用户名: 密码: 验证码:
Y型TiO_2纳米管在染料敏化太阳电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着经济的迅速发展,人类对能源的需求量越来越大。而传统能源的日益枯竭促使人们越来越关注新能源的开发与利用。太阳能作为一种环境友好、用之不尽取之不竭的新能源,是最有前途的能源之一。继传统硅太阳电池之后,染料敏化太阳电池以其低廉的成本和简单的制作工艺,为人类有效地利用太阳能提供了新的途径。TiO2光阳极是染料敏化太阳能电池的关键部分,具有吸附染料分子,分离电荷以及传输光生载流子的功能,其性能直接关系到太阳电池的总效率,在染料敏化太阳电池的应用中起到至关重要的作用。因此,开发出高效的光阳极组件是该领域迫切需要解决的热点问题之一。
     TiO2是一种宽禁带半导体材料,禁带宽度为3.2eV,其新型纳米结构的研究与开发对半导体发光材料、自旋电子学、光催化剂以及染料敏化太阳电池等领域的发展具有重要意义。TiO2纳米晶薄膜是染料敏化太阳电池中最常用也是研究最多的电极材料之一,它是由TiO2晶粒相互连接、贯通组成的三维网状空隙结构,由颗粒与颗粒之间的相互连接来保证电子的传输,但是这种连接是随机的、松散的而且可能存在断点,这就极大地影响了电子在TiO2纳米晶薄膜中的传输过程。而TiO2纳米管薄膜是一种在钛金属表面合成的致密有序的纳米多孔材料,阵列中的管道结构为光生电子提供了传输的高速通道,有利于提高电子的迁移率,在染料敏化太阳电池的阳极应用方面具有很好的发展前景。当前,制备的TiO2纳米管形貌多为直线型,相关研究主要集中在纳米管管长、管径、管壁厚度的有效控制,以及提高TiO2纳米管阵列的表面形貌质量等方面。随着制备方法和制备工艺的不同,TiO2纳米管的外在形貌也在朝着多维结构的方向发展,如两分叉(Y型)、三分叉以及多层分叉的TiO2纳米管阵列等。基于目前TiO2纳米管的成熟技术,并结合染料敏化太阳电池的国内外发展状况,本论文从以下几个方面开展研究:
     1.在两步阳极氧化法的基础上,考察了生长工艺参数(电解液的组成、温度、氧化电压、氧化时间等)和晶化处理等对TiO2纳米管阵列的影响。同时,总结出一组制备直线型TiO2纳米管阵列材料的最佳工艺参数。为开展Y型TiO2纳米管的研究工作奠定了基础。
     2.系统地研究了电解液温度对Y型TiO2纳米管阵列形貌的影响,讨论了升温法制备Y型TiO2纳米管的内在机理,并在较宽的温度范围内(20℃-30℃,40℃,50℃,60℃),分别制备出四种Y型TiO2纳米管阵列。当电解液温度设置在40℃以上时,Ti02纳米管阵列顶部将发生过度溶解,出现环状纳米线、管壁破裂以及管长减小等现象,从实际应用的角度来看,不利于保证Y型TiO2纳米管的整体质量。因此,将制备温度控制在20℃-40℃范围内,可以得到较为理想的Y型TiO2纳米管阵列。同时,升温措施还有利于改善TiO2纳米管内部的V型结构,能够进一步扩大下层管径空间,从而提高Y型TiO2纳米管阵列的比表面积。
     3.采用阳极氧化降压法成功地合成了Y型TiO2纳米管阵列,与升温法制备的样品相比,这种TiO2纳米管阵列具有表面形貌高度规整,Y型纳米管占有率高等特点。同时,本文也对改变氧化电压形成Y型TiO2纳米管的内在机理进行了讨论,并通过进一步扩大降压范围(34V-20V)和两次降压的方式(38V-28V-20V)分别制备出了三分叉TiO2纳米管阵列和两代Y型TiO2纳米管阵列。进一步拓展了TiO2纳米管结构上的多样性。
     4.采用阳极氧化降压法制备出Y型TiO2纳米管阵列,并通过溶液剥离、白纸提取、多步退火以及TiO2纳米晶浆料配制等工艺,组装成染料敏化Y型TiO2纳米管太阳电池,再利用相同的封装方式制备出染料敏化直线型TiO2纳米管太阳电池。对两种电池进行光电性能测试,通过对比同等膜厚的直/Y型TiO2纳米管太阳电池的开路光电压、短路光电流密度、填充因子以及光电转化效率等性能参数,证明了Y型TiO2纳米管薄膜所组装的电池具有更加优异的光电性能,样品的光电转换效率从2.83%提升至3.35%,效率提高了18.38%。
With the increasingly rapid economic growth, global demand for energy is-rising steadily. However, our natural resources are all limited and the traditional energy is becoming less and less, so, more attention has been paid to the development and utilization of new energy. Solar energy is an inexhaustible and environmental benign energy, over the past decades, which has attracted much attention in order to replace the environmentally damaging and diminishing fossil fuels. Up till now, traditional solar cells are made from silicon, due to easy, low cost and environmentally-friendly fabrication. Dye-sensitized solar cell (DSSC) is much cheaper than silicon solar cells. This technology provides a new approach for human to effectively utilize solar energy. TiO2photo-anode is the key component of DSSC which plays an important role in dye loading, electron injection, transportation and collection, etc. it can directly influence on the photoelectric performance of DSSC. Therefore, the development of a high-performance TiO2photo-anode module will become a hotspot in the research of DSSC.
     TiO2is a wide band-gap compound semiconductor with a direct band gap of3.2eV. The exploration of novel TiO2films has important significance to the development of semiconductor light-emitting materials, spintronics, photocatalysts, dye-sensitized solar cells, etc. TiO2nanocrystalline film is one of the electrode materials for DSSC, the most widely used and most studied, it is made of interconnected TiO2nano-particles with a three-dimensional network structure, which will guarantee the electronic transmission. On the other hand, the connection of TiO2nano-particles in the network structure is random and loose, so that will greatly affect the electron transport properties in the TiO2thin-film. TiO2nanotube arrays, a Ti metal surface preparation of dense and ordered nanoporous materials, its pipeline structure in the arrays can provide a high speed transmission channel for the photo-induced electrons, which will be beneficial for improving the mobility of electrons. Therefore, TiO2nanotube films have great value in the applications of DSSC and a wide developmental foreground. At present, the morphology of TiO2nanotubes are mostly line-shape, the related research mainly focused on the effective control of the nanotube length, diameter, wall thickness, and improving the quality of surface morphology of TiO2nanotube arrays, and so on. As the development of preparation methods and preparation process, the morphology of TiO2nanotubes is developing toward the multi-dimensional structure, such as two-(Y-branched), three-and two-generation Y-branched TiO2nanotube arrays. Based on the domestic and foreign development situation of dye-sensitized solar cells and the advantages of mature TiO2nanotubes fabrication technologies, our thesis is composed of the following contents:
     1. We discussed the important influence of two-step anodization method to the preparation of highly ordered TiO2nanotube arrays, and analysised of the mutual relations between the growth of TiO2nanotubes and experimental parameters. In the meantime, we also concluded a set of optimal technological parameters for the preparation of line-type TiO2nanotube arrays. All the results will lay a foundation for the design and preparation of Y-branched TiO2nanotube arrays.
     2. In order to develop the multidimensional structure of TiO2nanotube arrays, Y-branched TiO2nanotube arrays were fabricated on the Ti foil by electrochemical anodic oxidation via increasing the electrolyte temperature. We systematically studied the influence of electrolyte temperature on the morphology characteristics of the Y-branched TiO2nanotubes, and firstly introduced the growth mechanism of Y-branched TiO2nanotubes. Meanwhile, four samples were fabricated by anodic oxidation under different temperature ranges between20℃and60℃. As the results showed that the electrolyte temperature was set at40℃or more in the third step of anodic oxidation, the surface morphology of Y-branched TiO2nanotubes would appear annular nanowires, nanotube nozzle broken or stem nanotube length reduced, etc. That was not conducive to ensuring the overall quality of Y-branched TiO2nanotube arrays. Therefore,20℃~40℃would be the ideal temperature range in the third step during the anodizing process. In addition, we analyzed the effects of electrolyte temperature on the internal structure of Y-branched TiO2nanotubes, the result indicated that as the electrolyte temperature was increased, the V-shaped diameter structure of TiO2nanotubes would be enlarged, the Y-branched TiO2nanotube arrays could obtain a higher surface area.
     3. We successfully fabricated Y-branched TiO2nanotube arrays by a simplified two-step electrochemical anodic oxidation method via reducing the anodizing voltage. Compared to Y-branched TiO2nanotube arrays prepared by changing electrolyte temperature, this kind of samples have a better surface orderliness and higher occupancy of Y-branched nanotubes. At the meantime, we also illustrated here the synthesis process of Y-branched TiO2nanotubes by reducing the anodizing voltage and a possible growth mechanism. Moreover, to further expand the range of voltage reduction (34V-20V) and reduce the voltage for two times (38V-28V-20V), we obtained the three-branched TiO2nanotubes and two-generation Y-branched TiO2nanotubes, respectively.
     4. The assembly process of Y-branched TiO2nanotubes photo-anode was introduced here, and a series of different steps for assembly were discussed, such as solution detachment, white paper extraction, multi-step annealing and the preparation of nanocrystalline TiO2 slurry, etc. Then, we measured the photoelectric properties of DSSC assembled with Y-branched TiO2nanotubes, the open voltage, photocurrent density and conversion efficiency was evaluated. Compared to the DSSC assembled with line-shape TiO2nanotubes, we found that Y-branched TiO2nanotube DSSC showed more excellent photoelectric properties, the photoelectric conversion efficiency was increased from2.83%to3.35%, it was enhanced18.38%.
引文
[1]戴德立.BP世界能源统计年鉴.BP中国,2011:30-34
    [2]2010-2011 World Oil Outlook. OPEC.2011:50-70
    [3]戴德立.BP世界能源统计年鉴.BP中国,2011:20-28
    [4]李永新.用科学发展观审视我国能源可持续发展战略.中国能源,2004,26(9):25-27
    [5]周四清,马超群,李林.太阳能光伏产业可持续发展理论研究思考.科技进步与对策,2007,24(7):88-90
    [6]A. Shah, P. Torres, R. Tscharner, et al. Photovoltaic Technology:The Case for Thin-Film Solar Cells. Science,1999,285(5428):692-698
    [7]Anand S. Joshi, Ibrahim Dincer, Bale V. Reddy. Performance analysis of photovoltaic systems:A review. Elsevier Ltd,2009,13(8):1884-1897
    [8]Tudor Jenkins. A brief history of semiconductors. Physics Education,2005,40(5):430-439
    [9]Lingen Chen, Shengbing Zhou, Fengrui Sun. Constructal minimization of emitter grid resistance of solar cell with variable cross-section collectors. Indian Journal of Pure & Applied Physics,2010,48: 586-592
    [10]Al Omar, Abdul Azeez S, Ghannam, Moustafa Y. Direct calculation of two-dimensional collection probability in pn junction solar cells, and study of grain-boundary recombination in polycrystalline silicon cells. Journal of Applied Physics,1996,79(4):2103-2114
    [11]Joseph M. Luther, Matt Law, Matthew C. Beard. Schottky Solar Cells Based on Colloidal Nanocrystal Films. Nano Lett,2008,8 (10):3488-3492
    [12]Godfrey, R. B, Green, M. A.655 mV open-circuit voltage,17.6% efficient silicon MIS solar cells. Applied Physics Letters,1979,34(11):790-793
    [13]Pulfrey, D.L. MIS solar cells:A review. Electron Devices, IEEE Transactions on,1978,25(11): 1308-1317.
    [14]Sawada T, Terada N, Tsuge S, et al. High-efficiency a-Si/c-Si heterojunction solar cell. IEEE Photovoltaic Specialists Conference,1994,2:1219-1226
    [15]Nijs J. F, Szlufcik J, Poortmans J, et al. Advanced manufacturing concepts for crystalline silicon solar cells. IEEE Transactions on Electron Devices,1999,46(10):1948-1969
    [16]赵玉文.太阳电池新进展.物理学与新能源材料专题,2004,33(2):99-105
    [17]Gangopadhyay U, Dhungel SK, Mondal A K, et al. Novel low-cost approach for removal of surface contamination before texturization of commercial monocrystalline siliecon solar cells. Solar Energy Materials and Solar Cells,2007,91(12):1147-1151.
    [18]Berge C, Zhu M, Brendle W, et al.150-mm layer transfer for, nonocrystalline silicon solar cells. Solar Energy Materials and Solar Cells,2006,90(18-19):3102-3107.
    [19]Carnel L, Gordon I, Van Gestel D, et al. Effieient solar cells based on fine-grained Polysilicon. Thin Solid Films,2008,516(20):6839-6843
    [20]Alrab A B. Analytical solutions for the Photocurrent and dark diffusion current of preferentially doped polysilicon solar cells. Solar Energy Materials and Solar Cells,1995,37(3-4):239-258
    [21]Melskens J, van Elzakker G, Li Y, et al. Analysis of hydrogenated Amorphous silicon thin film and solar cells by means of Fourier Transform Photocurrent Spectroscopy. Thin Solid Films,2008, 516(20):6877-6881
    [22]Villar F, Antony A, Escarre J, Ibarz D, et al. Amorphous silicon thin film solar cells deposited entirely by hot-wire chemical vapour deposition at low temperature (<150℃). Thin Solid Films,2009, 517(12):3575-3577
    [23]蔡伟,冯良桓CdTe薄膜的制备和后处理研究.四川大学学报.2002,39(2):273-276
    [24]耿新华,李洪波,王宗畔等400cm2 a-Si/a-Si叠层太阳电池的研究.太阳能学报,1998(4):345-351
    [25]Staebler D. L, Wronski C. R. Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters,1977,31(4):292-294
    [26]Dharmadasa I M. Latest developments in CdTe, CuInGaSe2 and GaAs/AlGaAs thin film PV solar cells. Current Applied Physics,2009,9:e2-e6.
    [27]Romeo N, Bosio A, Canevari V, et al. Recent progress on CdTe/CdS thin film solar cells. Solar Energy,2004,77(6):795-801
    [28]Wagner S, Shay J L, Migliorate P, et al. Appl.Phys. Lett.,1974,25:434.
    [29]Spanggaard H, Krebs F C, A brief history of the development of organic and polymeric phovoltaics. Solar Energy Materials and Solar Cells,2004,83(2-3):125-146.
    [30]施敏敏,陈红征,吴刚等.有机太阳电池面临的机遇,问题和对策.电源技术,2008,32(010):709-712
    [31]O'Regan B, Gratzel M. A Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353:737-740
    [32]陈东坡.染料敏化太阳电池(DSSC)光阳极的研究:[硕士学位论文].河北:河北工业大学,2011.
    [33]Lenzman F, Krueger J, Burnside S, et al. Surface photovoltage measurements:a useful tool for the detection of electron injection processes in extremely thin absorber(ETA)solar cells. Physica E,2002, 14:233-236.
    [34]Katoh R, Furube A, Tamaki Y, et al. Microscopic imaging of the efficiency of electron injection from excited sensitizer dye into nanocrystalline ZnO film.Journal of Photochemistry and Photobiology A, 2004,166(1-3):69-74
    [35]Chappel S, Zaban A.Nanoporous SnO2 electrodes for dye-sensitized solar cells:improved cell performance by the synthesis of 18nm SnO2 colloids. Solar Energy Materials and Solar Cells,2002, 71(2):141-152.
    [36]Palomares E, Clifford J N, Haque S A, et al.Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society,2003,125(2):475-482
    [37]Peng B, Jungmann G, Thelakkat M, et al. Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coordination Chemistry Reviews,2004,248(13/14): 1479-1489.
    [38]Kang T S, Moon S H, Kim K J. Enhanced photocurrent-voltage characteristics of Ru(Ⅱ):dye sensitized TiO2 solar cells with TiO2-WO3 buffer layers prepared by a sol-gel method. Journal of the American Chemical Society,2002,149(5):E155-E158.
    [39]Ko K H, Lee Y C, Jung Y J. Enhanced efficiency of dye-sensitized TiO2 solar cells(DSSC)by doping of metal ions.Journal of Colloid and Interface Scinece,2005,283(2):482-487.
    [40]Kang S H, Kim J Y, Kim Y K, et al. Effects of the incorporation of carbon powder into nanostructured TiO2 film for dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry,2007,186(2-3):234-241.
    [41]Lee S, Kim J Y, Youn S H, et al. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell. Langmuir,2007,23(23):11907-11910.
    [42]Menzies D B, Dai Q, Cheng Y B, et al. One-step microwave calcinations of ZrO2-coated TiO2 electrodes for use in dye-sensitized solar cells. Comptes Rendus Chimie,2006,9(5-6):713-716.
    [43]Karthik S, Jayasundera B, Maggie P.Highly efficient solar cells using TiO2 Nanotube Arrays sensitized with a donor-antenna dye. Nano Letters,2008,8(6):1654-1659.
    [44]Shankar K,Mor G K, Grimes C A, et al. Highly-ordered TiO2 nanotube arrays up to 220μm in length:use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology,2007, 18(1-11):065707
    [45]敬炳文,张曼华,沈涛.光电池染料敏化的研究进展.科学通报,1997,42(15):1575-1584.
    [46]Michael Gratzel. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. J. Am. Chem. Soc. 2005,44 (20):6841-6851
    [47]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, et al. Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc.1993,115 (14): 6382-6390
    [48]Jianjun He, Gabor Benko, Ferenc Korodi, et al. Modified Phthalocyanines for Efficient Near-IR Sensitization of Nanostructured TiO2 Electrode. J. Am. Chem. Soc.,2002,124 (17):4922-4932
    [49]Desilvestro J, Gratzel M, Kavan L, et al. Highly efficient sensitization of titanium dioxide. Journal of the American Chemical Society.1985,107(10):2988-2990.
    [50]M. K. Nazeeruddin, A. Kay, I. Rodicio, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X= C1-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc,1993,115 (14): 6382-6390.
    [51]Nazeoddin M K, Pechy P, Renouard T, et al. Engineering of efficient panchromatic sensitisers for nanocrystalline TiO2 based solar cells.Journal of the American Chemical Society,2001,123(8): 1613-1624.
    [52]Gratzel M. Dye-sensitized solar cells.Journal of Photochemistry and Photobiology C,2003, 4:145-153
    [53]Wang P, Zakeeruddin S M, Moser J E, et al. Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Advanced Materials,2004,16(20):1806-1811.
    [54]Sugihara H, Singh L P, Sayama K, et al. Efficient Photosensitization of nanocrystalline TiO2 films by a new class of sensitizer:cis-dithiocyanato bis (4,7-dicarboxy-1,10-phenanthroline) ruthenium(II).Chemistry Letters,1998,10:1005-1006.
    [55]Nazeeruddin M K, HumPllry-Baker R, Gratzel M, et al. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. Chemical Communications,1998, 719-720.
    [56]Nazeeruddin M K, HumPllry-Baker R, Offieer D L, et al. Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir,2004, 20(15):6514-6517.
    [57]Sayama K, Hara K, Ohga Y, et al. Significant effects of the distance between the cyanine dye skeleton and the semiconductor surface on the photoelectrochemical properties of dye-sensitized porous semiconductor electrodes. New Journal of Chemistry,2001,25(2):200-202.
    [58]Aswani Yella, Hsuan-Wei Lee, Michael Gratzel*, et al. Porphyrin-Sensitized Solar Cells with Cobalt (Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science,2011,334(4):629-633.
    [59]Grunwald R, Tributseh H. Mechanism of instability in Ru-based Dye sensitization solar cells. The Journal of Physical Chemistry B,1997,101:2564-2575
    [60]Tennakone K, Perera V P S, Kottegada I R M. Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin(Ⅳ)oxide films. Journal of Physics D:Applied Physics,1999,32(4): 347-349.
    [61]康志敏,郝彦忠,王庆飞等.固态TiO2纳米太阳电池研究进展.化学研究与应用,2003,15(1):31-36.
    [62]Peng Wang, Shaik M. Zakeeruddin, Pascal Comte, et al. Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc,2003, 125(5):1166-1167.
    [63]Wataru Kubo, Youhei Makimoto, Takayuki Kitamura, et al. Quasi-Solid-State Dye-Sensitized Solar Cell with Ionic Polymer Electrolyte,2002,31(9):948-949.
    [64]J. Kang, W. Li, X. Wang, et al. Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells. Electrochimica Acta,2003,48:2487-2491
    [65]Bin Li, Liduo Wang, Bonan Kang, et al. Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells,2006,90(5):549-573.
    [66]Wang P, Zakeeruddin S. M, Humphry-Baker R, et al. A Binary Ionic Liquid Electrolyte Achieve to >7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells. Chem. Mater.,2004,16(14): 2694-2696.
    [67]U. Bach, D. Lupo, P. Comte, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature,1998,395:583-585.
    [68]Wendy U. Huynh, Janke J. Dittmer and A. Paul Alivisatos. Hybrid Nanorod-Polymer Solar Cells. Science,2002,295(5564):2425-2427.
    [69]Desta Gebeyehu, Christoph Brabec, Serdar Niyazi Sariciftci, et al. Solid-State Organic/inorganic Hybrid Solar Cells based on Conjugated Polymers and Dye-Sensitized TiO2 Electrodes. Thin Solid Films,2002,403:271-274
    [70]Nogueira A F, Durrant J R. Dye-sensitized nanocrystalline solar cells employing a polymer eleetrolyte. Adv. Mater.,2001,13(11):826-830.
    [71]G. Sasi Kumar, M. Raja and S. Parthasarathy. High performance electrodes with very low Platinum loading for polymer electrolyte fuel cells. Electrochimica Acta,1995,40(3):285-290.
    [72]Stoychev D, Papoutsis A, Kelaidopoulou A, et al. Electrode position of platinum on metallic and nonmetallic substrates selection of experimental conditions. Materials Chemistry and Physics,2001, 72:360-365
    [73]N. Papageorgiou, W. F. Maier, M. Gratzel. An iodine/triiodide reduction electrocatalyst for aqueous and organ media. J. Electrochem. Soc.1997,144:876-884.
    [74]W. Ensinger, H. R. Muller. Nobel metal deposition on aluminum oxide powder surfaces by ion beam sputtering. Nucl. Instrum. Methods Phys. Res., Sect.B.,1998,141:693-698.
    [75]郝三存,吴季怀,林建明等.铂修饰光阴极及其在纳晶太阳能电池中的应用.感光科学与光化学,2004,22(3):175-182
    [76]W. B. Wang, Z. Luo, X. R. Xiao, et al. Nanostructure Pt electrode obtained via self-assembly of nanoparticles on conductive oxide-coated glass substrate. Chin. J. Chem,2004,22:256-258
    [77]T. C. Wei, C. C. Wan, Y. Y. Wang. Poly (N-vinyl-2-pyrrolidone)-capped platinum nano-clusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Appl. Phys. Lett,2006,88: 103-122
    [78]尹艳红,许泽辉,冯磊硕等.染料敏化太阳能电池对电极的研究进展.材料导报,2009,23(5):109-112
    [79]A. Hagfeldt, M. Graetzel. Light-induced redox reactions in nanocrystalline systems. Journal Name: Chemical Reviews,1995,95(1):49-68
    [80]陈炜,孙晓丹,李恒德等.染料敏化太阳能电池的研究进展.世界科技研究与发展,2004,26(5):27-35.
    [81]雷永泉,主编.二十一世纪新材料丛书-新能源材料.天津:天津大学出版社,2002,227.
    [82]施敏.半导体器件物理.北京:电子工业出版社,1987,575-576.
    [83]杨术明.染料敏化纳米晶太阳能电池.郑州:郑州大学出版社,2007:9.
    [84]Gratzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics: Research and Applications,2000,8(1):171-185.
    [85]邵颖,薛宽宏,何春建等.Ti02纳米管对十二烷基苯磺酸钠的光催化降解.化学世界,2003,44(4):174-178.
    [86]Jan M. Maca k, Hiroaki Tsuchiya, Andrej Ghicov, et al. Dye-sensitized anodic TiO2 nanotubes. Electrochemistry Communications,2005,7:1133-1137
    [87]Kai Zhu, Nathan R. Neale, Alexander Miedaner, et al. Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Lett., 2007,7(1):69-74
    [88]金振声,Vorontaov A,杜祖亮等.纳米管TiO2的形貌结构和物理化学特性.科学通报,2000,45(10):1104-1108
    [89]葛伟杰,周保学,张哲等.染料敏化太阳能电池纳米TiO2制备及多孔电极膜研究进展.环境化学,2005,24(6):726-730
    [90]张哲,周保学,葛伟杰等.染料敏化纳米TiO2薄膜太阳能电池中的电荷复合.科学通报,2005,50(18):1929-1934
    [91]Y.B. XIE, X.Z. LI. Preparation and characterization of TiO2/Ti film electrodes by anodization at low voltage for photoelectrocatalytic application. Journal of Applied Electrochemistry,2006,36(6): 663-668
    [92]O.K. Varghese, D. Gong, M. Paulose, et al. Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure. Advanced Materials,2003,15(7-8):624-627
    [93]Yamanaka S, Hamaguchi T, Muta H, et al. Fabrication of oxide nanohole arrays by a liquid phase deposition method. J Alloys and Compd,2004,373(1-2):312-315
    [94]Leonardo L C, Prado A G S, TiO2 nanotubes as recyclable catalyst for efficient phot ocatalytic degradation of indigo carmine dye, J Photochem and Photobiol A:Chemistry 2009,201(1):45-49
    [95]Mura F, Masci A, Pasquali M, et al. Effect of a galvanostatic treatment on the preparation of highly ordered TiO2 nanotubes. Electrochim Acta,2009,54(14):3794-3798
    [96]Elaine Farkas, M Elizabeth Anderson, Zhihong Chen, et al. Length sorting cut single wall carbon nanotubes by high performance liquid chromatography. Chemical Physics Letters,2002,363(1-2): 111-116
    [97]A. A. Gribb, J. F. Banfield. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist,1997,82(7-8):717-728
    [98]B. T. Holland, P. K. Isbester, C. F. Blanford, et al. Synthesis of Ordered Aluminophosphate and Galloaluminophosphate Mesoporous Materials with Anion-Exchange Properties Utilizing Polyoxometalate Cluster/Surfactant Salts as Precursors. J. Am. Chem. Soc.1997,119(29): 6796-6803
    [99]Wang, H., Lewis, J.P., Second-generation photocatalytic materials:anion-doped TiO2. Journal of Physics:Condensed Matter,2006,18:421
    [100]S. Iijima. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58
    [101]P. M. Ajayan, T. W. Ebbesen. Nanometre-size tubes of carbon. Reports on Progress in Physics,1997, 60(10):1025-1062
    [102]S. Subramoney. Novel nanocarbons-structure properties and potential applications. Advanced Materials,1998,10(15):1157-1171.
    [103]T. W. Ebbesen, P. M. Ajayan. Large-scale synthesis of carbon nanotubes. Nature,1992,358: 220-222
    [104]T. R. Lee, P. Nikolaev. Crystalline ropes of metallic carbon nanotubes. Science,1996,273(5274): 483-487
    [105]M. Paulose, K. Shankar, O. K Varghese, etal. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. Physics D,2006,39(12):2498-2503
    [106]S. Liu, A. Chen, Coadsorption of horseradish peroxidase with thionine on TiO2 nanotube for biosensing. Langmuir,2005,21(18):8409-8413
    [107]S. Kubota, K. Johkura, etal. Titanium oxide nanotubes for bone regeneration. Journal of material science:materials in medicine,2004,15(9):1031-1035
    [108]J. Boriseh, S. Pilkenton, etal. TiO2 Photocatalytic degradation of dichloromethane:An FTiR and solid-state NMR study. Journal of Physical Chemistry B,2004,108(18):5640-5646
    [109]K. Varghese, D. Gong, etal. Hydrogen sensing using titania nanotubes. Sensors and Actuators B, 2003,93(1-3):335-344
    [110]X. Z. Li, H. Liu. Photoeatalytic oxidation using a new catalysts-TiO2 microsphere for water and waste water treatment. Environmental Seience & Teehnology,2003,37(17):3989-3994
    [111]T. Tachikawa, Y. Takai, S. Tojo, etal. Probing the surface adsorption and Photo-catalytic degradation of catechols on TiO2 by solid-state NMR spectroscopy. Langmuir,2006,22(3):893-896
    [112]T. Tachikawa, Y. Takai, S. Tojo. Visible light-induced degradation of ethylene glycol on nitrogen-doped TiO2 powders. Journal of Physical Chemistry B.2006,110(26):13158-13165.
    [113]J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination & Toxicolog,1976,16(6): 697-701
    [114]S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder. Journal of the American Chemieal Soeiety,1977,99(1):303-304
    [115]S. N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Journal of Physical Chemistry,1977,81(15):1484-1488
    [116]L. Pruden, D. F. Ollis, Photoassisted heterogeneous catalysis:the degradation of trichloroethylene in water. Journal of Catalysis,1983,82(2):404-417
    [117]N. Serpone, M. Barbeni. Photocatalytical reduction of gold (Ⅲ) on Semiconductor dispersions of TiO2 in the presence of CN-ion:Disposal of CN-by treatment with hydrogen peroxide. Journal of photochemistry,1987,36(3):373-388
    [118]K. Okamoto. Kinetics of heterogeneous photocatalytic decomposition of phenol over abatase TiO2 powder. Bulletin of the Chemical Society of Japan,1985,58:2023
    [119]Y. Xie, Photoelectrochemical application of nanotubular titania photoanode. Electrochimiea Acta., 2006,51(17):3399-3406
    [120]M.Wang, D. Guo, H. Li. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry,2005,178(6):1996-2000.
    [121]C. Garzella, E. Comini, E. Tempesti, et al. TiO2 thin films by a novel sol processing for gas sensor applications. Sens. Actuators B,2000,68,189
    [122]Karthik S, Paulose M. Highly-Ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Appl Phys Lctt,2003,3:213-228
    [123]Ohsaki Y, Masaki N, Kitamua T, et al. Dye-sensitized TiO2 nanotube solar cells:fabrication and electronic characterization. PhysChem Chem Phys,2005, (7):4157-4163
    [124]Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letter,2007,7(1):69-74
    [125]M. Adachi, Y. Murata, I. Okada, Formation of Titania Nanotubes and applications for dye-sensitized solar cells. Journal of the Electrochemical Society,2003,150(8):G488-G493
    [126]K. Shankar, G. K Mor, H. E Prakasam, Highly-ordered TiO2 nanotube arrays up to 220μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology,2007,18(6): 065707-065707
    [127]A. Fujishima, K. Kohayakawa. Hydrogen production under sunlight with an electrochemical photocell. The Journal of the Electrochemical Soeiety,1975,122(11):1487-1489
    [128]Karaktisou K E, Verykios X E. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO2/TiO2 catalysts. J Catal,1995,152(2):360-367
    [129]Ye Ai, Sinan E. Yalcin, Diefeng Gu, et al. A low-voltage nano-porous electroosmotic pump. Journal of Colloid and Interface Science,2010,350:465-470
    [130]李晓红,张校刚,力虎林.TiO2纳米管的模板法制备及表征.高等学校化学学报,2011,22(1):130-132
    [131]Chia-Wen Wu, Tetsu Ohsuna, Makoto Kuwabara, et al. Formation of Highly Ordered Mesoporous Titania Films Consisting of Crystalline Nanopillars with Inverse Mesospace by Structural Transformation. J. Am. Chem. Soc.,2006,128(14):4544-4545
    [132]王志义,周成凤.KOH碱性环境中TiO2纳米管的水热制备及机理探讨.材料导报,2009,23(8):91-94.
    [133]李纲,刘中清,张昭.水热法制备TiO2纳米管阵列.2009,30(1):37-42.
    [134]Sorachon Yoriya, Craig A. Grimes. Self-Assembled TiO2 Nanotube Arrays by Anodization of Titanium in Diethylene Glycol:Approach to Extended Pore Widening. Langmuir,2010,26 (1): 417-420
    [135]Wilaiwan Chanmanee, Apichon Watcharenwong, C. Ramannair Chenthamarakshan, et al. J. Am. Chem. Soc.,2008,130 (3):965-974
    [136]Shiqi Li, Gengmin Zhang, Dengzhu Guo, et al. Anodization Fabrication of Highly Ordered TiO2 Nanotubes. J. Phys. Chem. C,2009,113 (29):12759-12765
    [137]S. Young-Taeg, B. J. Carina, J. Yongsoo, et al. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical engineering&physics,2001,23(5):329-346
    [138]D. Gong, C. A. Grimes, O. K. Varghese, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research,2001,16(12):3331-3334
    [139]G. K. Mor, O. K. Varghese, M. Paulose, et al. Fabrication of tapered, conical-shaped titania nanotubes. Journal of Materials Research,2003,18(11):2588-2593
    [140]J. L. Zhao, X. H. Wang, R. Z. Chen, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Communications,2005,134(10):705-710
    [141]M. Paulose, H. E. Prakasam, O. K. Varghese, et al. TiO2 nanotube arrays of 1000μm length by anodization of titanium foil:Phenol red diffusion. Journal of Physical Chemistry C,2007,111(41): 14992-14997
    [142]K. S. Raja, M. Misra, K. Paramguru, et al. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochimica Acta,2005,51(1):154-165
    [143]G. K. Mor, O. K. Varghese, M.Paulose, et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films,2006,496(1):42-48
    [144]Cai Q.Y., Paulose M., Varghese O. K, et al. The effect of electrolyte composition on the fabrieation of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res.2005,20: 230-235
    [145]Macak J. M, Tsuchiya H, Taveira L, et al. Smooth Anodic TiO2 Nanotubes. Angew. Chem. Int. Ed. 2005,44:7463-746
    [146]Quan X, Yang S. G, Ruan X. L., et al. Preparation of Titania Nanotubes and Their Environmental Applications as Electrode. Environ. Sci. Technol.,2005,39:3770-3775
    [147]赖跃坤,孙岚,左娟等.氧化钛纳米管阵列制备及形成机理.物理化学学报,2004,20:1063-1066
    [148]Hideki Masuda, Kenji Fukuda. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science,1995,268(5216):1466-1468
    [149]Nicholas N. Bwana. Synthesis of highly ordered nanopores on alumina by two-step anodization process. Journal of Nanoparticle Research,2008,10(2):313-319
    [150]Macak, J. M. Albu, S. P. Schmuki, P. Towards ideal hexagonal self-ordering of TiO2 nanotubes. Physica Status Solidi (RRL)-Rapid Research Letters,2007,1(5):181-183
    [151]Pang Xuelai, Shi Hong, Tang Xinde, et al. A coaxial heterogeneity of cerium dioxide nanotubes-Titania nanotubes array films:China. CN 201110002998.5.2011,1,7
    [152]Zhang_Jingwen, Liu Zhenling, Hou Xun. Effect of pretreatment process on fabrication of anodic nanoporous alumina. Xi'an:Xi'an Jiaotong University,2006
    [153]陈婧非.TiO2纳米管的性能改进及其在染料敏化太阳电池中的应用研究:[博士学位论文].上海:上海交通大学,201]
    [154]陶杰,陶海军,包祖国等.有机电解液中钛基材表面Ti02纳米管阵列生长机制的研究.稀有金属材料与工程,2009,38(6):967-971
    [155]Gong Dawei, Grimes Craig A, Varghese Oomman K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research,2001,16(12):3331-3334.
    [156]Maggie Paulose, Haripriya E. Prakasam, Oomman K. Varghese, et al. TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil:Phenol Red Diffusion. J. Phys. Chem. C,2007, 111 (41):14992-14997
    [157]周成凤,王志义.电解液性质对TiO2纳米管阵列形貌及生长机理的影响.无机材料学报,2009,24(6):1125-1131
    [158]Oomman K Varghese, Gopal K Mor, Craig A Grimes, et al. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci Nanotechnol.2004,4(7):733-737
    [159]阴育新,靳正国,谭钦.甘油基电解液中阴离子对阳极氧化TiO2纳米管生长的影响Acta Physico-Chimica Sinica,2008,24(11):2133-2138
    [160]Kim D., Ghicov A., Albu S. P., et al. Bamboo-type TiO2 nanotubes:improved conversion efficiency in dye-sensitized solar cells. J. Am. Chem. Soc.,2008,130 (49):16454-16455
    [161]Albu S. P., Kim D., Schmuki P. Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew. Chem. Int. Ed.,2008,47 (10):1916-1919
    [162]Sebastian Bauer, Sebastian Kleber, Patrik Schmuki. TiO2 nanotubes:Tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications,2006,8(8):1321-1325
    [163]J.M. Macak, H. Hildebrand, U. Marten-Jahns, et al. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroana. Chem.,2008,621(2):254-266
    [164]Delplancke J. L, Kegre M, Fontana A, et al. Self-colour anodizing of titanium, Surface Technology, 1982,16(2):153-162
    [165]张舒,陶杰,王玲等.TiO2纳米管阵列生长进程及微观结构的研究.稀有金属材料与工程,2009,38(1):29-33
    [166]朱斌,戴遐明,李庆丰等.模板法合成TiO2纳米阵列及其微观结构表征.过程工程学报,2007,7(1):160-163
    [167]Jianling Zhao, Xiaohui Wang, Renzheng Chen, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Communications,2005,134:705-710
    [168]T Stergiopoulos, AGhicov, VLikodimos, et al. Dye-sensitized solar cells based on thick highly ordered TiO2 nanotubes produced by-controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnology,2008,19(23):1-7
    [169]J. M. Romo-Herrera, M. Terrones,H. Terrones, et al. Covalent 2D and 3D Networks from ID Nanostructures:Designing New Materials. Nano Letters,2007,7(3):570-576
    [170]Z. Osva'th, A.A. Koo's, Z.E. Horva'th, et al. STM observation of asymmetrical Y-branched carbon nanotubes and nano-knees produced by the arc discharge method. Materials Science and Engineering, 2003,C 23:561-564
    [171]Prabhakar R. Bandaru, Chiara Daraio, Sungho Jin, et al. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nature Materials,2005,4 (9):663-666
    [172]Sunil Kumar Singhal, Avanish Kumar Srivastava, Nita Dilawar, et al. Growth and Characterization of Boron Nitride Nanotubes Having Novel Morphologies Using Mechanothermal Process.2009, 12(6):2201-2210
    [173]Jiang Zhang, Zongquan Li, Jin Xu. Formation and Structure of Boron Nitride Nanotubes. J. Mater. Sci. Technol.,2005,21(1):128-130
    [174]H Yin, H Liu, W Z Shen. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology,2010,21(3):1-7
    [175]Daoai Wang, Ying Liu, Bo Yu, et al. TiO2 Nanotubes with Tunable Morphology, Diameter, and Length:Synthesis and Photo-Electrical/Catalytic Performance. Chem Mater.2009,21(7):1198-1206
    [176]Jung Park, Sebastian Bauer, Klaus von der Mark, et al. Nanosize and Vitality:TiO2 Nanotube Diameter Directs Cell Fate [J]. Nano Letters.2007,7(6):1686-1691
    [177]Shiqi Li, Gengmin Zhang, Dengzhu Guo, et al. Anodization fabrication of highly ordered TiO2 nanotubes. J. Phys. Chem. C.2009,113(29):12759-12765
    [178]Mohapatra, M. Misra, V.K. Mahajan, et al. Synthesis of Y-branched TiO2 nanotubes. Materials Letters.2008,62(12-13):1772-1774
    [179]Guowen Meng, Fangming Han. Xianglong Zhao, et al. A General Synthetic Approach to Interconnected Nanowire/Nanotube and Nanotube/Nanowire/Nanotube Heteroj unctions with Branched Topology. Angew. Chem. Int. Ed.2009,48(39):7166-7170
    [180]Xu Yang, Yi Qu, Yi Fan, Xingyuan Liu. Y-branched TiO2 nanotube arrays made by a simplified two-step electrochemical anodic oxidation method. Chemistry Letters,2012,41(4):389-391
    [181]Chen Shuoshuo, Ling Zhiyuan, Hu Xing, et al. Competitive growth of branched channels inside AAO membranes. J. Mater. Chem.2010,20:1794-1798
    [182]蔡芳共,杨峰,赵勇等.温度控制TiO2纳米管及管/线复合阵列的制备.无机化学学报,2011,27(3):504-508
    [183]A. Ghicov, P. Schmuki. Self-ordering electrochemistry:a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures.Chemical Communications,2009(20):2791-2808
    [184]H. Yang, C. X. Pan. Diameter-controlled growth of TiO2 nanotube arrays by anodization and its photoelectric property. Journal of Alloys and Compounds,2010,492(1-2):33-35
    [185]J. M. Macak, P. Schmuki. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochimica Acta,2006,52(3):1258
    [186]Rajat Srivastava, K. N. Khanna. Stokes-Einstein Relation in Two-and Three-Dimensional Fluids. J. Chem. Eng. Data,2009,54 (5):1452-1456
    [187]Zhen Jin, Guang Tao Fei, Xiao Ye Hu, et al. Controllable Fabrication of Multibran ched TiO2 Nanotubes via a Two-step Anodization Method. Chemistry Letters,2009,38(3):288-289
    [188]Chen Shuoshuo, Ling Zhiyuan, Hu Xing, et al. Controlled growth of branched channels by a factor of 1/sqrt(n) anodizing voltage? J. Mater. Chem.2009,19:5717-5719
    [189]A Valota, D J Leclere, T Hashimoto, et al. The efficiency of nanotube formation on titanium anodized under voltage and current control in fiuoride/glycerol electrolyte. Nanotechnology,2008.19: 1-7
    [190]Bensong Chen, Qiaoling Xu, Xianglong Zhao, et al. Branched Silicon Nanotubes and Metal Nanowires via AAO-Template-Assistant Approach. Adv. Funct. Mater.2010,20:3791-3796
    [191]Madhav P. Neupane, Ⅱ Song Park, Tae Sung Bae, et al. Synthesis and Morphology of TiO2 Nanotubes by Anodic Oxidation Using Surfactant Based Fluorinated Electrolyte. Journal of The Electrochemical Society,2011,158 (8):242-245
    [192]Chunbin Cao, Guoshun Zhang, Xueping Song, et al. Layer-by-Layer Growth Mechanism of TiO2 Nanotube Arrays. Journal of The Electrochemical Society,2011,158(1):8-11
    [193]Arash Mohammadpour, Prashant R. Waghmare, Sushanta K. Mitra, et al. Anodic Growth of Large-Diameter Multipodal TiO2 Nanotubes. ACS NANO,2010.4(12):7421-7430
    [194]Chen Shuoshuo, Ling Zhiyuan, Hu Xing, et al. Controlled growth of branched channels by a factor of 1√n anodizing voltage?. Journal of Materials Chemistry,2009,19:5717-5719
    [195]Xiaoliang Yuan, Maojun Zheng, LiMa, et al. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization. Nanotechnology,2010, 21:1-9
    [196]张舒,陶杰,王玲等.TiO2纳米管阵列生长进程及微观结构的研究.稀有金属材料与工程,2009,38(1):29-33
    [197]S. W. NG, F. K. YAM, K. P. BEH, S. S. TNEH, Z. HASSAN. The effect of growth parameters and mechanism of titania nanotubes prepared by anodic process. Optoelectronics and Advanced Materials-Rapid Communication 2011; 5:258-262.
    [198]Marco Salerno, Niranjan Patra, Roberto Cingolani. Use of Ionic Liquid in Fabrication, Characterization, and Processing of Anodic Porous Alumina. Nanoscale Research Letters.2009,4: 865-872
    [199]-Sanju Rani, Somnath C. Roy. Maggie Paulose, Oomman K. Varghese, Gopal K. Mor, Sanghoon Kim. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Physical Chemistry Chemical Physics 2010; 12:2780-2800
    [200]Yeonmi Shin, Seonghoon Lee. Self-Organized Regular Arrays of Anodic TiO2 Nanotubes. Nano Letters,2008,8:3171-3173
    [201]Chen Shuoshuo, Ling Zhiyuan, Hu Xing, Li Yi. Controlled growth of branched channels by a factor of √n anodizing voltage?. Journal of Materials Chemistry 2009; 19:5717-5719
    [202]LiXia Yang, ShengLian Luo, QingYun Cai, ShouZhuo Yao. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications, Solar Energy Materials & Solar Cells 2006; 90:2011-2075
    [203]H Yin, H Liu, W Z Shen. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology 2010,21:1-7
    [204]Yang Xu, Qu Yi, Fan Yi, Liu Xingyuan. Y-branched TiO2 nanotube arrays synthesized by anodic oxidation. SCIENCE CHINA Physics, Mechanics & Astronomy 2011,55(1):14-18
    [205]Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem.,2005, 44(20):6841-6851
    [206]Huang S Y, Schlichthorl G., Nozik A J, et al. Charge recombine tion in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B,1997,101(14):2576-2582
    [207]Kuang D B, Brillet J, Chen P, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano,2008,2(6):1113-1116
    [208]Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar sells. J. Am. Chem. Soc.,2009,131(11):3985-3990
    [209]Shim Hee-Sang, Na Seok-In, Nam Seng Hoon, et al. Efficient photovoltaic device fashioned of highly aligned multilayers of electrospun TiO2 nanowire array with conjugated polymer. Appl. Phys. Lett.,2008,92(18):1-4
    [210]Emil E P, Boercker J E, Aydil E S. Electron transport and recom-bination in polycrystalline TiO2 nanowire dye-sensitized solar cells. Appl. Phys. Lett.,2007,91(12):1-3
    [211]Tan B, Wu Y Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B,2006,110(32):15932-15938
    [212]Jun Wang, Zhiqun Lin. Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering. Chem. Mater.2010,22(2):579-584.
    [213]M. K. Nazeeruddin, A. Kay,1. Rodicio, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(11) charge-transfer sensitizers (X=Cl-,Br-,]-,CN-,and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society,1993,115(14):6382-6390.
    [214]Guo P, Aegerter M A. Ru(Ⅱ)-sensitized Nb2O5 solar cell made by the sol-gel proeess. Thin Solid Films,1995,1-2:290-294
    [215]Gopal K. Mor, Karthik Shankar, Maggie Paulose, et al. Use of Highly-Ordered TiO2 NanotubeArrays in Dye-Sensitized Solar Cells[J]. Nano Lett.,2006.6(2):215-218.
    [216]Chinjung Lin, Wenyueh Yu, Yenien Lu, et al. Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. Chem. Commun., 2008:6031-6033
    [217]Macak JM, Aldabergerova S, Ghicov A, et al. Smooth anodic TiO2 nanotube alnnealing and Structure[J]. physica status solidi (a).2006,203(10):67-69.
    [218]甄石,李燕CdS-TiO2/FTO纳米管有序阵列复合结构的制备及其光吸收特性研究:[学士学位论文].兰州:西北师范大学,2010.
    [219]Michael Gratzel.Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A:Chemistry,2004,164:3-14
    [220]孟庆波,林原,戴松元.染料敏化纳米晶薄膜太阳能电池.物理,2004,33(3):177-181
    [221]Park N-G, Van delagemaat J, Frank A J. Comparison of dye-sensitized rutile and anatase based TiO2 solar cells. Phys. Chem. B,2000,104(38):8989-18994.
    [222]Radmiloviae V, Gasteiger H A, Ross P N. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. Journal of Catalysis,1995,154(1):98-106
    [223]童永樑.钉金属染料在染料敏化太阳电池所扮演的关键性角色.工业材料杂志,2008,255:109-123
    [224]秦艳涛,吴敏,张俊颉等.染料敏化纳米TiO2太阳能电池中的表面处理.化工时刊,2007,21(9):45-49
    [225]Wang Zhongsheng, Takeshi Yamaguchi, Hideki Sugihara, et al. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir,2005,21: 4272-4276
    [226]Chen, Kathy Lu.Hierarchically Branched Titania Nanotubes with Tailored Diameters and Branch Numbers. Langmuir,2012,28:2937-2943

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700