用户名: 密码: 验证码:
稻壳和麦秆及其萃余物的逐级氧化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的价格上涨和日益枯竭以及人类对环保越来越重视,寻找合适的替代能源是实现可持续发展的必经之路。生物质能源以储量丰富、洁净和可再生等优势,逐渐成为研发与应用的重要目标。然而,目前的生物质利用技术主要基于生物降解和热化学降解,普遍存在能耗高、成本高、反应条件苛刻和不易控制、残渣多、资源浪费和污染环境等问题,亟需开发生物质降解利用新途径。
     本文选取稻壳(RHP)和麦秆(WSP)作为生物质原料,旨在开发在温和反应条件下实现生物质降解的新方法。以NaOCl水溶液为氧化剂,对两种生物质进行逐级氧化降解,并对降解产物进行详细分离分析与表征,获得稻壳和麦秆降解产物的组成信息,分析各级氧化残渣的成分与形貌以佐证降解产物成分分析,并推测所选生物质分子结构以及氧化降解反应机理。
     在RHP和WSP的逐级氧化的各级萃取物中检测到多种产物,分为烷烃、芳烃、醛类、酮类、酚类、有机酸、酯类和含氮化合物以及少量烯烃和醇等其它化合物。其中,有机酸、酯类和酮类的含量较高。烷烃是蜡质的降解产物。芳烃、苯甲醛类和酚类化合物可能源于木质素的降解。酮类化合物种类较为丰富,主要有呋喃酮、环烷酮、吡喃酮、烯酮和含苯酮类化合物,其中前三类可能来自于半纤维素或纤维素的氧化降解。有机酸主要有邻苯二甲酸、苯甲酸和脂肪酸。长链脂肪酸可能来自油脂中,也可能是蜡质经NaOCl氧化而成。邻苯二甲酸酯和脂肪酸苯基酯可能是生物质中木质素与蜡质层的连接结构。含氮化合物可分为胺类、氮杂环化合物、腈类、氨基化合物及磺胺等,前两者种类丰富、含量高。在萃取物中检测到的醇类和烯烃极少,可能被NaOCl所氧化。其它化合物主要包括甾烷(或醇和酮)、杂氧烷、醚类和含硫化合物。
     温和条件下的溶剂分级萃取可将RHP和WSP中的可萃取物提取分离。生物质在溶剂萃取过程中,可能发生组成和结构上的改变,进而影响其在后续加工利用中的转化历程。在萃取物中检测到的有机化合物分为烷烃、烯烃、芳烃、醛、酮、醇、酯、呋喃、含氮化合物、有机酸和甾族化合物。其中,甾族、烷烃和酮类化合物是所检测化合物中种类最丰富、含量最高的化合物。甾族化合物在可萃取物中的相对含量均超过60%,主要包括胆甾烯酮(或烷、醇)和豆甾烯酮(或烷、醇)。长链的烷烃、烯烃和醛类化合物可能来自于稻壳的蜡质层。甾族化合物大多是重要的地球生物标志物,可作为合成药物和有机化学品的原料,用于治疗疾病等。芳烃可能是木质素的降解产物。烷基呋喃类化合物可能来源于半纤维素,而苯并呋喃可能源于木质素。此外,还检测到了维生素E等。因此,可在温和条件下采用简单的溶剂萃取即可从生物质获取甾族化合物。
     RHP和WSP的萃余物经逐级氧化,对产物的各级萃取物的FTIR分析和GC/MS分析均与非萃取RHP和WSP原料逐级氧化所得化合物种类分布相近;然而产物总体种类和含量与之明显不同。在萃余物各级萃取物中所检测到的化合物包括烷烃、芳烃、酚类、醛类、酮类、有机酸、酯类及其它化合物。其中以短链脂肪酸为主的有机酸含量最高,其次是酮类化合物含量也较高。甾族化合物和烷烃等大多难溶于水,可能会抑制RHP和WSP在NaOCl水溶液中的直接氧化降解。经溶剂分级萃取可将上述化合物萃取分离,与RHP和WSP本身相比,分级萃取后组成结构发生变化,所得萃余物在NaOCl水溶液中更容易氧化降解,产物的组成更简单,氧化进行更为彻底;通过分级萃取后续的逐级氧化既可以使稻壳和麦秆有效降解,又有助于深入了解RHP和WSP中有机质的组成结构。
     从各原料至各级氧化残渣,随着氧化级数的增加,残渣中的C、H、N和S元素含量均显著降低,H/C也显著降低。萃余物第三级氧化残渣中,C和H含量分别降低到2.63%和1.55%以及7.10%和1.93%,其它成分多为无机矿物质。SEM直接显示有机质在逐级氧化降解过程中的层次性,纤维素和半纤维素首先被降解,随后是构成植物细胞壁骨架结构的木质素,最终这些有机质大多被降解分离,剩余残渣为散乱分布的矿物质。EDS分析结果显示各级氧化残渣中主要存在Si、C和O元素。随着氧化级数的增加,残渣中C元素含量显著降低,最终几乎全部消失,剩余无机残渣可能是SiO2。对残渣的系统分析结果与液相产物的各级萃取物的GC/MS和FTIR分析结果具有很好的一致性。溶剂萃取预处理对生物质逐级氧化的影响也得到印证。
     NaOCl水溶液可对RHP和WSP生物质的降解过程可能基于多种自由基的氧化反应机理。纤维素的降解过程经历醚键断裂、糖单体开环、重新成环或断裂,生成呋喃、呋喃酮、环烷酮或短链脂肪醇、醛、酮或酸等小分子化合物。半纤维素的氧化降解过程与纤维素类似。NaOCl可有效降解木质素,不仅能使苯环间的芳醚键断裂生成各种羟基、甲氧基和烷基取代的芳香族化合物,甚至能够氧化苯环结构,生成苯醌中间体,进而生成邻苯二甲酸。根据氧化产物各级萃取物的成分分析以及归类总结,可获得生物质中木质素单体的组成类型、比例,再根据单体间连接方式出现的频率,提出了稻壳木质素的结构模型。
     CS2对含氮化合物、醛、酮、羧酸和酯类化合物具有很好的富集作用,尤其是对酰胺和吡咯烷酮而言,可能是以内CS2中的C=S键与含氮化合物中的C=O键之间强烈的π-π相互作用。
     NaOCl逐级氧化可快速有效地将RHP和WSP中纤维素、半纤维素和木质素降解为小分子化合物,具有反应条件温和可控、能耗低、成本低和产物附加值高等优势,为揭示生物质分子结构和氧化降解机理提供科学依据,可作为生产高附加值化学的原料,是农作物秸秆和农业废弃物开发利用的可行途径。
Biomass is acknowledged as the largest feedstock for the renewable energy, fuels andchemicals, and possesses advantages such as clean and renewable. The methodologies used forthe degradation of biomass are based on biochemical and thermochemical techniques; however,inferiorities such as high energy consumption, high cost, harsh production conditions, highresidue, complicated subsequent treatments, waste of precious components and environmentalpollution are rising to restrict the further development of those techniques. New methods for thedevelopment of utilization of biomass are necessary.
     Rice husk (RHP) and wheat straw (WSP) were degraded with sequential oxidation of NaOClaqueous solution under mild reaction conditions. The reaction products were analyzed by thecombination of sequential solvents extraction and gas chromatography/mass spectrometer(GC/MS). The residues from sequential oxidation were also analyzed with ultimate analyzer,Fourier transformed inferred spectrometer (FTIR), scanning electronic microscopy (SEM) andX-ray energy dispersive spectroscopy (EDS).
     The species identified in the extracts from sequential oxidation of RHP and WSP wereclassified as alkanes, arenes, aldehydes, ketones, phenols, carbonic acids (CAs), esters andnitrogen-containing organic compounds (NCOCs), as well as some alkenes and alcohols, etc.Among these groups of species, CAs, esters and ketones were the most abundant. Alkanes werederived from waxes in the biomass. Arenas, benzoic aldehydes and phenols were ascribed to thedegradation of lignin. Various ketones include furanones, cycloalkanones, pyrones, alkenonesand benzene-ring containing ones. The detected long chain fatty acids might be intrinsiccomponents as lipid in biomass, or be produced from the oxidation of waxes with NaOCl. Mostof the esters identified were phthalic esters and fatty acid phenyl esters, which could be interlinkspecies between lignin and waxes. The NCOCs can be classified into amides, N-heterocycliccompounds (NHCs), amines, nitriles, cloro(nitro)methanes, and sulfonamides..
     Sequential extraction with several solvents were carried out, and the species in the extractscould be classified into alkanes, alkenes, arenes, aldehydes, ketones, alcohols, esters, furans,NCOCs, CAs and steroids. About60%of the relative contents of the extracted species weresteroids, including cholesteric-and stigmastic-ones/anols/enols. Alkanes, alkenes and aldehydeswith long carbonic chain were attributed to the degradation of waxes. Alkyl substituted furansand benzofurans were derived from the hemicellulose and lignin, respectively.
     Oxidative degradation of residues from sequential extraction of RHP and WSP were alsocarried out. The species identified in the extracts were classified as alkyls, arenes, phenols,aldehydes, ketones, CAs, esters and other species. Short chain fatty acids and ketones were the most abundant species. However, the kinds and contents for most of the identified species weremuch different with that of unextractd RHP and WSP. Steroids and alkanes are water insolvablespecies, which may restraint the degradation of RHP and WSP with NaOCl aqueous solution.After extraction, the steroids and alkanes were extrated and separated, and the micro-structure ofbiomass might be changed; hence, the processes of oxidation of RHP and WSP were accelerated,and the extents of the degradation were also enhanced.
     The residues from sequential oxidation were characterized in detail. Also, the differencesbetween sequential oxidation with or without extraction pretreatment were confirmed. Theultimate analysis showed that the contents of C, H, N and S were decreased as well as H/C ratio.The SEM spectra presented vivid transformations of surfaces of the residues in the processes ofsequential degradation. Cellulose and hemicellulose were degraded and separated first, and thenthe lignin. The results form EDS analyses showed that Si, C and O were the main elements in theresidues, and SiO2should be the final component. These results for the residues were fullyaccordance with oxidation products in the liquid phase.
     Mechanisms basing on radical reactions between main components of biomass and radicaloxidative species were proposed. The degradation mechanism of hemicullulose was believed tobe similar with that of cellulose. The products of lignin with the oxidation of NaOCl includinghydroxyl-, methoxyl-and alkyl-substituted arenes and phenols; further oxidation of these speciesespecially on benzene-rings were also taken place to produce benzoquinones, phthalic acids andbenzoic acids. Reaction mechanisms of typical compounds in biomass were proposed, such asNCOCs. A model of lignin in RHP was proposed basing on the lignin-related species identifiedand their distribution as well as linkages.
     Most of the NCOCs, and various aldehydes, ketones, CAs and esters, were enriched in theCS2-extractable fraction because of the strong π-π interaction between C=S bond in CS2andC=O bonds in the extracted species.
     Main components in RHP and WSP were degraded effectively with sequential oxidation ofNaOCl under mild reaction conditions without additional energy consumption; furthermore,basing on the species identified in the extracts, the structure of biomass and the mechanisms ofthe oxidative degradation could be proposed. This investigation provides feedstock for theproduction of chemicals, and a possible way for value-added utilization of agricultural wastes.
引文
[1]王庆,王英勇,郭向云.生物形态的高性能材料[J].化学进展,2007,19(7-8):1217-1222.
    [2]王小孟,谭江林,陈金珠.我国生物质能源开发利用的现状[J].江西林业科技,2006,(5):45-57.
    [3]赖艳华,吕明新,马春元,等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):203-206.
    [4]朱锡锋,朱建萍.生物质热解液化技术经济分析[J].新能源及工艺,2006(6):32-34.
    [5]严陆光,陈俊武,周凤起,等.我国中远期石油补充与替代能源发展战略研究[J].电工电能新技术,2006,25(4):1-7.
    [6]匡廷云,白克智,卢从明,等.生物质能源技术前瞻[J].太阳能,2004,(4):7-9.
    [7] Dayton D C, Chum H L. Symposium on biomass buels: an introduction[J]. Energy Fuels,1996,10(2):267-268.
    [8]陈羲,韩志群,孔繁华,等.生物质能源的开发与利用[J].化学进展,2007,19(7-8):1091-1097.
    [9]廖艳芬,王树荣,骆仲泱,等.纤维素快速热裂解试验研究及分析[J].浙江大学学报,2003,37(5):582-587.
    [10] Minowa T, Zhen F, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickelcatalyst[J]. J. Sup. Fluids,1998,13(1-3):253-259.
    [11] Demirbas A. Progress and recent trends in biofuels[J]. Prog. Energy Combust. Sci.,2007,33(1):1-18.
    [12]雅克范鲁,耶普克佩耶.生物质燃烧与混合燃烧技术手册[M].北京:化学工业出版社,2008,46-51.
    [13]张齐生,周建斌,屈永标.农林生物质的高效无公害资源化利用[J].林产工业,2009,36(1):3-8.
    [14]姜岷,韦萍,卢定强,等.后化石经济时代生物技术发展的若干思考[J].化工进展,2006,25(10):1119-1123.
    [15] Agarwal A K. Biofuels(alcohols and biodiesel)applications as fuels for internal combustion engines[J].Prog. Energy Combust. Sci.,2007,33(3):233-271
    [16]周密,阎立峰,王益群等.生物质定向气化制合成气-气化热力学模型和模拟[J].化学物理学报,2005,18(1):69-74.
    [17] Overend R P. Biomass gasification: a growing business[J]. Renew Energy World,1998,1(3):26-31.
    [18] Franco C, Pinto F, Gulyurtlu I, et al. The study of reactions influencing the biomass steam gasificationprocess[J]. Fuel,2003,82(7):835-842.
    [19]高先声.生物质的热化学反应特性和秸杆气化问题[J].可再生能源,2004,(2):26-29.
    [20] Bridgwater A V, Meier D, Radlein D. An overview of fast pyrolysis of biomass[J]. Org. Geochem.,1999,30(12):1479-1493.
    [21] Elliott D C, Beckman D, Bridgwater A V, et al. Developments in direct thermochemical liquefaction ofbiomass:1983-1990[J]. Energy Fuels,1991,5(3):399-410.
    [22] Scott D S, Piskorz J, Bergougnou M A, et al. The role of temperature in the fast pyrolysis of cellulose andwood[J]. Ind. Eng. Chem. Res.,1988,27(1):8-15.
    [23]张素萍.生物质制液体燃料的研究[D].上海:华东理工大学资环学院,2002.
    [24]常杰.生物质液化技术的研究进展[J].现代化工,2003,23(9):13-18.
    [25]傅木星.生物质水热法解聚行为研究[D].长沙:湖南大学环境科学与工程学院,2006.
    [26]吴创之,阴秀丽.欧洲生物质能利用的研究现状及特点[J].新能源,1999,21(3):30-35.
    [27]孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].可再生能源,2006,(2):78-82.
    [28]朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究[J].太阳能学报,2006,27(12):1285-1289.
    [29]郑冀鲁,朱锡锋,郭庆祥,等.生物质制取液体燃料技术发展趋势与分析[J].中国工程科学,2005,7(4):5-10.
    [30]秦特夫.生物质热裂解和化学液化制燃料油技术现状及展望[J].生物质化学工程,2006,4(12):78-85.
    [31]姜洪涛,李会泉,张懿.生物质高压液化制生物原油研究进展[J].化工进展,2006,25(1):8-13.
    [32]赵岩,王洪涛,陆文静,等.秸秆超(亚)临界水预处理与水解技术[J].化学进展,2007,19(11):1832-1838.
    [33]宋春财,胡浩权,朱盛维,等.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报,2003,31(4):311-316.
    [34]宋春财.农作物秸秆的热解及在水中的液化研究[D].大连:大连理工大学,2003.
    [35] Lehr V, Sarlea M, Ott L, et al. Catalytic dehydration of biomass-derived polyols in sub-and supercriticalwater[J]. Catalysis Today,2007,121(1-2):121-129.
    [36] Matsumura Y, Nonaka H, Yokura H, et al. Co-liquefaction of coal and cellulose in supercritical water[J].Fuel,1999,78(9):1049-1056.
    [37] Zhang Q, Chang J, Wang T J, et al. Upgrading bio-oil over different so1id catalysts. Energy Fuels,2006,20(6):2717-2720.
    [38] Zhang Q, Chang J, Wang T J, et al. Review of biomass pyrolysis oil properties and upgrading research.Energ. Convers. Manage.,2007,48,87-92.
    [39]朱锡锋.生物油雾化燃烧特性试验[J].中国科技大学学报,2005,34(6):856-860.
    [40]张光全.生物质闪速热裂解制备生物质油[J].能源研究与利用,2005(5):48-52.
    [41]王树荣,骆仲泱,董良杰,等.生物质闪速热裂解制取生物油的试验研究[J].太阳能学报,2002,23(1):4-10.
    [42]董治国.转锥式生物质热解液化装置的实验研究[J].林业机械与木工设备,2004,32(4):17-19.
    [43]王华,刘荣厚,张春梅,等.卡尔费休方法测定生物油含水量的试验研究[J].可再生能源,2005,(3):17-20.
    [44] Demirba M F, Balat M. Recent advances on the production and utilization trends of bio-fuels: A globalperspective[J]. Energy Con. Man.,2006,47,2371-2381.
    [45] Bridgwater A V, Czernik S, Piskorz J. An overview of fast pyrolysis. In Progress in ThermochemicalBiomass ConVersion, Volume2; Bridgwater, A. V., Ed.; Blackwell Science: London,2001,977-997.
    [46] Czernik S, Bridgwater A V. Over view of applications of biomass fast pyrolysis oil[J]. Energy Fuels,2004,18(2):590-598.
    [47] Boucher M E, Chaala A, Roy C. Bio-oil obtained by vacuum pyrolysis of softwood bark as a liquid fuelfor gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolysis aqueousphase[J]. Biomass Bioenerg.,2000,19,337-350.
    [48] Scahill J, Diebold J P, Feik C. Removal of residual char fines from pyrolysis vapors by hot gasfication[J].Thermochem. Biomass Conver.,1996,18,253-266.
    [49] Darmstadt H, Garcia-Perez M, Adnot A, et al. Corrosion of metals by bio-oil obtained by vacuumpyrolysis of softwood bark residues. An X-ray photoelectron spectroscopy and auger electronspectroscopy study[J]. Energy Fuels,2004,18(5):1291-1301.
    [50] Sipila K, Kboppala E, Fagernas L, et al. Characterization of biomass based flash pyrolysis oils[J].Biomass Bioenerg.,1998,14(2):103-113.
    [51] Hallett W L H, Clark N A. A model for the evaporation of biomass pyrolysis oil droplets[J]. Fuel,2006,85(4):532-544.
    [52]矫常命,何芳.玉米秸杆热解液体产物热值的测定[J].山东理工大学学报,2006,20(2):11-13.
    [53] Zhao W, Xu W J, Lu X J, et al. Preparation and property measurement of liquid fuel from supercriticalethanolysis of wheat stalk[J]. Energy Fuels,2010,24(1):136-144.
    [54] Zhou L, Zong Z M, Tang S R, et al. FTIR and mass spectral analyses of an upgraded bio-oil[J]. EnergySources, Part A: Recovery, Utilization, and Environmental Effects,2010,32(4):370-375.
    [55] Lu Y, Wei X Y, Liu F J, et al. Evaluation of an upgraded bio-oil from pyrolysis of rice husk by acidicresin-catalyzed esterification[J]. Energy Sources, Part A: Recovery, Utilization, and EnvironmentalEffects,(DOI:10.1080/15567036.2011.604377), accepted.
    [56] Chiaramonti D, Oasmaa A, Solanta Y. Power generation using fast pyrolysis liquids from biomass[J].Renew. Sust. Energy Rev.,2007,11(6):1056-1086.
    [57] Hew K L, Tamidi A M, Yusup S, et al. Catalytic cracking of bio-oil to organic liquid product (OLP)[J].Bioresour. Technol.,2010,101(22):8855-8858.
    [58] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, andengineering[J]. Chem. Rev.,2006,106(9):4044-4098.
    [59] Mohan, D., Pittman, C, U., and Steele, P. H.2006. Pyrolysis of wood/biomass for bio-oil: A criticalreview[J]. Energy Fuels20(3):848-889.
    [60] Xu J M, Jiang J C, Sun Y J, et al. Bio-oil upgrading by means of ethyl ester production in reactivedistillation to remove water and to improve storage and fue1characteristics[J]. Biomass Bioenerg,2008,32(11):1056-1061.
    [61]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999第2版:24-25.
    [62]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社,2005:7.
    [63]何方,王华.生物质液化制取液体燃料和化学品[J].能源工程,1999,(5):14-17.
    [64]徐兆瑜.超临界技术在化学工业中的应用[J].化工技术与开发,2006,35(4):19-24.
    [65] Dietrich M, Ronald A, Oskar F. Catalytic hydropyrolysis of lignin: Influence of reaction conditions on theformation and composition of liquid products[J]. Bioresour. Technol.,1992,40(2):171-177.
    [66] Baurhoo B, Ruiz-Feria C A, Zhao X. Anim. Purified lignin: nutritional and health impacts on farmanimals-a review[J]. Feed Sci. Technol.,2008,144(3-4):175-184.
    [67] Wang H, de Vries Frits P, Jin Y. A win-win technique of stabilizing sand dune and purifying paper millblack-liquor[J]. J. Environ. Sci.,2009,21(4):488-493.
    [68] Ralph J, Brunow G, Harris P J, et al. Recent Advances in Polyphenol Research (eds. Fouad D,Vincenzo L)
    [M]. Blackwell,2008,36-66.
    [69] Maziero P, Neto M O, Machado D, et al. Structural features of lignin obtained at different alkalineoxidation conditions from sugarcane bagasse[J]. Ind. Crop. Prod.,2012,35(1):61-69.
    [70] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Ann. Rev. Plant Biol.,2003,54:519-546.
    [71] da Costa Sousa L, Chundaway S P S, Balan V, et al.‘Cradle-to-grave’ assessment of existinglignocellulose pretreatment technologies[J]. Curr. Opin. Biotechnol.,2009,20(3):339-347.
    [72] Tapin S, Sigoillot J C, Asther M, et al. Feruloyl esterase utilization for simultaneous processing ofnonwood plants into phenolic compounds and pulp fibers[J]. J. Agric. Food Chem.,2006,54(10):3697-3703.
    [73] Lu F, Ralph J. Non-degradative dissolu-tion and acetylation of ball-milled plant cell walls:high-resolutionsolution-state NMR[J]. Plant J.,2003,35(4):535-544.
    [74] Nakashima J, Chen F, Jackson L, et al. Multi-site genetic modification of monolignol biosynthesis inalfalfa (Medicago sativa): Effects on lignin composition in specific cell types[J]. New Phytol.,2008,179(3):738-750.
    [75] Liiti T M, Maunu S L, Hortling B, et al. Analysis of technical lignins by two-and three-dimensionalNMR spectroscopy[J]. J. Agric. Food. Chem.,2003,51(21):2136-2143.
    [76] Scholze B, Hanser C, Meier D J. Characterization of the water-insoluble fraction from fast pyrolysisliquids(pyrolytic lignin). Part II. GPC, carbonyl groups, and carbon-13NMR[J]. Anal. Appl. Pyrolysis,2001,58-59(1):387-400.
    [77] Scholze B, Meier D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin).Part I. PY–GC/MS, FTIR, and functional groups[J]. J. Anal. Appl. Pyrolysis,2001,60(1):41-54.
    [78] Hughes P. Cellulosic Ethanol-The Sustainable Fuel, Lignol Energy: Burnaby[M], BC, Canada,2009.
    [79] Lora J H, Glasser W G. J. Recent industrial applications of lignin-a sustainable alternative tonon-renewable materials[J]. Polym. Environ.,2002,10(1-2):39-48.
    [80] Holladay J E, Bozell J J, White J F, et al. Pacific Northwest National Laboratory: Richland, WA,2007.
    [81] Wu S B, Argyropoulos D S. An improved method for isolating lignin in high yield and purity[J]. J. PulpPaper Sci.,2003,29(7):235-240.
    [82] Argyropoulos D S, Sun Y, Palu E. Isolation of residual kraft lignin in high yield and purity[J]. J. PulpPaper Sci.,2002,28(2):50-54.
    [83]王少光,武书彬,郭伊丽,等. EMAL的分离及其特性[J].华南理工大学学报,2006,34(12):101-104.
    [84]武书彬,李梦实.麦草酶解-温和酸解木质素的化学结构特性研究[J].林产化学与工业,2006,26(1):104-108.
    [85]王少光,武书彬,郭秀强,等.玉米秸秆木素的化学结构及热解特性[J].华南理工大学学报,2006,34(3):39-42.
    [86] Lou R, Wu S B. J. Pyrolysis characteristic of rice straw EMAL[J]. Cellulose Chem. Technol.,2008,42(7-8):371-380.
    [87]武书彬,娄瑞,赵增立.秸秆原料EMAL木素的分离及其特性研究[J].造纸科学与技术,2008,27(6):87-92.
    [88]娄瑞,武书彬,谭杨,等.毛竹酶解/温和酸解木素的热解特性[J].南京理工大学学报,2009,33(6):824-828.
    [89] Yang Q, Wu S B, Lou R, et al. Analysis of wheat straw lignin by thermogravimetry and pyrolysis–gaschromatography/mass spectrometry[J]. J. Anal. Appl. Pyrol.,2010,87(1):65-69.
    [90]娄瑞,武书彬,吕高金,等.草本类木质素的化学结构与热化学性质[J].华南理工大学学报,2010,38(8):1-6.
    [91] Lou R, Wu S B, Lv G J. Effect of conditions on fast pyrolysis of bamboo lignin[J]. J. Anal. Appl.Pyrolysis,2010,89(2):191-196.
    [92] Lou R, Wu S B, Lv G J. Fast pyrolysis of bamboo lignin[J]. BioResources,2010,5(2):827-837.
    [93] Lou R, Wu S B. Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin[J]. Appl.Energ.,2011,88(1):316-322.
    [94] Lu Y, Wei X Y, Cao J P, et al. Characterization of a bio-oil from pyrolysis of rice husk by detailedcompositional analysis and structural investigation of lignin[J]. Bioresour. Technol.,2012,116:114-119.
    [95] Brunow G. Biorefineries-Industrial Processes and Products.(eds. Kamm B, Gruber P R, Kamm M)[J],Wiley-VCH Verlag,2006,151.
    [96] Ralph J, Lundquist K, Brunow G, et al. Lignins: Natural polymers from oxidative coupling of4-hydroxyphenyl-propanoids[J]. Phytochem. Rev.,2004,3(1):29-60.
    [97] Chen Y R, Sarkanen S. From the macromolecular behavior of lignin components to the mechanicalproperties of lignin-based plastics[J]. Cellulose Chem. Technol.,2006,40:149-163.
    [98] Chen Y R, Sarkanen S. Macromolecular replication during lignin biosynthesis[J]. Phytochemistry,2010,71(4):453-462.
    [99] Davin L B, Lewis N G. Lignin primary structures and dirigent sites[J]. Curr. Opin. Biotech.,2005,16(4):407-415.
    [100] Davin L B, Jourdes M, Patten A M, et al. Dissection of lignin macromolecular configuration andassembly: Comparison to related biochemical processes in allyl/propenyl phenol and lignanbiosynthesis[J]. Nat. Prod. Rep.,2008,25(6):1015-1090.
    [101] Davin L B, Patten A M, Jourdes M, Lewis N G.. Biomass Recalcitrance-Deconstructing the Plant CellWall for Bioenergy (ed. Himmel M E)[M]. Blackwell, Oxford,2008.213-305.
    [102] Zakzeski J, Bruijnincx P C, Jongerius A L, et al. The catalytic valorization of lignin for the production ofrenewable chemicals[J]. Chem. Rev.,2010,110:3552-3599.
    [103]马隆龙,吴创之,孙立.生物质气化技术及其应用[M].北京:化学工业出版社,2003.
    [104] Desappa S, Sridhar H V, Sridhar G., et al. Biomass gasification-a substitute to fossil fuel for heatapplication[J]. Biomass Bioenerg.,2003,25(6):637-649.
    [105] Ozcimen D, Karaosmanoglu F. Production and characterization of bio-oil and biochar from rapeseedcake. Renew. Energy,2004,29,779-87.
    [106]魏晓旻.生物质液化的实验研究[D].北京:北京化工大学图书馆,2003.
    [107] Shinya Y, Tomoko O, Katsuya K. Process for liquefying cellulose-containing biomass [P]. US,4935567,1990-06-19.
    [108] Williams P T. Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomasswaste[J]. Energy Fuels,2006,20(3):1259-1265.
    [109] D’Jesus P, Boukis N, Kraushaar-Czarnetzki B, et al. Gasification of corn and clover grass in supercriticalwater[J]. Fuel,2006,85(7-8):1032-1038.
    [110] Matsumura Y, Sasaki M, Okuda K, et al. Supercritical water treatment of biomass for energy andmaterial recovery[J]. Combust. Sci. Technol.,2006,178(1-3):509-536.
    [111] Qian Y J, Zuo C J, Tan J, et al. Structural analysis of bio-oils from sub-and supercritical waterliquefaction of woody biomass[J]. Energy,2007,32(3):196-202.
    [112]颜涌捷,任铮伟.纤维素连续催化水解研究[J].太阳能学报,1999,20(1):55-58.
    [113]宋春财,胡浩权.生物质秸秆在水中热化学液化研究[J].四川大学学报,2002,34(5):59-62.
    [114]傅木星,袁兴中,曾光明,等.稻草水热法液化的实验研究[J].能源工程,2006,(2):34-38.
    [115]何建辉,钱叶剑,谈建,等.水中直接液化木质生物质的试验研究[J].合肥工业大学学报,2006,29(1):110-112.
    [116]曲先锋,彭辉,毕继诚,等.生物质在超临界水中热解行为的初步研究[J].燃料化学学报,2003,31(3):230-233.
    [117] Selhan K, Thallada B, Akinori M, et al. Comparative studies of oil compositions produced from sawdust,rice husk, lignin and cellulose by hydrothermat treatment[J]. Fuel,2005,84(7-8):875-884.
    [118]谢文.催化剂对亚临界水中生物质液化行为的影响[D].长沙:湖南大学环境科学与工程学院,2008.
    [119] Demirba A. Conversion of agricultural residues to fuel products via supercritical fluid extraction[J].Energy Sources,2004,26(12):1095-1103.
    [120] Mustafa C, Mehmet M K. Liquid products from Verbascum stalk by supercritical fluid extraction[J].Energ. Convers. Manage.,2001,42(2):125-130.
    [121] Yamazaki J, Minami E, Saka S. Liquefaction of beech wood in various supercritical alcohols[J]. J. WoodSci.,2006,52(6):527-532.
    [122] Soria A, Mcdonald A G, Shook S, et al. Supercritical methanol for conversion of Ponderosa pine intochemicals and fuels [C]. Appita Annual Conference, v3,59th Appita Annual Conference and Exhibition,incorporating the13th ISWFPC: International Symposium on Wood, Fibre and Pulping Chemistry-Proceedings. Appita Conference Sessions,2005:369-374.
    [123]于树峰,仲崇立.农作物废弃物液化的实验研究[J].燃料化学学报,2005,33(4):205-210.
    [124] Yamada T, Ono H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate[J]. Bioresour.Technol.,1999,70(1):61-67.
    [125] Zhang T, Zhou Y J, Liu D H, et al. Qualitative analysis of products formed during the acid catalyzedliquefaction of bagasse in ethylene glycol[J]. Bioresour. Technol.,2007,98(7):1454-1459.
    [126] Yuan X Z, Li H, Zeng G M, et al. Sub-and supercfitical liquefaction of rice straw in the presence ofethanol-water and2-propanol-water mixture[J]. Energy,2007,32(11):2081-2088.
    [127] Kucuk M M., Agirtas S. Liquefaction of Prangmites australis by supercritical gas extraction[J].Bioresour. Technol.,1999,69(2):141-143.
    [128] Demirba A. Conversion of biomass using glycerin to liquid fuel for blending gasoline as alternativeengine fuel[J]. Energ. Convers. Manage.,2000,41(16):1741-1748.
    [129]徐艾清.三倍体毛白杨乙二醇解的初步研究[D].北京:北京林业大学,2006.
    [130]王梦亮,王华,常如波,等.纤维素类废弃物的热化学催化液化试验研究[J].中国环境科学,2004,24(4):469-473.
    [131]姜洪涛,李会泉,张懿.生物质高压液化制生物原油研究进展[J].化工进展,2006,25(1):8-13.
    [132]谢文,袁兴中,曾光明,等.催化剂对亚临界水中生物质液化行为的影响[J].资源科学,2008,30(1):129-133.
    [133] Xu C B, Timothy E. Hydro-liquefaction of woody biomass in sub-and super-critical ethanol withiron-based catalysts[J]. Fuel,2008,87(3):335-345.
    [134] Song C C, Hu H Q, Zhu S W, et al. Nonisothermal catalytic liquefaction of corn stalk in subcritical andsupercritical water[J]. Energy Fuels,2004,18(1):90-96.
    [135] Demirba A. Effect of lignin content on aqueous liquefaction products of biomass[J]. Energ. Convers.Manage.,2000,41(15):1601-1607.
    [136] Song C C, Hu H Q, Zhu S W, et al. Nonisothermal catalytic liquefaction of corn stalk in subcritical andsupercritical water[J]. Energy Fuels,2004,18(1):90-96.
    [137] Agblevor, Foster A. Process for producing phenolic compounds from lignins[P]. US,5807952,1998-09-15.
    [138] Shabtai, Joseph S, Zmierczak. Process for conversion of lignin to reformulated, partially oxygenatedgasoline [P]. US,6172272,2001-01-09.
    [139] Mae K, Shindo H, Miura, K. A new two-step oxidative degradation method for producing valuablechemicals from low rank coals under mild conditions[J]. Energy Fuels,2001,15(3):611-617.
    [140] Mae K, Maki T, Okutsu H, Miura K. Examination of relationship between coal structure and pyrolysisyields using oxidized brown coals having different macromolecular networks[J]. Fuel,2000,79(3-4):417-425.
    [141] Wang T, Zhu X F. Conversion and kinetics of the oxidation of coal in supercritical water[J]. EnergyFuels,2004,18(5):1569-1572.
    [142] Deno N, Greigger B, Messer L. Aromatic ring oxidation of alkylbenzenes[J]. Tetrahedron Lett.,1977,18(20):1703-1704.
    [143] Alam H G, Moghaddam A Z, Omidkhah M R. The influence of process parameters on desulfurization ofMezino coal by HNO3/HCl leaching[J]. Fuel Process. Technol.,2009,90(1):1-7.
    [144] Pietrzak R, Wachowska H. Low temperature oxidation of coals of different rank and different sulphurcontent[J]. Fuel,2003,82(6):705-713.
    [145] Zhumanova M O, Usanboev N, Namazov S S, Beglov B M. Oxidation of brown coal of Angren depositwith a mixture of nitric and sulfuric acids[J]. Russ. J. Appl. Chem..,2009,82(12):2223-2229.
    [146] Kurkova M, Klika Z, Klikova C, et al. Humic acids from oxidized coals I. Elemental composition,titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infraredspectroscopy[J]. Chemosphere,2004,54(8):1237-1245.
    [147] Oshika T,Okuwaki A. Formation of aromatic carboxylic acids from coal-tar pitch by two-step oxidationwith oxygen in water and in alkalinesolution[J]. Fuel,1994,73(1):77-82.
    [148] Patrakov Y F, Fedyaeva O N, Semenova S A, et al. Influence of ozone treatment on change ofstructural-chemical parameters of coal vitrinites and their reactivity during the thermal liquefactionprocess[J]. Fuel,2006,85(9):1264-1272.
    [149] Semenova S A, Patrakov Y F, Batina M V. Preparation of oxygen-containing organic products frombed-oxidized brown coal by ozonation[J]. Russ. J. Appl. Chem..,2009,82(1):80-85.
    [150] Djerassi C, Engle R R. Oxidations with Ruthenium Tetroxide[J]. J. Am. Chem. Soc.,1953,75(15):3838-3840.
    [151] Stock L M, Kwok-tuen T. Ruthenium tetroxide catalysed oxidation of Illinois No.6coal and somerepresentative hydrocarbons[J]. Fuel,1983,62(8):974-976.
    [152] Huang Y G, Zong Z M, Yao Z S, et al. Ruthenium ion-catalyzed oxidation of Shenfu Coal and itsresidues[J]. Energy Fuels,2008,22(3):1799-1806.
    [153] Do J S, Chou T C. Anodic oxidation of benzyl alcohol to benzaldehyde in the presence of both redoxmediator and phase transfer catalyst[J]. J. Appl. Electrochem.,1989,19(6):922-927.
    [154] Vanarendonk A M, Cupery M E. The reaction of acetophenone derivatives with sodium hypochlorite[J].J. Am. Chem. Soc.,1931,53(8):3184-3186.
    [155] Farrar M W, Levine R. The oxidation of certain ketones to acids by alkaline hypochlorite solution[J]. J.Am. Chem. Soc.,1949,71(4):1496-1496.
    [156] Farrar M W. Sodium hypobromite oxidation of certain cycloalkanones[J]. J. Org. Chem.,1957,22(12):1708-1708.
    [157] Neiswender D D, Moniz W B, Dixon J A. The oxidation of methylene and methyl groups by sodiumhypochlorite[J]. J. Am. Chem. So.c,1960,82(11):2876-2878.
    [158] Chakrabartty S K, Kretschmer H O. Studies on the structure of coals: Part1. The nature of aliphaticgroups[J]. Fuel,1972,51(2):160-163.
    [159] Chakrabartty S K, Kretschmer H O. Studies on the structure of coals.2. The valence state of carbon incoal[J]. Fuel,1974,53(2):132-135.
    [160] Chakrabartty S K, Kretschmer H O. Sodium hypochlorite as a selective oxidant for organiccompounds[J]. J. Chem. Soc. Perk. T1,1974:222-228.
    [161] Landolt R G. Oxidation of coal models. Reaction of aromatic compounds with sodium hypochlorite[J].Fuel,1975,54(4):299-299.
    [162] Landolt R G. Role of substituents and pH in activating hypochlorite oxidations of coal models[J]. Fuel,1977,56(2):224-225.
    [163] Mayo F R. Application of sodium hypochlotite oxidations to the structure of coal[J]. Fuel,1975,54(4):273-275.
    [164] Mayo F R, Kirshen N A. Oxidations of coal by aqueous sodium hypochlorite[J]. Fuel,1979,58(9):689-704.
    [165] Mayo F R, Pavelka L A, Hirschon A S, et al. Extractions and reactions of coals below100oC4.Oxidation of Illinois No.6coal[J]. Fuel,1988,67(5):612-618.
    [166] Fonouni H E, Krishnan S, Kuhn D G, et al. Mechanisms of epoxidations and chlorinations ofhydrocarbons by inorganic hypochlorite in the presence of a phase-transfer catalyst[J]. J. Am. Chem.Soc.,1983,105(26):7672-7676.
    [167] Rothenberg G, Sasson Y. Extending the haloform reaction to non-methyl ketones: oxidative cleavage ofcycloalkanones to dicarboxylic acids using sodium hypochlorite under phase transfer catalysisconditions[J]. Tetrahedron,1996,52(43):13641-13648.
    [168] Rook J J. Chlorination reactions of fulvic acids in natural waters[J]. Environ. Sci. Technol.,1977,11(5):478-482.
    [169] Lebedev A T, Shaydullina G M, Sinikova N A, et al. GC-MS comparison of the behavior of chlorine andsodium hypochlorite towards organic compounds dissolved in water[J]. Water Res.,2004,38(17):3713-3718.
    [170] Li W, Cho E H. Coal desulfurization with sodium hypochlorite[J]. Energy Fuels,2005,19(2):499-507.
    [171] Kanazawa H, Onami T. Mechanism of the degradation of Organge G by sodium hypochlorite[J]. ColorTechnol.,2001,117:323-327.
    [172] Meunier B, Guilmet E, Poilblanc R. Sodium Hypochlorite: A convenient oxygen source for olefinepoxidation catalyzed by (porphyrinato)manganese complexes[J]. J. Am. Chem. Soc.,2000,122(11):2675-2675.
    [173] Gonsalvi L, Arends I, Sheldon R A. Highly efficient use of NaOCl in the Ru-catalysed oxidation ofaliphatic ethers to esters[J]. Chem. Commun.,2002,3:202-203.
    [174] Pabis A, Paluch P, Szala J, et al. A DFT sudy of the kinetic isotope effects on the competing S2and E2reactions between hypochlorite anion and ethyl chloride[J]. J. Chem. Theory. Comput.,2009,5(1):33-36.
    [175] Tretyakova N Y, Lebedev A T, Petrosyan V S. Degradative pathways for aqueous chlorination oforcinol[J]. Environ. Sci. Technol.,1994,28(4):606-613.
    [176] Lu Y, Wei X Y, Zong Z M, et al. Organonitrogen compounds identified in degraded wheat straw obtainedby oxidation in a sodium hypochlorite aqueous solution[J]. Fuel,2013, in press.
    [177] Jean Ne’Po M, Hooshang P, Christian Roy. Separation of syringol from birch wood-derived vacuumpyrolysis oil[J]. Sep. Purif. Technol.,2001,24(1-2):155-165.
    [178] Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy Fuels,2004,18(2):590-598.
    [179] Oasmaa A, Peacocke C. A guide to physical property characterization of biomass derived fast pyrolysisliquids[J]. Espoo: VTT Publications,2001,28-39.
    [180] Sanding E, Walling G, Daugaard D E, et al. The prospect for integrating fast pyrolysis into biomasspower systems[J]. Power Energy Systems,2004,24(3):228-238.
    [181] Ikura M. Emulsification of pyrolysis derived bio-oil in diesel fuel[J]. Biomass Bioenerg.,2003,24(3):221-232.
    [182]王树荣.生物质热解制油的试验与机理研究[D].杭州:浙江大学,1999.
    [183] Tsiantzi S, Athanassiadou E. Wood adhesives mand with pyrolysis oil[J]. Pyrolysis Network,2000,10,10-11.
    [184] Mourant D, Yang D Q, Lu X, et al. Anti-fungal properties of the pyroligneous liquors from the pyrolysisof softwood bark[J]. Wood Fiber. Sci.,2005,37(3):542-548.
    [185] Oasmaa A, Kuoppala E, Gust S, et al. Fast pyrolysis of forestry residue.1. Effect of extractives on phaseseparation of pyrolysis liquid[J]. Energy Fuels,2003,17(1):1-12.
    [186]李世光,徐绍平,路庆花.快速热解生物油柱层析分离与分析[J].太阳能学报,2005,26(4):549-555..
    [187] Onay O, Gaines A F, Kochar O M, et al. Comparison of the generation of oil by the extraction and thehydropyrolysos of biomass[J]. Fuel,2006,85(3):382-392.
    [188] Sevgi Sensoz, Ilke Kaynar. Bio-oil production from soybean (Glycine Max L): Fuel properties ofbio-oil[J]. Ind. Crops. Products,2006,23(1):99-105.
    [189] Ito Y. Countercurrent chromatography[J]. Trends Biochem. Sci.,1982,7(2):47-50.
    [190] Mandava N B, Ito Y. Separation of plant hormones by counter-current chromatography[J]. J.Chromatogra. A,1982,247(2):315-325.
    [191] Ito Y, Sandlin J, Bowers W G. High-speed preparative counter-current chromatography with a coil planetcentrifuge[J]. J. Chromatogra. A,1982,244(2):247-258.
    [192] Ito Y. Countercurrent chromatography[J]. J. Biochem. Biophysic. Methods,1981,5(2):105-129.
    [193]赵碧清,段更利.高速逆流色谱法在中药有效成分分离中的应用[J].中成药,2007,29(9):1347-1349.
    [194] Baldermann S, Ropeter K, Nils K, et al. Isolation of all-trans lycopene by high-speed counter-currentchromatography using a temperature-controlled solvent system[J]. J. Chromatogra. A,2008,1192(1):191-193.
    [195] Friesen J B, Pauli G F. Rational development of solvent system families in counter-currentchromatography[J]. J. Chromatogra. A,2007,1151(1-2):51-59.
    [196] Yanagida A, Yamakawa Y, Noji R, et al. Comprehensive separation of secondary metabolites in naturalproducts by high-speed counter-current chromatography using a three-phase solvent system[J]. J.Chromatogra. A,2007,1151(1-2):74-81.
    [197]颜继忠,褚建军,童胜强.中药分离中高速逆流色谱溶剂体系的选择[J].中国现代应用药学,2003,20(5):374-376.
    [198] Shibusawa Y, Yamakawa Y, Noji R, et al. Three-phase solvent systems for comprehensive separation of awide variety of compounds by high-speed counter-current chromatography[J]. J. Chromatogra. A,2006,1133(1-2):119-125.
    [199]陈建华,黄少烈,李忠.高速逆流色谱技术制备石杉碱甲单体[J].中国现代应用药学,2006,23(4):295-297.
    [200]陈理,邓丽杰,陈平.高速逆流色谱分离同分异构体[J].色谱,2006,24(6):570-573.
    [201]陈平,孙东,郑小明. EGCG棕榈酸酯的制备、结构及其抗氧化活性[J].浙江大学学报:理学版,2003,30(4):422-425.
    [202]蔡定国,吴建均.高速逆流色谱法用于甜味剂阿司帕坦的提纯合杂质鉴别[J].中国医药工业杂志,1993,24(11):481-483.
    [203]洪波,赵宏峰,司云珊,等.高速逆流色谱在中药有效成分分离中的应用研究进展[J].吉林农业大学学报,2005,27(5):522-527.
    [204]毛立新,刘诚,杨小兰.高速逆流色谱在保健食品功能成分纯化中的应用[J].食品科学,2007,28(2):372-374.
    [205]陈爱华,杨坚.高速逆流色谱(HSCCC)在食品色素制备中的应用[J].中国食品添加剂,2005(1):83-85.
    [206]曹学丽,徐亚涛,章光明,等.微生物发酵产辅酶Q10的高速逆流色谱法分离纯化[J].中国生物工程杂志,2006,26(8):88-92.
    [207]夏兴,戈梅,陈代杰.利用高速逆流色谱从真菌HCCB00106转化液分离转化产物[J].中国抗生素杂志,2007,32(3):3-4.
    [208] Sutherland I A, Heywood-Waddington D, Ito Y. Counter-current chromatography: Applications to theseparation of biopolymers, organelles and cells using either aqueous-organic or aqueous-aqueous phasesystems[J]. J. Chromatogra. A,1987,384:197-207.
    [209] Iglesias M J, del Río J C, Laggoun-Défarge F, et al. Control of the chemical structure of perhydrouscoals; FTIR and Py-GC/MS investigation[J]. J. Anal. Appl. Pyrolysis,2002,62(1):1-34.
    [210] Sun X G. The investigation of chemical structure of coal macerals via transmitted-light FT-IRmicrospectroscopy[J]. Spectrochimi. Acta. A,2005,62(1-3):557-564.
    [211] Li X J, Hayashi J, Li C Z. FT-Raman spectroscopic study of the evolution of char structure during thepyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12-13):1700-1707.
    [212] Kanehashi K, Saito K. Investigation on chemical structure of minerals in coal using27Al MQMASNMR[J]. Fuel Process. Technol.,2004,85(8-10):873-885.
    [213] Stock L M, Obeng M. Oxidation and decarboxylation. A reaction sequence for the study of aromaticstructural elements in Pocahontas No.3coal[J]. Energy Fuels,1997,11(5):987-997.
    [214] Wertz D L, Bissell M. One-dimensional description of the average polycyclic aromaticunitin PocahontasNo.3coal: an X-ray scattering study[J]. Fuel,1995,74(10):1431-1435.
    [215] Cody G D, Botto R E, Sde H, et al. Soft X-ray microanalysis and microscopy: A unique probe of theorganic chemistry of heterogeneous solids[J]. Prepr Pap. Am. Chem. Soc. Div. Fuel Chem.,1995,40(3):387-390.
    [216]王树荣,骆仲泱,谭洪,等.生物质热解生物油特性的分析研究[J].工程热物理学报,2004,25(6):1049-1052.
    [217]张素萍,颜涌捷,任铮伟,等.生物质快速裂解产物的分析[J].华东理工大学学报,2001,27(6):666-668.
    [218]朱满洲,朱锡锋,郭庆祥,等.以玉米秆为原料的生物质热解油的特性分析[J].中国科学技术大学学报,2006,36(4):374-377.
    [219]王丽红,柏雪源,易维明,等.玉米秸秆热解生物油特性的研究[J].农业工程学报,2006,22(3):108-111.
    [220]王晓艳.生物油及相关生物质原料的特性分析[D].长春:吉林农业大学,2005.
    [221] Taner F, Eratik A, Ardic I. Identification of the compounds in the aqueous phases from liquefaction oflignocellulosics[J]. Fuel Process.Technol.,2005,86(4):407-418.
    [222]朱道飞.生物质在超临界水中的液化转化的实验研究[D].昆明:昆明理工大学,2004.
    [223] Qian Y J, Zuo C J, Tan J, et al. Structural analysis of bio-oils from sub-and supercritical waterliquefaction of woody biomass[J]. Energy,2007,32(3):196-202.
    [224]刘荣厚,袁海荣,李金洋.花生壳热解试验及其剩余物特性红外光谱分析[J].农业工程学报,2007,23(12):197-201.
    [225] Boon J J,Pastorova I,Botto R E, et al. Structural studies on cellulose pyrolysis and cellulose char byPYMS, PYGCMS, FTIR, NMR and by wet chemical techniques[J]. Biomass Bioenerg.,1994,7(1-6):25-32.
    [226] Bighelli A, Tomi F, Casanova J. Computer-aided carbon-13NMR study of phenols contained in liquidsproduced by pyrolysis of biomass[J]. Biomass Bioenerg.,1994,6(6):461-464.
    [227]王树荣,骆仲泱,董良杰,等.几种农林废弃物热裂解制取生物油的研究[J].农业工程学报,2004,20(2):246-249.
    [228] Taner F, Eratik A, Ardic I. Identification of the compounds in the aqueous phases from liquefaction oflignocellulosics[J]. Fuel Process. Technol.,2005,86(4):407-418.
    [229] Lu Y, Wei X Y, Chen H B, et al. Photocatalytic depolymerization of rice husk over TiO2with H2O2[J].Fuel Process. Technol.,2013, accepted.
    [230]路瑶,魏贤勇,宗志敏,等.木质素结构研究与应用[J].化学进展,2013,25(5):838-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700