用户名: 密码: 验证码:
基于稳定理论的剪切薄膜褶皱发展过程及其动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着薄膜结构在建筑结构领域和航天器方面的大量应用,褶皱问题所带来的不利影响逐渐引起了人们的广泛关注。褶皱的出现不仅会影响到结构的表面精度,而且会改变结构的应力分布状况,影响结构的振动特性,并对风荷载作用下的气动特性产生不利影响。因此,必须对褶皱的形成特点和发展过程进行深入研究,从而掌握褶皱发展机理,及褶皱对薄膜力学性能的影响规律,以有助于对褶皱现象进行有效控制。虽然实际工程中薄膜结构的几何形状复杂多变,而平面张拉薄膜是一种形式最简单的薄膜结构,但通过对平面张拉薄膜的研究可以忽略次要因素,深入分析从薄膜结构中抽象出来的共性问题,揭示出在褶皱产生和发展过程中,结构力学性能的变化规律。因此,本文将以平面薄膜为研究对象,分析褶皱的产生和发展规律,以及对结构静力特性和动力性能的影响。
     本文在薄膜结构褶皱问题方面的研究工作,可以分为计算理论与数值分析两个方面:
     (1)计算理论方面:基于稳定理论,提出了考虑沿褶皱方向张拉应力的影响时,临界压应力的计算方法,并得到了波长和幅值等构形参数的表达式。通过与已有文献的试验结果和数值分析结果的比较,表明所得计算公式是合理有效的,并具有良好的精度。
     (2)数值分析方面的研究工作,主要分为以下几个部分:
     a.提出并验证了将褶皱的产生和发展过程进行三阶段划分的思想。通过对褶皱产生和发展过程的研究发现:褶皱首先发生在压应力最早出现的部位,然后向中间部位扩展,最后达到稳定。因此,该过程表现为:初始阶段、扩展阶段和稳定阶段三个典型阶段,并对每一阶段的褶皱特点进行研究。通过对褶皱产生和发展过程的研究,可以认识褶皱机理,掌握褶皱对薄膜结构力学特性的影响规律。同时通过这种划分,能够有效地衡量褶皱发展程度,并方便地对处于特定状态的褶皱性状进行研究和描述。
     b.提出并验证了褶皱控制临界值的思想,为防止结构因面外变形和褶皱数量的迅速增大(多)而失效提供量化依据。对剪切矩形薄膜进行仿真试验研究发现,当薄膜的面外位移达到膜材厚度的1%时,就必须对褶皱进行控制,否则结构的面外变形会迅速增大,而导致结构失效。
     c.以薄膜厚度、张拉预应力、初始缺陷为关键参数,对其在褶皱产生和发展过程中的影响进行了研究。结果表明:随着薄膜厚度的增加,褶皱数量减少,幅值和波长变大,但面外位移与厚度的比值减小,因此厚度越小,褶皱对结构的不利影响越大;增大张拉预应力,可以延迟褶皱的出现,增强结构的面外稳定性,但是材料的强度安全储备会减少,因此应合理控制张拉预应力;初始缺陷主要影响到褶皱的位置,尤其是褶皱最先出现的位置,而对褶皱数量、波长、幅值等的影响不明显。
     d.对褶皱发展不同阶段的结构动力特性进行了研究。结果表明:频率随剪切位移角的变化,也表现出三个典型阶段:初始阶段(频率下降),扩展阶段(频率波动上升)和稳定阶段(频率缓慢下降)。在稳定阶段,由于结构会发生二次屈曲,频率可能出现小幅波动。振型的变化与频率相比较为复杂,但总体趋势表现为与褶皱方向一致的振型增多。
With a large number of membrane structures used in the fields of building structures and spacecrafts, negative effects of wrinkles have aroused wide concern. The existences of wrinkles not only affect the surface accuracy of a structure, but also change its stress distributions and vibration performance and further affect the aerodynamic characteristics under wind load. Therefore, it is required that further researches be performed on the formation characteristics and the transition of wrinkles. Practical membranes are more complex and diverse in geometry than planar ones, and planar tension membrane is just one of the simplest structures, analysis on a simple planar membrane will contribute a lot to the attention on the common problems abstracted from membrane structures by excluding secondary factors and reveal the variation of mechanical properties following transition of wrinkles. Therefore, in this paper a planar membrane is mainly concerned to study the wrinkles and their influences on structures.
     The content of this paper can be divided into two aspects of theory and numerical calculation:
     (1) One part is on the theoretical analysis. Based on the stability theory, a new method of calculating critical compressive stress was proposed, in which the effect of tension stress along the wrinkling direction is considered. Afterwards, the formulas of wavelength and amplitude were easily obtained. Comparisons with the experiment results and the numerical results in the literatures show that the formulas given in this paper are valid, and have good accuracy.
     (2) The other part is on the numerical analyses as the following:
     a. A new method which divided the transition of the membrane wrinkles into three states was proposed. Generation and development of wrinkles were studied. The results show that:wrinkles appear first in the positions where compressive stress occurs earliest, and then expand to the middle part gradually until they are stable. The whole wrinkling process can be characterized by three typical stages:The Initial-Stage, The Expansion-Stage and The Stable-Stage. And the characteristics of each stage were studied. Through this part of study, the mechanism of wrinkles can be cognized. And the influence laws of mechanical properties affected by wrinkles can be mastered. And also, through this division, the degree of transition can be effectively measured; the wrinkles characters in a particular state can easily be studied and described.
     b. Proposes and confirms a critical value to control wrinkles, in order to provide the quantitative basis to prevent the structural failure caused by the deformation and the wrinkles increases. The simulation researches on the shear rectangular tensile membrane show that:Wrinkles should be restricted to such an extent that the ratio between the out-plane displacement and the membrane thickness is less than1%. Otherwise, the out-plane deformation would increase rapidly, and cause the structure's failure.
     c. The influence of thickness, initial prestress and initial imperfections on the wrinkles are studied. The results show that:with the increase of thickness, wrinkles decrease in number, but increase in wavelength and amplitude. However, the ratio of out-plane displacement to thickness decreases. Therefore, the smaller the thickness is, the larger the wrinkling impact is. Increase of the prestress can enhance the structure's out-plane stability and delay the appearance of wrinkles, but decrease the safety margin of structures. Therefore, the tension prestress should also be confined to a reasonable range. The initial imperfections mainly affect the location of wrinkles, especially the location where wrinkles appears first. But their influence on the wrinkling number, wavelength and amplitude is not obvious.
     d. Dynamic characteristics of the structure at the different wrinkling stages are studied. The results show that:The frequency variation with shear displacement angle can also be characterized by three stages:The Initial-Stage in which the frequency is declining, The Expansion-Stage in which the frequency is raising fluctuates, and The Stable-Stage in which the frequency is declining again. In The Stable-Stage, because of the second-buckling of the membrane structure, the frequency appears to fluctuate. The change of the mode shape is much more complex than that of frequency. The mode shapes tend to increase along the wrinkles.
引文
[1]Adler A L. (2000) Finite element approaches for static and dynamic analysis of partially wrinkled membrane structures. PhD thesis, University of Colorado, Boulder, Colordo. USA. 2000
    [2]Adams M L, Culver H L, Kaufman D M, et al.(2000). Design and flight testing of an inflatable sunshield for the NGST, AIAA Paper 2000-1797[R].
    [3]Adama Diaby, Anh Levan, Christian Wielgosz) (2006). Finite Elements in Analysis and Design.42(2006)992-1001
    [4]Adler A L., Mikulas M M., Hegepeth J M.(2000a). Static and dynamic analysis of partially wrinkled membrane structures.41st AIAA/ASME/ASCE Structures, Structures Dynamics, anf Material Conference And Exbibit Atlanta, GA, AIAA-2000-1810,2000
    [5]Adler A L.(2000b). Finite element approaches for static and dynamic analysis of partially wrinkled membrane structures. PhD Dissertation, University of Colorado at Boulder.2000.
    [6]Barsotti R. Ligaro S S.(2000). An accurate wrinkled membrane model for analysing the post-critical behaviour of stiffened plate-girders. In:IASS-IACM 2000 Computational Methods for Shell and Spatial Structures.2000.
    [7]Belytschko T., Tsay C S.(1981). Explicit Algorithms for the Nonlinear Dynamics of Shells", in:T. J. R. Hughes, ed., Nonlinear Finite Elements Analysis of Plates and Shells (ASME, New Youk,1981)209-231.
    [8]Belytschko T., Lin J I., Tsay C S. (1984). Explicit Algorithms for the Nonlinear Dynamics of Shells", Comput. Meth. Appl. Mech. Engrg,1984,42, pp.225-251.
    [9]Belytschko T., Wong B L., Chiang HY.(1989). Advances in one-point quadrature shell elements, Computer Methods in Applied Mechanics and Engineering,1989, Vol.96 pp.93-108.
    [10]Blandino J R., Johnston J D., Miles J J., Soplop J S.(2001). Thin film membrane wrinkling due to mechanical and thermal loads. In 42th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference and Exhibit,2001.AIAA-2001-1345.
    [11]Blandino J R., Johnston J D., Dharamsi U K.(2002). Corner wrinkling of a square membrane due to symmetric mechanical loads. Journal of Spacecraft and Rockets.2002,39(5):717-724.
    [12]Blandino J R., Pappa R., Black J.(2003). Model identification of membrane structures with videogrammetry and laser vibrometry. In 44th AIAA/ASME/ASCE/AHS/ASC Structures. Structural Dynamics, and Material Conference and Exhibit.2003. AIAA-2003-1745.
    [13]Black J T., Pappa R S.(2004). Phtotogrammetry and videogrammetry methods for solar sails and other gossamer structures. AIAA 2004-1662.
    [14]Cassapakis. C, Thomas. M.(1995). Inflatable structures technology development overview[A]. AIAA Conference[C]. [s.l.]:[s.n.],1995, AIAA-95-3738:1-10.
    [15]Cadogan D P, Sandy C R, Grahne M S.(2002). Development and evaluation of the mars pathfinder inflatable airbag landing system. Acta Astronautica.2002,05(50):633-640.
    [16]Croll J G A.(1985). Tension field solution for non-linear circular plates. In:Wittirck W H, Dawe D J, et al, eds. Aspects of the Analysis of Plate Structures:A Volume in Honor. Oxford University Press,1985.309-323.
    [17]Curran J F.(2006). BASE-Bubble architecture space environments. AIAA Paper 2006-7320[R]
    [18]Darooka D K, Jensen D W. (2001). Advanced space structure concepts and their development, AIAA Paper 2001-1257[R].
    [19]Ding H L., Yang B G. Lou M. Fang H.(2002). A two-viable parameter membrane model for wringkling analysis of membrane structures. The 43rd AIAA/ASME/ASCE/AHS/ASC structures, Structural Dyanmics, and materials Conferences Denver. Colorado, AIAA-2002-1460.
    [20]Ding H L., Yang B G.(2003). The modeling and numerical analysis of wrinkled membranes[J]. Int. J. Numer. Meth. Engng,2003,58:1785-1801.
    [21]Fay C C, Stoakey D M, St Clair A K. (1999). Molecularly oriented films for space applications[J]. High Perform Polym,1999,11:145-156.
    [22]Fujikake M., Kojima O., and Fukushima S.(1989). Analysis of fabric tension structures. Computers & Structures.1989,32(3/4):537-547.
    [23]Freeland. R. E, Bilyeu. G. D, Veal. G. R. (1997). Large inflatable deployable antenna flight experiment results[J]. Acta Astronautics.1997.(41) 1997:267-277.
    [24]Freeland R. E. (1997). Inflatable Antenna Flight Experiment Experiences. NASA Solar Thermal Propulsion Workshop Proceeding. NASA,Marshall Space Flight Center Huntsville, AL, March 1997:19-20
    [25]Fang H., Lou M., Huang J., et al.(2002). Design and Development of an Inflatable Refectarray Antenna[R]. IPN Progress Report 42-149.2002,3:1-18
    [26]Friedl N., Rammerstorfer F G., Fischer F D.(2000). Buckling of stretched strips. Comput. Struct.2000(78):185-190.
    [27]Furuya H, Nakahara M, Mutata S, et al.(2006). Concept of inflatable tensegrity for large space structures, AIAA Paper 2006-1700[R].
    [28]Giersch L R.(2001). Pathfinder photogrammetry research for ultra-lightweight and inflatable space structures. NASA, CR, Hampton, Virginia23681-2199. November,2001.
    [29]Grimes, R.G., Lewis, J.G., and Simon, H.D.(1994), A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems, SIAM Journal Matrix Analysis Applications,1994, Vol.15 (1), pp.228-272.
    [30]Haseganu E M., Steigmann D J.(1994). Analysis of partly wrinkled membranes by the method of dynamic relaxation. Comput. Mech.1994(14):596-614.
    [31]Hallquist, J 0.(1998). LS-DYNA Theoretical Manual. Livermore Software Technology Corporation.1998.
    [32]Hibbitt, Karlsson, Sorensen.(2004). ABAQUS/Standard User's Manual,6.4ed. Hibbitt, Karlsson, Sorensen Inc, Pawtucket,2004.
    [33]Jenkins C. H., Haugen F., Spicher W. H.(1998). Experimental measurement of wrinkling in membranes undergoing planar deformation. Experimental Mechanics.1998,(38):147-152.
    [34]Jenkins C. H., Fitzherald D. M., Liu X.(2000). Wrinkling of an inflatable membrane with thermo-elastic boundary conditions. The 41st AlAA/ASME/ASCE/AHS Structures, Structural Dynamics, and materials conference, Atlanta, GA, APRIL, AIAA 2000-1227.
    [35]JIS-93, Technical standard for specific membrane structures[S].
    [36]Jones T W., Pappa R S.(2002). Dot projection photogrammetric technique for shape measurements of aerospace test articles. Proceeding of the 40th AIAA Serospace Sciences Conference. January. AIAA 2002-0532.
    [37]Jones T W., Dorrington A A., Shortis M R. Hendricks A R.(2004). Validation of laser-induced fluorescent photogrammetric targets on membrane structures. AIAA 2004-1663.
    [38]Johan M., Johan S.(2003). Finite element analysis of thin membrane wrinkling. Techniccal Reports from Royal institute of Technology Department of Mechanics. SE-100 44 Stockholm, Sweden, March 2003.
    [39]Kang S., Im S.(1997). Finite element analysis of wrinkling membranes. J. Appl. Mech. 1997(64):263-269
    [40]Khun P., Peterson J P., Levin L R.(1952). A summary of diagonal tension. Part Ⅰ and Ⅱ. NACA, Tech Notes Nos.2662-2633.1952.
    [41]Leifer J., Belvin W K.(2003). Prediction of wrinkle amplitudes in thin film membranes using finite element modeling. In:44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Matericals Conference (Norfolk, VA.),7-10 April 2003. AIAA 2003-1983.
    [42]Leipold M. (2003), et al. Solar sail technology development and demonstration. Acta Astronautica 52(2003)2-6:317-326.
    [43]Leigh L, Hamidzadeh H, Tinker M L.(2001). Dynamic characterization of an inflatable concentrator for solar theimal propulsion. AIAA Paper 2001-1406[R]
    [44]Lichodziejewski D.(1999). Inflatable power antenna technology [A]. AIAA Conference[C]. [s.l.]:[s.n.],1999, AIAA-99-1074:1-10.
    [45]Lichodziejewski D, Veal G, Helms R, et al.(2003). Inflatable rigidizable solar array for small satellites. AIAA Paper 2003-1898[R].
    [46]Liu X., Jenkins C H. Schur W W.(1998). Computational issues in the modelling of wrinkling during parachute deployment, In:IUTAM-IASS Symposium on Deployable Structures: Theory and Application.1998:239-250
    [47]Liu X., Jenkins C H., Schur W W.(2000). Fine scale analysis of wrinkled membranes, Int. J. Comput. Eng. Sci.2000(2):281-298
    [48]Liu X., Jenkins C H., Schur W W.(2001). Large deflection analysis of pneumatic envelopes using a penalty parameter modified material model. Finite EIem. Anal. Des. 2001(37):233-251.
    [49]LI Yun-liang, LU Ming-yu, TAN Hui-feng, TAN Yi-qiu.(2010) Numerical analysis and experimental studies of membrane wrinkles [J]. Journal of Harbin Institute of Technology. 2010(2):229-233
    [50]Mansfield E H.(1968). Tension field theory. In:Proceedings of the 12nd International Congress of Applied Mechanics, Standford, USA,1968:305-320.
    [51]Mansfield E H.(1970). Load transfer via wrinkled membrane. Procr Soc Lond,1970, A316:269-291.
    [52]Masahis Fujikake, Osamu Kojima, Seiichiro Fukushima.(1989). Analysis of Fabric Tension Structures. Computers and Structures.1989,(32):537-547.
    [53]Mikulas M M.(1970). Behavior of doubly curved partly wrinkled membrane structures from an initially flat membrane, [PH. D. Thesis]. Virginia Polytechnic Institute. Blacksburg, Virginia,1970.
    [54]Mikulas M M.(1964) Behavior of a flat stretched membtane wrinkled by the rotation of an attached hub. Tech Notes, D-2456,1964.
    [55]Miller R K, Hedgepeth J M(1982). An algorithm for finite element analysis of partly wrinkled membtanes. AIAA Journal,1982,20(12):1761-1763.
    [56]Miller R K, Hedgepeth J M.(1985) Finite element analysis of partly wrinkled membranes. Comp Struc,1985,20(1-3):631-639.
    [57]Miyamura T.(2000). Wrnkling on stretched circular membranes under in plane torsion: Comparison between bifurcation analyses and experiments. Engineering Structures, 2000,20:1407-1425.
    [58]Nakashino K., Natori M C.(2005). Efficient modification scheme of stress-strain tensor for wrinkled membranes. AIAA Journal.2005(43):206-215
    [59]Otto F. (1962). Tensile structures. Massachusetts Intitute of technology. Cambridge. MA. 1962.
    [60]Otto F. (1971). Tensile structures[D]. MIT Press. Cambridge. MA.1971.
    [61]Papa A., Pellegrino S.(2005). Mechanics of systematically creased thin-film membrane structures. In:The 46td AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.(Austin, TX).2005. AIAA 2005-1975.
    [62]Pappa R S., Giersch L R., Quagliaroli J M.(2000). Photogrammetry of a 5m inflatable space antenna with consumer digital cameras. The 19th International Modal Analysis Conference, Kissimmee, FL,2000, Feb 5-8.
    [63]Pappa R S., Jones T W., Black J T. (2002). Photogrammetry methodology development for gossamer space structures. In:The 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. April 22-25. Denver, Colorado. AIAA 2002-1375.
    [64]Pappa R S., Black J T., Blandino J R.(2003a). Dot projection photogrammetry and videogrammetry of gossamer space structures. Journal of SpaceCraft and Rockets, NASA/TM-2003-212146. Feb,2003.
    [65]Pappa R S., Black J T., Blandino J R.(2003b) Photogrammetric measurement of gossamer spacecraft membrane wrinkling. NASA 2003-SEM-RSP.
    [66]Pellegtino. S, Green. C, Guest. S. D, Watt. A. (2000). SAR advanced deployable structure[R]. Cambridge, UK:Deoartment of engineering,2000:1-51.
    [67]Pellegrino S. (2001). Collapsible rib-tensioned surface (crts) technology development. European Space Agency Contractor finial Report CUED/D-STRUCT/TR 195,2001-04-02.
    [68]Pipkin A C.(1986). The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math.1986,36:85-99.
    [69]Pipkin A C. (1994). Relaxed energy densities for large deformations of membranes. IMA J. Appl. Math.1994,52:297-308.
    [70]Rajakumar, C. and Rogers, C.R.(1991), The Lanczos Algorithm Applied to Unsymmetric Generalized Eigenvalue Problems, International Journal for Numercial Method in Engineering,1991. Vol.32, pp.1009-1026
    [71]Redell F H, Lichodziejewski D. (2004). Power-Scalable Inflation Deployed solar arrays. AIAA Paper 2004-1572[R]
    [72]Roddeman D G., Drukker J., Oomens C W J., Janssen J D.(1987a). The wrinkling of thin membranes:part I theory. ASME Journal of Applied Mechanics.1987a,54:884-887.
    [73]Roddeman D G., Drukker J., Oomens C W J., Janssen J D.(1987b). The wrinkling of thin membranes:part II Numerical Analysis. ASME Journal of Applied Mechanics.1987b, 54:888-892.
    [74]Roddeman D G., Vam Hout M C., Oomens C W J., Janssen J D., Drukker J.(1987c). The wrinkling of thin membranes-comparison between experiments and theory. ASME AMD (Appl Mech Div).1987,84:267-270.
    [75]Roddeman D G.(1988). Force transmission in wrinkled membranes. Doctorate thesis, the Technical University, Eindhoven, The Netherlands.1988.
    [76]Roddeman D G.(1991), Finite-element analysis of wringkling membranes. Communication in Applied Numerical Methods.1991,7:299-307.
    [77]Sadeh W Z, Criswell M E.(1993a). Inflatable Structrures-a concept for Lunar and Martian structures. AIAA Paper 1993-0995[R].
    [78]Sadeh W Z, Criswell M E.(1993b) Inflatable structures for a lunar base, AIAA Paper 1993-4177[R]
    [79]Stein, M., Hedgepeth, J. M.(1961). Analysis of partly wrinkled membranes. Tech. Rep. NASA TN D-813.1961.
    [80]Steigmann D J., Piplin A C. (1989). Wrinkling of pressurized membranes. J Appl Mech.1989. 56:624-628.
    [81]Stockman H S., Mather J C. (2001). The next generation space telescope. The Extragalactic hffrared Background and its Cosmological Implications, Proceedings of IAU Symposium. NewYork:American Institute of Areonautics and Astronauties Incorporation.2001, 204:d67-474.
    [82]Su Xiaofeng, Frank A., Barmac T., Joseph R B. (2003).Wrinkling analysis of a kapton square membrane under tensile loading. The 44td AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Norfolk, Virginia, AIAA 2003-1985.
    [83]Suzuki T., Ogawa T., Motoyui S. et al.(1988). Investigation on wrinkling problem of membrane structure[A]. Proc. of IASS-MSU Symposium on Domes from Antiquity to the Present[C]. Istanbul:1988.
    [84]Tabiei A., Tanov R.(2000). A nonlinear higher order shear deformation shell element for dynamic explicit analysis:PartI,Formulation and finite element equations, Finite Elements in Analysis and Design,2000:17-37
    [85]Tessler T., Sleight D W., Wang J T.(2003). Nolinear shell modeling of thin membranes with emphasis on structural wrinkling. In:The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Matericals Conference (Norfolk, VA),2003. AIAA-2003-1931.
    [86]Tessler T., Sleight D W.(2004). Toward effective shell modeling of wrinkled thin-film membranes exhibiting stress concentrations. In:The 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Matericals Conference (Palm Springs, CA),2004. AIAA-2004-1739.
    [87]Tensioned Fabric Structure-A Practical Introduction ASCE-1852.
    [88]Tibert A G, Pellegrino S. (2001). Furlable reflector concept for small satellites. AIAA-2001-1261,2001.
    [89]Tomita Y., Shindo A.(1988). Onset and growth of wrinkles in thin square plates subjected to diagonal tension, Int. J. Mechanical Sciences.1988,30:921-931.
    [90]Wang C G., Tan H F., Du X W., Wan Z M. (2007)Wrinkling prediction of rectangular shell-membrane under transverse in-plane displacement [J]. International Journal of Solids and Structures.2007(44):6507-6516.
    [91]Wang Chang-guo, Du Xing-wen, He Xiao-dong. (2008) Wrinkling analysis of square membrane structure under corner tension forces [J]. Journal of Harbin Institute of Technology. 2008(04):513-517
    [92]Wanger H. (1929a). Flat sheet metal girders with a very thin metal web. Aeitschrift fur Flugtechink and Motorluftschiffahrt.1929.20:200-207.
    [93]Wanger H.(1929b). Flat sheet metal girders with a very thin metal web. Part ⅠⅡⅢ. NACA Tech Memoranda. Nos 1929.20,200-314.
    [94]Wagner H., Ballerstedt W.(1935). Tension fields in originally curved thin sheets during shearing stresses. NACA Tech Memoranda,1935:774.
    [95]Wong Y W.(2000). Anaiysis of wrinkle patterns in prestressed membrane structures, M Phil thesis. University of Cambridge, Department of Engineering. Cambridge, UK.2000
    [96]Wong Y W., Pellegrino S.(2002a). Computation of Wrinkle amplitudes in thin membranes. In The 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Matericals Conference. AIAA 2002-1369,2002
    [97]Wong Y W. and Pellegrino S.(2002b). Amplitude of wrinkles in thin membrane. New Approaches to Structural Mechanics, Shells and Biological Structures, Kluwer Academic Publishers.2002:257-270
    [98]Wong Y W., Pellegrino S.(2003a). Prediction of wrinkle amplitudes in square solar sails. In: The 43th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Matericals Conference and Exhibit. AIAA-2003-1980,2003.
    [99]Wong Y W., Pellegrino S.(2003b) Wrinkled membrane. In:Onate E, Kroplin B, eds. Textile Composites and Inflatable Structures. CIMNE, Barcelona,2003.
    [100]Wong Y W., Pellegrino S. (2004). Wrinkles in square membranes. XXI ICTAM, Warsaw, Poland,2004-08:15-21.
    [101]Wong Y W., Pellegrino S.(2006a). Wrinkled membranes part Ⅰ:experiments. Journal of mechanics of Materrial and Structures.2006,1(1):2-23.
    [102]Wong Y W., Pellegrino S.(2006b). Wrinkled membranes part Ⅱ:analytical models. Journal of mechanics of Materrial and Structures.2006,1(1):25-59.
    [103]Wong Y W., Pellegrino S.(2006c). Wrinkled membranes part Ⅲ:numerical simulations. Journal of mechanics of Materrial and Structures.2006,1(1):61-93.
    [104]Wong Y W.(2000). Anlysis of wrinkle patterns in prestressed membrane structures, M Phil thesis, University of Cambridge, Department of Engineering, Cambridge. UK,2000.
    [105]Wu C H. (1978). Nonlinear wrinkling of nonlinear membrane of revolution. ASME J Appl Mech,1978,45:533-538.
    [106]Yang B., Ding H., Luo M., Fang H.(2001). A new approach to wrinkling rediction for space membrane structures. The 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exnibit Seattle, WA 16-19, AIAA-2001-1348,2001.
    [107]彼莱奇科,廖荣锦,默然著.庄茁译(2002).连续体和结构的非线性有限元.北京:清华大学出版社.2002.
    [108]白金泽(2005).LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005
    [109]曹妍妍,赵登峰(2007).有限元模态分析理论及其应用.机械工程与自动化.2007(140):73-74.
    [110]陈志华,闫翔宇(2007).两种常用膜材料PTFE和ETFE.建筑知识.2007.4:64.
    [111]陈铁云,沈慧中(1993).结构的屈曲.上海:上海科学技术文献出版社.1993,12
    [112]陈骥(2006).钢结构稳定理论与设计.北京:科学出版社.2006.
    [113]杜星文,王长国,万志敏(2006).空间薄膜结构的褶皱研究进展.力学进展.2006,05(02):187-198.
    [114]段进,倪栋,王国业(2006).ANSYS10.0结构分析——从入门到精通.北京:兵器工业出版社和北京科海电子出版社.2006.
    [115]傅志方,华宏星(2000)).模态分析理论及应用.上海:上海交通大学出版社.2000
    [116]郭乙木,陶伟明,庄茁(2005).线性与非线性有限元及应用.北京:机械工业出版社.2005,06.
    [117]黄小琦,王立,刘宇飞(2012).太阳帆飞行器帆体结构材料选用分析.中国宇航学会深空探测技术专业委员会第九届学术年会论文集,2012:1083-1089.
    [118]黄玉盈(1988).结构振动分析基础.武汉:华中工学院出版社.1988
    [119]梁志满(2001),.膜材料特性及应用.闽西职业大学学报.2001:95-98.
    [120]李存权(2000)).结构稳定和稳定内力.北京:人民交通出版社.2000.3:171-189.
    [121]凌道盛,徐兴(2004).非线性有限元及程序.浙江:浙江大学出版社200408
    [122]刘瑞霞,杨庆山,李作为(2005).矩形平面双曲抛物面薄膜屋盖的动力失稳临界风速.工程力学.2005,22(5):105-110
    [123](加)罗达著,王跃飞译(1989).弹性结构的屈曲.杭州:浙江大学出版社.1989.06
    [124]李作为,杨庆山,刘瑞霞(2004)).薄膜结构褶皱研究述评[J].中国安全科学学报,2004,4(7):16-20.
    [125]李云良,王长国,谭惠丰(2007).褶皱对薄膜振动特性的影响分析[J].力学与实践.2007(6):17-22.
    [126]李云良,田振辉,谭惠丰(2008a).屈曲薄膜振动分析[J].工程力学.2008(11):33-36
    [127]李云良(2008b).空间薄膜褶皱及其动态特性研究[D].工学博士学位论文.哈尔滨工业大学.2008,06.
    [128]李云良,谭惠丰,谭忆秋,鲁明宇,欧进萍(2010a).薄膜二次屈曲行为的数值仿真分析[J].哈尔滨工业大学学报.2010(05):784-787.
    [129]李云良,鲁明宇,谭惠丰,谭忆秋(2010b).基于直接扰动法的薄膜屈曲缺陷敏感性分析[J].工程力学.2010(08):94-99.
    [130]李云良,鲁明宇,谭惠丰,谭忆秋(2011).剪切褶皱薄膜动态特性分析[J].哈尔滨工业 大学学报.2011(02):98-102.
    [131]马瑞,张建,杨庆山(2011).基于薄壳单元的膜材褶皱发展过程研究.工程力学.2011,28(8):70-76
    [132]马瑞,杨庆山,王晓峰(2013a).褶皱发展对平面张拉薄膜屈曲后动力特性的影响.工程力学.2013,30(5):207-214.
    [133]马瑞,杨庆山,王晓峰(2013b).平面张拉薄膜屈曲过程的数值研究.北京交通大学学报.己录用.
    [134]马瑞,杨庆山,王晓峰(2013c).基于稳定理论的剪切薄膜屈曲分析.力学学报.已投稿.
    [135]那向谦(1993).张拉索膜结构体系的发展.世界建筑.1993,(3)
    [136](比利时)沃德·海伦等著.白化同,郭继忠等译(2001).模态分析理论与试验.北京:北京理工大学出版社.2001,06.
    [137]彭福军(2007).薄膜化——未来的航天器结构.第二届上海航天科技论坛暨上海市宇航学会2007学术年会.2007:65-73.
    [138]全亮(2006).膜结构的褶皱分析理论与数值模拟.硕士学位论文.哈尔滨工业大学.2006.06
    [139]全亮,武岳(2008).基于薄壳理论的膜结构褶皱分析.工业建筑.2008(z1):118-120.
    [140]尚晓江,邱峰,赵海峰(2008)ANSYS结构有限元高级分析方法与范例应用.北京:中国水利水电出版社.2008.
    [141]沈惠申(2002).板壳后屈曲行为.上海:上海科学技术出版社.2002,10.
    [142]谭惠丰,李云良(2011).薄膜屈曲振动行为分析[J].哈尔滨工业大学学报.2011,43(z1):61-65
    [143]谭锋,杨庆山,李作为(2006a).薄膜结构分析中的褶皱判别准则及其分析方法[J].北京交通大学学报,2006,30(1):35-39.
    [144]谭锋,杨庆山,张建(2006b).薄膜结构褶皱分析的有限元法.工程力学.2006,06.(23):62-68
    [145]谭锋(2007).张拉薄膜结构的褶皱和动力分析.博士学位论文.北京交通大学.2007,03.
    [146]唐宝富,徐东海,朱瑞平(2008).空间充气展开天线初步研究.现代雷达.2008,30(4):82-84.
    [147]唐泽靖子(2002).用于膜结构建筑的膜材料.世界建筑,2002,3:81-86.
    [148]王长国,杜星文,万志敏(2006).空间薄膜结构的褶皱形变预测[J].力学与实践.2006(6):37-41
    [149]王长国,杜星文,万志敏(2007a).空间薄膜结构褶皱的数值模拟最新研究进展.力学进展.2007,37(03):389-397.
    [150]王长国,杜星文,万志敏(2007b).薄膜褶皱的非线性屈曲有限元分析[J].计算力学学报.2007(3):269-274
    [151]王长国(2007c).空间薄膜结构皱曲行为与特性研究.工学博士学位论文.哈尔滨工业大学.2007,03.
    [152]魏玉卿,尚仰宏(2010).充气可展开结构中薄膜皱褶的有限元分析.现在雷达.2010(9):84-86.
    [153]吴恒立,孙君宁(2002).薄板和三维体应变位移关系的二次完整表达式——兼评 T.Von Karmman方程.重庆交通学院学报.2002.21(1):9-11
    [154]徐彦,关富玲,川口健一(2011).充气薄膜结构的悬垂和充气展开过程.浙江大学学报.2011,(01):75-80.
    [155]胥传喜,陈楚鑫,钱若军(2003).ETFE薄膜的材料性能及其工程应用综述.空间钢结构.2003,18:1-4
    [156]肖潇(2009).空间薄膜结构的展开动力学研究及热分析.博士学位论文,浙江大学.2009
    [157]杨庆山,姜忆南(2004).张拉索-膜结构分析与设计.第一版.北京:科学出版社.2004.
    [158]张华,单建(2002).建筑膜材的强度性能及连接技术.建筑技术.2002.33:596-598.
    [159]张惠琴(2007).伞形膜结构浮动环处的褶皱问题研究.硕士学位论文.北京工业大学.2007,12
    [160]张建,杨庆山,谭锋(2010).基于薄壳单元的薄膜结构褶皱分析.工程力学.2010(8):28-34.
    [161]张彦敏,张学宾,龚红英(2010).有限元在金属塑形成形中的应用.第一版.北京:化学工业出版社.2010
    [162]张颖(2007).膜结构褶皱的有限元分析.硕士学位论文.河北大学.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700