultural Phosphorus Flow and Its Environmental Impacts in China. Science of the Total Environment,405 (1-3):140-152
    Combalicer E, Lee S, Ahn S, Kim D, Im S.2008. Comparing Groundwater Recharge and Base Flow in the Bukmoongol Small-Forested Watershed, Korea. Journal of Earth System Science,117(5):553-566
    Csuros M.1987. Environmental Sampling and Analysis Lab Manual. Boca Raton:Lewis Publishers, CRC Press LLC:13-25
    Dakova S, Uzunov Y, Mandadjiev D.2000. Low Flow-The River's Ecosystem Limiting Factor. Ecological Engineering,2000,16 (1):167-174
    Das Gupta, A.2008. Implication of Environmental Flows in River Basin Management. Physics and Chemistry of the Earth, Parts A/B/C,33(5):298-303
    Deletic A.2001. Modelling of Water and Sediment Transport over Grassed Areas. Journal of Hydrology, 248(2001):168-182
    Dijk A I J M v, Bruijnzeel L A.2004. Runoff and Soil Loss from Bench Terraces.1. An Event-Based Model of Rainfall Infiltration and Surface Runoff. European Journal of Soil Science,55:299-316
    Dijk A I J M v, Bruijnzeel L A.2004. Runoff and Soil Loss from Bench Terraces.2. An Event-Based Erosion Process Model. European Journal of Soil Science,55:317-334
    Dorren L, Rey F.2004. A Review of the Effect of Terracing on Erosion. Soil Conservation and Protection for Europe:97-108
    Du B, Arnold J G, Saleh A, Jaynes D B.2005. Development and Application of Swat to Landscapes with Tiles and Potholes. Transactions of the ASAE,48 (3):1121-1133
    Easton Z M, Fuka D R, Walter M T, Cowan D M, Schneiderman E M, Steenhuis T S.2008. Re-Conceptualizing the Soil and Water Assessment Tool (SWAT) Model to Predict Runoff from Variable Source Areas. Journal of Hydrology,348:279-291
    Grace R A, Eaglson P S.1965. Similarity Criteria in the Surface Runoff Process. Technical Report, (77):17-45
    Grant D M, Dawson B D.2001. Isco Open Channel Flow Measurement Handbook.5th. Lincoln, NE:Isco Inc.:
    Harmel R D, Smith P K, Migliaccio K W.2010. Modifying Goodness-of-Fit Indicators to Incorporate Both Measurement and Model Uncertainty in Model Calibration and Validation. Transactions of the ASABE, 51 (1):55-63
    Herendeen N, Glazier N.2009. Agricultural Best Management Practices for Conesus Lake:the Role of Extension and Soil/Water Conservation Districts. Journal of Great Lakes Research,35:15-22
    Huang Y F, Chen X, Huang G H, Chen B, Zeng G M, Li J B, Xia J.2003. Gis-Based Distributed Model for Simulating Runoff and Sediment Load in the Malian River Basin. Hydrobiologia,494 (1-3):127-134
    International Water Management Institute.2005. Environmental Flows, In Planning for Environmental Water Allocation, Water Policy Brifing.2005(15):6
    Jeong J, Kannan N, Arnold J G, Glick R, Gosselink L, Srinivasan R, Harmel R D.2011. Development of Sub-Daily Erosion and Sediment Transport Algorithms for SWAT. Transactions of the ASABE,54 (5): 1685-1691
    Jeong J, Santhi C, Arnold J G, Srinivasan R, Pradhan S, Flynn K.2011. Development of Algorithms for Modeling Onsite Wastewater Systems within SWAT. Transactions of the ASABE,54 (5):1693-1704
    Jha M K, Arnold J G, Gassman P W.2006. Water Quality Modeling for the Raccoon River Watershed Using SWAT. CARD Working Paper 06-WP 428. Ames, Iowa:Iowa State University
    Johnson D L, Miller A C.1997. A Spatially Distributed Hydrologic Model Utilizing Raster Data Structures. Computers & Geosciences,23 (3):267-272
    Lee M, Park G, Park M, Park J, Lee J, Kim S.2010. Evaluation of Non-Point Source Pollution Reduction by Applying Best Management Practices using A SWAT Model and Quickbird High Resolution Satellite Imagery. Journal of Environmental Sciences-China,22 (6):826-833
    MacDonnell L J.2009. Return to the River:Environmental Flow Policy in the United States and Canada 1. Journal of the American Water Resources Association,45(5):1087-1099
    Mamisao J P.1952. Development of Agricultural Watershed by Similitude. Lowa State College
    Maski D, Mankin K R, Janssen K A, Tuppad P, Pierzynski G M.2008. Modeling Runoff and Sediment Yieldds from Combined In-Field Crop Practices using the Soil and Water Assessment Tool. Journal of Soil and Water Conservation,63 (4):193-203
    Mathews L, Davis D.2007. NAIP:Options and Challenges. http://www.fsa.usda.gov/Internet/FS A_File/2007_esri_uc_naip.pdf [2012-9-9]
    Mathews L.2012.2012 NAIP Information Sheet. http://www.fsa.usda.gov/FS A/apfoapp?area=home&subject=docs&topic=inf [9/21/2012]
    Michael B A and Refsaard J C.1996. Distributed Hydrological Modeling. Kluwer Academic Pubilishers:
    Moriasi D N, Arnold J G, Liew M W V, Bingner R L, Harmel R D, Veith T L.2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE,50 (3):885-900
    Nair S S, King K W, Witter J D, Sohngen B L, Fausey N R.2011. Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools. Journal of American Water Resource Association.47(6): 1285-1297.
    Narasimhan B, Allen P M, Srinivasan R, Bednarz S T, Arnold J, Dunbar J A.2007. Streambank Erosion and Best Management Practice Simulation using SWAT. Watershed Management to Meet Water Quality Standards and TMDLS (Total Maximum Daily Load) Proceedings of the Fourth Conference 10-14 March 2007, Publication Number 701P0207:190-197
    Narasimhan B, Srinivasan R, Bednarz S T, Ernst M R, Allen P M.2010. A Comprehensive Modeling Approach for Reservoir Water Quality Assessment and Management due to Point and Nonpoint Source Pollution. Transactions of the ASABE,53 (5):1605-1617
    Neitsch S L, Arnold J G, Kiniry J R, Williams J R.2011. Soil and Water Assessment Tool Theoretical Documentation Version 2009. College Station, Texas:Texas A&M University System:
    Panuska J C.1999. Estimating Phosphorus Concentrations Following Alum Treatment Using Apparent Settling Velocity. Jounral of Lake and Reservoir Management,15 (1):28-38
    Peacock J M.1982. Response and Tolerance of Sorghum to Temperature Stress. In Proc. Intl. Symp. on Sorghum:Sorghum in the Eighties,143-159. Patancheru, India:International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).
    Petts G E.1996. Water Allocation to Protect River Ecosystems. Regulated Rivers-Research & Management, 12(4-5):353-365
    R.拉尔.1991.土壤侵蚀研究方法.北京:科学出版社:17-35
    Reckhow K H, Qian S S, Harmel R D.2009. A Multilevel Model of the Impact of Farm-Level Best Management Practices on Phosphorus Runoff. Journal of The American Water Resources Association, 45 (2):369-377
    Saxton K E, Rawls W J.2006. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal,70:1569-1577
    Saxton K E, Willey P H, Rawls W J.2006. Field and Pond Hydrologic Analyses with the SPAW Model. ASABE Paper No.062108.2006 ASABE Annual International Meeting:
    Smakhtin V U.2000. Estimating Daily Flow Duration Curves from Monthly Streamflow Data. Water SA, 26(1):13-18
    Smakhtin V U.2001. Low Flow Hydrology:A Review. Journal of Hydrology,240(3-4):147-186
    Sonmez O, Pierzynski G M, Frees L, Davis B, Leikam D, Sweeney D W, Janssen K A.2009. A Field-Based Assessment Tool for Phosphorus Losses in Runoff in Kansas. Journal of Soil and Water Conservation, 64(3):212-222.
    Tharme R E.2003. A Global Perspective on Environmental Flow Assessment:Emerging Trends in the Development and Application of Environmental Flow Methodologies for Rivers. River Research and Applications,19(5-6):397-441
    Tong S T Y, Liu A J, Goodrich J A.2009. Assessing the Water Quality Impacts of Future Land-Use Changes in an Urbanising Watershed. Civil Engineering and Environmental Systems,26 (1):3-18
    Tuppad P, Santhi C, Wang X, Williams J R, Srinivasan R, Gowda P H.2010. Simulation of Conservation Practices using the APEX Model. Applied Engineering in Agriculture,26 (5):779-794
    Vanoni V A. Sedimentation Engineering.1975. New York:The Society:437-493
    Viney N R, Bormann H, Breuer L, Bronstert A, Croke B F W, Frede H, Graff T, Hubrechts L, Huisman J A, Jakeman A J, Kite G W, Lanini J, Leavesley G, Lettenmaier D P, Lindstrom G, Seibert J, Sivapalan M, Willems P.2009. Assessing the Impact of Land Use Change on Hydrology by Ensemble Modelling (LUCHEM) II:Ensemble Combinations and Predictions. Advances in Water Resources,32 (2):147-158
    Wachal D J, Harmel R D, Banks K E, Hudak P F.2008. Evaluation of WEPP for Runoff and Sediment Yield Prediction on Natural Gas Well Sites. Transactions of the Asabe,51 (6):1977-1986
    Waidler D, White M, Steglich E, Jones C A, Srinivasan R.2011. Conservation Practice Modeling Guide for SWAT and APEX. Texas Water Resources Institute Technical Report, (TR-399):35-37
    Wang S P, Zhang Z Q, Sun G, McNulty S G, Zhang H Y, Li J L, Zhang M L.2008. Long-Term Streamflow Response to Climatic Variability in the Loess Plateau, China. Journal of the American Water Resources Association,44(5):1098-1107
    White K L, Chaubey I.2005. Sensitivity Analysis, Calibration, And Validations Fora Multisite And Multivariable SWAT Model. Journal of the American Water Resources Association,2005(10):1077-1089
    Wigmosta M S, Lane L J, Tagestad J D, Coleman A M.2009. Hydrologic and Erosion Models to Assess Land Use and Management Practices Affecting Soil Erosion. Journal of Hydrologic Engineering,14(1): 27-41
    Williams J R.1995. The EPIC model. Highlands Ranch, Colorado:Water Resources Publications:909-1000
    Wischmeier W H, Smith D D.1978. Predicting Rainfall Erosion Losses-A Guide to Conervation Planning. U.S Department of Agriculture, Agriculture Handbook No.537:34-36
    Wu Y P, Chen J.2012. An Operation-Based Scheme for a Multiyear and Multipurpose Reservoir to Enhance Macroscale Hydrologic Models. Journal of Hydrometeorology,13(1):270-283
    Wu Y P, Chen J.2013. Estimating Irrigation Water Demand using an Improved Method and Optimizing Reservoir Operation for Water Supply and Hydropower Generation:A Case Study of the Xinfengjiang Reservoir in Southern China.116(2013):110-121
    Yang Z F, Sun T, Cui B S, Chen B, Chen G Q.2009. Environmental Flow Requirements for Integrated Water Resources Allocation in the Yellow River Basin, China. Communications in Nonlinear Science and Numerical Simulation,14(5):2469-2481
    Yu J, Tuinstraa M R, Claassena M M, Gordona W B, Wittb M D.2004. Analysis of cold tolerance in sorghum undercontrolled environment conditions. Field Crops Research 85(1):21-30.
    Zhang X C, Liu W Z.2005. Simulating Potential Response of Hydrology, Soil Erosion, and Crop Productivity to Climate Change in Changwu Tableland Region on the Loess Plateau of China. Agricultural and Forest Meteorology,131 (3-4):127-142
    Zhang X Y, Zhang M H.2011. Modeling Effectiveness of Agricultural BMPs to Reduce Sediment Load and Organophosphate Pesticides in Surface Runoff. Science of the Total Environment,409:1949-1958
    Zhang Y Y, Xia J, Chen J F, Zhang M H. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China. Environmental Monitoring and Assessment,173(1-4):409-430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700