用户名: 密码: 验证码:
基于振动信息的结构损伤识别的几种新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于振动信息的结构损伤识别通过对安装在结构上的传感器测得的振动响应信号采用某种算法进行分析来发现、定位、甚至定量损伤,具有可在线实时监测、快速定期检测、节省人力等优点;自20世纪70年代末期以来受到了广泛关注并取得了很大进展,已经提出了很多种结构损伤识别方法,但还面临着受噪声干扰大、对结构数值模型精确度有较大依赖、对损伤的敏感性有待提高等挑战。
     本文主要研究基于振动信息的结构损伤识别(损伤定位和损伤定量),重点发展不需要结构有限元模型(或对模型精确度依赖性低)、对环境和测试噪声不敏感且对结构损伤敏感的损伤识别方法,主要研究内容如下:
     (1)建立了适用于结构精细化和稀疏测点下损伤定位的SDLV法观测矩阵C的选择方法,从而提高了SDLV方法损伤定位的准确度。从SDLV法的核心(未知输入下Q矩阵的构造)入手,通过比较不同测点数比例下观测矩阵C对Q矩阵的影响,发现不同测点数比例时基于不同C矩阵构建的Q矩阵与损伤识别结果相关;为了减少传感器的使用数量,用力平衡的概念研究给出了基于SDLV法的两种常见桁架结构稀疏测点布置方案,实现了测点数量经济性和损伤识别精细化程度之间的平衡;为了实现对桁架结构关键杆件上局部损伤的定位,提出了基于SDLV法的结构关键构件精细化损伤定位方法和步骤;通过两种常见的桁架结构对以上内容进行了模拟和试验验证。
     (2)提出了基于比例柔度矩阵的LU(QR)分解的结构损伤定位方法。柔度矩阵可以仅通过前几阶低阶模态参数构建,但需要己知结构输入(或至少在一个测点上已知输入)来获得质量归一化振型,这在实际中往往难以做到,本文采用结构比例柔度矩阵及其LU(QR)分解的结果,针对不同的结构对象构建不同的损伤指标进行损伤定位,并通过剪切型集中质量框架模型和桁架结构模型进行了模拟和试验验证。
     (3)提出了四种目标函数和相应的结构损伤程度识别方法。运用以上两种方法可以发现并定位损伤,但未涉及损伤定量。针对损伤定量问题,选择损伤单元及其所在小范围的子结构脉冲响应和低阶振型为目标向量,借助有限元模型修正的方法,分别采用相关系数和模态保证准则分析模型修正结果中对应向量与目标向量之间的相似度,进而提出了四种结构损伤程度识别的目标函数和识别方法,并在简支梁模型和桁架结构模型上进行了模拟和试验验证。
     (4)研究/提出了五种基于振动信息的损伤特征函数:分形维数、近似熵、对数加速度能量、离散度、急动度能量等;并且采用曲率差和概率平均的思想,分别提出了相应于每种损伤特征函数的平均归一化曲率差和归一化曲率差概率的结构损伤定位方法;在几个不同类型的结构仿真和试验模型上,分别进行了不同噪声水平下的模拟验证和试验验证。此外,基于以上几种损伤特征函数和进一步提出的“修正的对数加速度能量”损伤特征函数,研究了大跨度桥梁结构吊杆和斜拉索的损伤定位。结果表明:这些方法对损伤敏感、抗噪声能力强、不需要结构数值模型,避免了参数识别和建模过程中的误差。
     本文方法适用于基于实时监测(基于环境激励)或定期检测获得振动信息的结构损伤识别,验证模拟和试验的结构类型有:剪切型集中质量框架模型、梁结构模型、桁架(网架)结构模型、悬索桥结构算例、拱桥结构算例、斜拉桥结构算例等。
The vibration-based damage identification technique can identify, localize and quantify the damage of structures through analysing vibration responses with intelligent algorithms; it can be used in real time monitoring and fast periodical detection whenever necessary, also it can save manpower. Since the late1970s, vibration-based damage identification methods have received considerable attention and many methods have been developed. However, it still suffers from some limitations, such as high sensitivity to noise, high-dependence on accuracy of structural numerical models and low sensitivity to damage; challenges still remain.
     The present work is about the study of vibration-based structural damage identification methods (damage localization and damage severity identification), and the main purpose is to develop some new damage identification methods which are model-free, robust enough against the noise and also sensitive to the small damage. The research contents are listed in detail as follows:
     (1) A guidance has been provided regarding the conditions under which the respective formulations of the observation matrix C should be used, which results in the higher accuracy of the damage identification. The present work has studied the SDLV method from its key (i.e. the extraction of Q matrix without the excitation information) to the influence of different C matrices on Q matrix. Additionally, several strategies of sensor layout to achieve the effective performance with the SDLV method with limited measured nodes of two common truss structures have been explored based on the force balance method. The present work has also proposed the precise damage localization based on the SDLV method for local damage on some key truss members. Experimental and numerical validation of these points have been achieved based on two common truss structures.
     (2) The present work has proposed a damage localization method based on LU(QR) decomposition of the proportional flexibility matrix. The modal flexibility matrix can be extracted only with the first several modal parameters. However, the mass-normalized mode shapes can be achieved when input excitation (or at least at one measured point) is known, which is usually not available in practice. The proportional flexibility matrix is used and different damage indices based on its LU(QR) decomposition are used for various types of structures, and it has been validated based on a shear building model and a truss model.
     (3) The above two methods have been only designed as damage localization methods, damage quantification has not been considered. Here, four cost functions and the corresponding damage severity identification methods have been proposed. Pulse responses/the first several mode shapes at the damaged elements/and the substructure including the damaged elements have been selected as objective vectors; correlation coefficient and modal assurance criterion have been selected as mathematical tools to describe the similarity between the objective vectors and the corresponding vectors in the updated finite element model. Finally, finite element model updating-based four cost functions have been validated using a beam model and a truss model through experiments and simulations.
     (4) The present work has studied/proposed five structural damage features:fractal dimension, approximate entropy, logarithmic acceleration energy, degree of dispersion and jerk energy. Moreover, the curvature method, mean and probability method are combined to deal with the proposed damage features. As a result, two methods, i.e. the mean normalized curvature difference method and the curvature difference probability method for every damage feature are developed. Their feasibility has been validated in several types of laboratory models with numerical simulation and experiments with different noise levels. Moreover, damage localization of suspenders (hangers) and cables in the long-span bridges have been studied based on the above five and another new (i.e. the improved logarithmic acceleration energy) damage features. The results show these methods are sensitive to small damage, robust enough against the noise, and these methods do not require the finite element model of the measured structures, which avoid the error in the process of parameter identification and finite element modeling.
     The proposed methods in this work can be used in the vibration-based damage identification for real-time health monitoring or periodical detection. The research objects refer to the following numerical examples and laboratory models:a shear building model, a beam model, a truss model, a suspension bridge numerical model, an arch bridge numerical model and a cable-stayed bridge numerical model.
引文
[1]欧进萍.重大工程结构的累积损伤与安全度评定.走向世纪的中国力学—中国科协第9次“青年科学家论坛”报告文集[C].北京:清华大学出版社,1996:179-189.
    [2]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005,19(1):8-12.
    [3]Kim H, Melhem H. Damage detection of structures by wavelet analysis[J]. Engineering Structures,2004,26(3):347-362.
    [4]Chen B L, Nagarajaiah S. Structural damage detection using decentralized controller design method[J].Smart structures and systems,2008,4(6):779-794.
    [5]潘际炎.中国钢桥[J].中国工程科学,2007,9(7):18-26.
    [6]王元清.钢结构脆性破坏事故分析[J].工业建筑,1998,28(5):55-58.
    [7]林广元.韩国汉城一座桥梁的坍塌事故[J].国外桥梁,1995,(3):225-229.
    [8]Rezaei D, Taheri F. Experimental validation of a novel structural damage detection method based on empirical mode decomposition[J]. Smart Materials and Structures,2009, 18(4):045004.
    [9]欧进萍,关新春.土木工程智能结构体系的研究与发展[J].地震工程与工程振动,1999,19(2):21-28.
    [10]Ihn J B, Chang F K. Pitch-catch active sensing methods in structural health monitoring for aircraft structures[J]. Structural Health Monitoring,2008,7(1):5-19.
    [11]Gentzen V, Choi Y T, Purekar A S, Wereley N M. Experimental detection and quantitative interrogation of damage in a jointed composite structure[J]. Journal of Intelligent Material Systems and Structures,2010,21(3):275-283.
    [12]Doyle D, Zagrai A, Arritt B, Cakan H. Damage detection in bolted space structures[J]. Journal of Intelligent Material Systems and Structures,2010,21(3):251-264.
    [13]Baptista F G, Filho J V, Inman D J. Influence of excitation signal on impedance-based structural health monitoring[J]. Journal of Intelligent Material Systems and Structures, 2010,21 (14):1409-1416.
    [14]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅰ):系统设计[J].土木工程学报,2006,39(4):39-44.
    [15]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅱ):系统实现[J].土木工程学报,2006,39(4):45-53.
    [16]项贻强,李毅,周畅,周逊盛.桥梁结构在线健康监测预警系统Ⅰ—监测评估预警体系和模块设计[J].交通科学与工程,2009,25(1):26-31.
    [17]项贻强,周畅,李毅,李春辉.桥梁结构在线健康监测预警系统Ⅱ—损伤识别的信号分析及提取方法[J].交通科学与工程,2009,25(2):33-39.
    [18]Sloan T D, Kirkpatrick J, Boyd J W, Thompson A. Monitoring the inservice behaviour of the Foyle bridge[J]. Structural Engineer,1992,70(7):130-134.
    [19]Myroll F, Dibiagio E, Hansvold C. Instrumentation for monitoring the Skarnsundet cable-stayed bridge. Proceedings of the 3rd Symposium on Strait Crossing[C].Alesund, Norway,1994:207-216.
    [20]Andersen E Y. Structural monitoring of the Great Belt East Bridge. Proceedings of the 3rd Symposium on Strait Crossing[C]. Leiden:A. A. Balkema Publishers,1994:54-62.
    [21]Shahawy M, Arockiasamy M. Field instrumentation to study the time-dependent behavior in Sunshine Skyway Bridge[J].Journal of Bridge Engineering,1996,1(2):76-86.
    [22]Chueng M S, Tadros G S, Brown T, Dilger W H, Ghali A, Lau D T. Field monitoring and research on performance of the Confederation Bridge[J]. Canadian Journal of Civil Engineering,1997,24(6):951-962.
    [23]Ou J P. The state-of-the-art and application of intelligent health monitoring systems for civil infrastructures in mainland of China. Progress in structural engineering, mechanics and computation[C]. Leiden:A. A. Balkema Publishers,2004:599-608.
    [24]Sun L M, Dan D H, Zhang Q W, Yue Q. Conceptual design and key issues of structural health monitoring system for Donghai bridges[C]. The 2nd International Structural Health Monitoring and intelligent infrastructure,2005:255-264.
    [25]Wu Z S. Structural health monitoring and intelligent infrastructures in Japan. In:Wu Z S, Abe M, editors. Structural health monitoring and intelligent infrastructure[C]. Leiden:A. A. Balkema,2003:153-167.
    [26]Sohn H, Farrar C R, Hemez F M, Shunk D D, Stinemates D W, Nadler B R, Czarnecki J J. A review of structural health monitoring literature:1996-2001. Los Alamos National Laboratory Report[R]. LA-13976-MS,2004.
    [27]Shi J, Xu X J, Wang J L, Li G. Beam damage detection using computer vision technology[J]. Nondestructive Testing and Evaluation,2010,25(3):189-204.
    [28]宗周红,牛杰,王浩.基于模型确认的结构概率损伤识别方法研究进展[J].土木工程学报,2012,45(8):121-130.
    [29]雷鹰,江永强.输入输出信息有限观测下的结构损伤诊断[J].振动、测试与诊断,2012,32(5):736-740.
    [30]Qiao P Z, Cao M S. Waveform fractal dimension for mode shape-based damage identification of beam-type structures[J]. International Journal of Solids and Structures,2008, 45(22):5946-5961.
    [31]Ren W X, Lin Y Q, Fang S E. Structural damage detection based on stochastic subspace identification and statistical pattern recognition:I. Theory[J]. Smart Materials and Structures,2011,20(11),115009.
    [32]Zhou L, Yuan F G, Meng W J. A pre-stack migration method for damage identification in composite structures[J].Smart Structures and Systems,2007,3(4),439-454.
    [33]Zhou D, Ha D S, Inman D J. Ultra low-power active wireless sensor for structural health monitoring[J]. Smart Structures and Systems,2010,6(5-6):675-687.
    [34]Lee J, Kim S. Structural damage detection in the frequency domain using neural networks[J]. Journal of Intelligent Material Systems and Structures,2007, 18(8):785-792.
    [35]段忠东,闫桂荣,欧进萍.土木工程结构振动损伤识别面临的挑战[J].哈尔滨工业大学学报,2008,40(4):505-513.
    [36]Wen C M, Hung S L, Huang C S, Jan J C. Unsupervised fuzzy neural networks for damage detection of structures [J]. Structural Control and Health Monitoring,2007,14:144-161.
    [37]Doebling S W, Farrar C R, Prime M B, Shevitz D W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:a literature review.Los Alamos National Laboratory Report[R]. LA-13070-MS:1-134,1996.
    [38]Wang Y L, Liu X L, Fang C Q. Damage detection in bridges using static difference curvature. Proceeding of the International Symposium on Life-Cycle Performance of Bridges and Structures[C]. Beijing:Science Press,2010:165-172.
    [39]冯新.土木工程中结构识别方法的研究[D].大连:大连理工大学,2002.
    [40]Cawley P, Adams R D. The location of defects in structures from measurements of natural frequencies[J]. Journal of Strain Analysis,1979,14(2):49-57.
    [41]Farrar C R, Worden K. An introduction to structural health monitoring[J]. Philosophical Transactions of the Royal Society A,2007,365(1851):303-315.
    [42]Salane H J, Baldwin J W, Duffield R C. Dynamics approach for monitoring bridge deterioration[J]. Transportation Research Record,1981,832:21-28.
    [43]Kato M, Shimada S. Vibration of PC bridge during failure process[J]. ASCE Journal of Structural Engineering,1986,112(7):1692-1703.
    [44]Sun L M, Sun S W. Bridge Condition Assessment Based on Long-term Strain Monitoring. Proceedings of SPIE 7981, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems[C]. San Diego, California,2011.
    [45]Khoo L M, Mantena P R, Jadhav P. Structural damage assessment using vibration modal analysis[J].Structural Health Monitoring,2004,3(2):177-194.
    [46]Huth O, Feltrin G, Maeck J, Kilic N, Motavalli M. Damage identification using modal data:experiences on a prestressed concrete bridge[J]. ASCE Journal of Structural Engineering,2005,131(12):1898-1910.
    [47]Salawu O S. Detection of structural damage through changes in frequency:a review[J]. Engineering Structures,1997,19(9):718-723.
    [48]Lee Y S, Chung M J. A study on crack detection using eigenfrequency test data[J]. Computers and Structures,2000,77(3):327-342.
    [49]谢峻,韩大建.一种改进的基于频率测量的结构损伤识别方法[J].工程力学,2004,21(1):21-25.
    [50]Patil D P, Maiti S K. Experimental verification of a method of detection of multiple cracks in beams based on frequency measurements[J]. Journal of Sound and Vibration,2005,281(1-2):439-451.
    [51]Farrar C R, Baker W E, Bell T M, Cone K M, Darling T W, Duffey T A, Eklund A, Migliori A. Dynamic characterization and damage detection in the 1-40 bridge over the rio grande[R]. Los Alamos National Laboratory report LA-12767-MS,1994.
    [52]Kim J T, Ryu Y S, Cho H M, Stubbs N. Damage identification in beam-type structures:frequency-based method vs mode-shape-based method[J]. Engineering Structures,2003,25(1):57-67.
    [53]Cao M S, Ye L, Zhou L M, Su Z Q, Bai R B. Sensitivity of fundamental mode shape and static deflection for damage identification in cantilever beams [J]. Mechanical Systems and Signal Processing,2011,25(2):630-643.
    [54]Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes[J]. Journal of Sound and Vibration,1991,145(2):321-332.
    [55]Pabst U, Hagedorn P. On the identification of localized losses of stiffness in structures. Proceedings of 14th Biennal Conference on Mechanical Vibration and Noise[C]. Albuquerque, New Mexico,1993.
    [56]Abdel Wahab M M, De Roeck G. Damage detection in bridges using modal curvatures:application to a real damage scenario[J]. Journal of Sound and vibration, 1999,226(2):217-235.
    [57]Lestari W, Hanagud S. Detection of an edge notch defect by using a single mode based methods. Proceedings of 3rd International Workshop on structural health monitoring[C]. Boca Raton:CRC Press,2001:1343-1355.
    [58]Hamey C S, Lestari W, Qiao P Z, Song G B. Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes[J]. Structural Health Monitoring,2004,3(4):333-353.
    [59]Lestari W, Qiao P Z, Hanagud S. Curvature mode shape-based damage assessment of carbon/epoxy composite beams[J]. Journal of Intelligent Material Systems and Structures,2007,18(3):189-208.
    [60]陆熙,霍达.应用曲率模态理论识别实桥模型损伤的研究[J].土木工程学报,2005,38(8):61-66.
    [61]Mohammad M. Curvature mode shape analyses of damage in structures[D]. Melbourne:RMIT University,2009.
    [62]Allemang R J, Brown D L. A correlation coefficient for modal vector analysis, Proceedings of the 1st International Modal Analysis Conference[C]. Orlando:Union College Press,1982:110-116.
    [63]West W M. Illustration of the use of modal assurance criterion to detect st ructural changes in an orbiter test specimen. Proceedings of the Air Force Conference on Aircraft Structural Integrity[C]. Palm Springs, California,1984:1-6.
    [64]Wolff T, Richardson M. Fault detection in structure from changes in their modal parametes. Proceedings of the 7th International Modal Analysis Conference[C]. Las Vegas, Nevada,1989:87-94.
    [65]Chen J C, Garba J A. On-orbit damage assessment for large space structures[J]. AIAA Journal,1988,26(9):1098-1126.
    [66]史治宇,罗绍湘,张令弥.结构破损定位的单元模态应变能变化率法[J].振动工程学报,1998,11(3):356-360
    [67]Stubbs N, Kim J T, Farrar C R. Field verification of a nondestructive damage localization and severity estimation algorithm, Procedings of 13th International Modal Analysis Conference[C]. Nashville, Tennessee,1995:210-218.
    [68]Stubbs N, Kin J T. Damage localization in structures without baseline modal parameters[J]. AIAA Journal,1996,34(8):1644-1649.
    [69]Shi Z Y, Law S S, Zhang L M. Structural damage localization from modal strain energy change[J]. Journal of Sound and Vibration,1998,218(5):825-844.
    [70]史治宇,吕令毅.由模态应变能法诊断结构破损的实验研究[J].东南大学学报,1999,29(2):134-138.
    [71]Li Y Y, Cheng L, Yam L H, Wong W O. Identification of damage locations for plate-like structures using damage sensitive indices:strain modal approach[J]. Journal of Computers and Structures,2002,80(25):1881-1894.
    [72]Shi Z Y, Law S S, Zhang L M. Improved damage quantification from elemental modal strain energy change[J]. ASCE Journal of Engineering Mechanics,2002,128(5):521-529.
    [73]单德山,李乔,张吉刚.蒙特卡罗法在桥梁损伤识别中的应用[J].重庆交通大学学报(自然科学版),2009,28(5):844-847.
    [74]Pandey A K, Biswas M. Damage detection in structures using changes in flexibility[J]. Journal of Sound and Vibration,1994,169(1):3-17.
    [75]Pandey A K, Biswas M. Experimental verification of flexibility difference method for locating damage in structures [J]. Journal of Sound and vibration,1995,184(2):311-328.
    [76]Bernal D. Load vectors for damage localization[J]. ASCE Journal of Engineering Mechanics,2002,128(1):7-14.
    [77]Bernal D. Flexibility-Based Damage localization from stochastic realization results[J].ASCE Journal of Engineering Mechanics,2006,132(6):651-658.
    [78]Gao Y, Spencer Jr B F, Bernal D. Experimental verification of the flexibility-based damage locating vector method[J]. ASCE Journal of Engineering Mechanics,2007, 133(10):1043-1049.
    [79]Catbas F N, Gul M, Burkett J L. Damage assessment using flexibility and flexibility-based curvature for structural health monitoring[J]. Smart Materials and Structures,2008,17(1),015024.
    [80]An Y H, Ou J P. Use of LU decomposition of modal flexibility in structural damage detection:numerical validation[J]. Key Engineering Materials,2013,569-570:986-993.
    [81]Razak H A, Choi F C. The effect of corrosion on the natural frequency and modal damping of reinforced concrete beams[J]. Engineering Structures,2001,23(9):1126-1133.
    [82]Perera R, Huerta C, Orqui'n J M. Identification of damage in RC beams using indexes based on local modal stiffness[J]. Construction and Building Materials,2008, 22(8):1656-1667.
    [83]Thyagarajan S K, SCHULZ M J, PAI P F. Detecting structural damage using frequency response functions[J]. Journal of Sound and Vibration,1998,210(1):162-170
    [84]Maia N M M, Silva J M M, Sampaio R P C. Localization of damage using curvature of the frequency-response-functions. Proceedings of 15th International Modal Analysis Conference[C]. Orlando, Florida,1997.
    [85]Sampaio B, Maia N, Silva J. Damage detection using the frequency-response -function curvature method[J]. Journal of Sound and Vibration,1999,226(5):1029-1042.
    [86]Maia N M M, Silva J M M, Almas E A M, Sampaio R P C. Damage detection in structures:from mode shape to frequeney response funetion methods[J].Mechanical Systems and Signal Processing,2003,17(3):489-498.
    [87]Zhang Z D, Chen S. Crack detection using a frequency response function in offshore platforms[J]. Journal of Marine Science and Application,2007,6(3):1-5.
    [88]Liu X, Lieven N A J, Escamilla-Ambrosio P J. Frequency response function shape based methods for structural damage localization[J]. Mechanical System and Signal Processing,2009,23 (4):1243-1259.
    [89]Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proceedings of the Royal Society of London[J]. 1998,454(1971):903-995.
    [90]Quek S, Tua P, Wang Q. Detecting anomalies in beams and plate based on the Hilbert-Huang transform of real signals[J]. Smart Materials and Structures,2003,12(3):447-460.
    [91]Yang J N, Lei Y, Lin S, Huang N. Hilbert-Huang based approach for structural damage detection[J].ASCE Journal of Engineering Mechanics,2004,130(1):85-95.
    [92]Pines D, Salvino L. Structural health monitoring using empirical mode decomposition and the Hilbert phase[J]. Journal of Sound and Vibration,2006,294(1-2):97-124.
    [93]Lo Iacono F, Navarra G, Pirrotta A. A damage identification procedure based on Hilbert transform:Experimental validation[J]. Structural Control and Health Monitoring,2012, 19(1):146-160.
    [94]彭玉华.小波变换与工程应用[M].北京:科学出版社,2000.
    [95]李宏男,孙鸿敏.基于小波分析和神经网络的框架结构损伤诊断方法[J].地震工程与工程振动,2003,23(5):141-148.
    [96]李宏男,孙鸿敏.小波分析在土木工程领域中的应用[J].世界地震工程,2003,19(2):16-22.
    [97]Zhu X Q, Law S S. Wavelet-based crack identification of bridge beam from operational deflection time history[J]. International Journal of Solids and Structures,2006, 43(7-8):2299-2317.
    [98]Cao M S, Qiao P Z. Integrated wavelet transform and its application to vibration mode shapes for the damage detection of beam-type structures[J].Smart Materials and Structures,2008,17(5):222-232.
    [99]Ovanesova A V, Suarez L E. Applications of wavelet transforms to damage detection in frame structures[J]. Engineering Structures,2004,26(1):39-49.
    [100]孙晓丹,欧进萍.基于小波包和概率主成份分析的损伤识别[J].工程力学,2011,28(2):12-17.
    [101]Hera A, Hou Z. Application of wavelet approach for ASCE structural health monitoring Benchmark studies[J]. ASCE Journal of Engineering Mechanics,2004,130(1):96-104.
    [102]姚昌荣.基于小波与分形理论的斜拉桥健康监测系统研究[D].成都:西南交通大学,2008.
    [103]曹茂森.基于动力指纹小波分析的结构损伤特征提取与辨识基本问题研究[D].南京:河海大学,2005.
    [104]Ding Y L, Li A Q, Liu T. A study on the WPT-based structural damage alarming of the ASCE Benchmark experiments[J]. Advances in structural engineering,2008,11 (1):121-127.
    [105]王步宇.结构损伤的小波分形神经网络检测[J].应用力学学报,2007,24(1):58-61.
    [106]许斌,李冰,宋刚兵,滕军,令狐延.基于压电陶瓷的钢管混凝土柱剥离损伤识别研究[J].土木工程学报,2012,45(7):86-96.
    [107]Mandelbrot B B. How long is the coast of Brit.ain?Statistical selfsimilarity and fractional dimension[J]. Science,1967,156(3775):636-638.
    [108]Mandelbrot B B. The fractal geometry of nature[M]. San Francisco:W H Freeman and Company,1982.
    [109]Florindo J B, Bruno 0 M. Closed contour fractal dimension estimation by the Fourier transform[J]. Chaos, Soli tons and Fractals,2011,44(10):851-861.
    [110]Feng Z C, Zhao Y S, Zhao D. Investigating the scale effects in strength of fractured rock mass[J]. Chaos, Solitons and Fractals,2009,41(5):2377-2386.
    [111]Xie H P, Wang J A, Xie W H. Fractal effects of surface roughness on the mechanical behavior of rock joints[J]. Chaos, Solitom and Fractals,1997,8(2):221-252.
    [112]Xie H P. Fractals in rock mechanics[M]. Leiden:A. A. Balkema Publishers,1993.
    [113]Carpinteri A, Pugno N. Fractal fragmentation theory for shape effects of quasi-brittle materials in compression[J]. Magazine of Concrete Research,2002,54(6):473-480.
    [114]Mechtcherine V, Muler H S. Fractological investigation on the fracture in concrete. Proceeding of the 4th International Conference on Fracture Mechanics of Concrete and Concrete Structures[C]. Leiden:A. A. Balkema Publishers,2001:81-88.
    [115]Carpinteri A, Chiaia B. Three-dimensional fractal analysis of concrete fracture at the meso-level[J]. Theoretical and Applied Fracture Mechanics,1999,31(3):163-172.
    [116]Lis Z, Litewka A. Theoretical model of creep fracture under triaxial state of stess[J]. Nuclear Engineering and Design,1993,144(3):497-508.
    [117]姜绍飞.结构健康监测-智能信息处理及应用[J].工程力学,2009,26(S2):184-212.
    [118]Carpinteri A, Cornetti P. A fractional calculus approach to the description of stress and strain localization in fractal media[J]. Chaos, Soliton and Fractals,2002, 13(1):85-94.
    [119]Carpinteri A, Pugno N. Evolutionary fractal theory of erosion and experimental assessment on MIR space station[J]. Wear,2004,257(3):408-413.
    [120]Carpinteri A, Lacidogna G, Pugno N. A fractal approach for damage detection in concrete and masonry structures by the acoustic emission technique[J]. Acoustique & Techniques,2004,38:31-37.
    [121]Carpinteri A, Lacidogna G, Niccolini G, Puzzi S. Critical defect size distributions in concrete structures detected by the acoustic emission technique[J].Meccanica, 2008,43 (3):349-363.
    [122]Hadjileontiadis L J, Douka E, Trochidis A. Fractal dimension analysis for crack identification in beam structures[J].Mechanical Systems and Signal Processing, 2005,19(3):659-674.
    [123]王步宇.基于分形的结构损伤检测方法[J].振动与冲击,2005,24(2):87-88.
    [124]王步宇.结构损伤的分形神经网络检测方法[J].振动、测试与诊断,2005,25(4):260-262.
    [125]Cao M S, Ren Q W, Qiao P Z. Nondestructive assessment of reinforced concrete structures based on fractal damage characteristic factors[J].ASCE Journal of Engineering Mechanics,2006,132(9):924-931.
    [126]Hadjileontiadis L J, Douka E. Crack detection in plates using fractal dimension[J]. Engineering Structures,2007,29(7):1612-1625.
    [127]Li H, Huang Y, Ou J P, Bao Y Q. Fractal dimension-based damage detection method for beams with a uniform cross-section[J]. Computer-Aided Civil and Infrastructure Engineering,2011,26(3),190-206.
    [128]Morassi A, Tonon S. Dynamic testing for structural identification of a bridge[J]. Journal of Bridge Engineering,2008,13(6):573-585.
    [129]Yang S M, Lee G S. Effects of modeling error on structure damage diagnosis by two-stage optimization. Structural Health Monitoring 2000[C]. Lancaster:Technomic publishing company Inc,1999:871-880.
    [130]Hemez F, Doebling S. Review and assessment of model updating for nonl inear, transient dynamics[J]. Mechanical Systems and Signal Processing,2001,15(1):45-74.
    [131]Jaishi B, Ren W. Structural finite element model updating using ambient vibration test results[J].ASCE Journal of Structural Engineering,2005,131(4):617-628.
    [132]Cheung S, Beck J. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters [J]. Journal of Engineering Mechanics,2009,135(4):243-255.
    [133]方圣恩.基于有限元模型修正的结构损伤识别方法研究[D].长沙:中南大学,2010.
    [134]Ren W X, Chen H B. Finite element model updating in structural dynamics by using the response surface method[J]. Engineering Strutures,2010,32(8):2455-2465.
    [135]Deng L, Cai C. Bridge Model Updating Using Response Surface Method and Genetic Algorithm[J].ASCE Journal of Bridge Engineering,2010,15(5),553-564.
    [136]Zhou L R, Yan G R, Ou J P. Response surface method based on radial basis functions for modeling large-scale structures in model updating[J]. Computer-Aided Civil and Infrastructure Engineering,2013,28(3):210-226.
    [137]Fritzen C P, Jennewein D, Kiefer T. Damage detection based on model updating methods[J].Mechanical Systems and Signal Processing,1998,12(1):163-186.
    [138]Teughels A, Maeck J, De Roeck G. Damage assessment by FE model updating using damage functions[J].Computers and Structures,2002,80(25):1869-1879.
    [139]Teughels A, De Roeck G. Structural damage identification of the highway bridge Z24 by FE model updating[J]. Journal of Sound and Vibration,2004,278(3),589-610.
    [140]Jaishi B, Ren W X. Damage detection by finite element model updating using modal flexibility residual[J]. Journal of Sound and Vibration,2006,290(1-2),369-387.
    [141]Fang S E, Perera R. A response surface methodology-based damage identification technique[J].Smart materials and Structures,2009,18(6):1-14.
    [142]姜绍飞.基于神经网络的结构优化与损伤检测[M].北京:科学出版社,2002.
    [143]Venkatasubramanian V, Chan K. A neural network methodology for process fault diagnosis[J]. AIChE Journal,1989,35(12):1993-2002.
    [144]瞿伟廉,陈伟,李秋胜.基于神经网络技术的复杂框架结构节点损伤的两步诊断法[J].土木工程学报,2003,36(5):37-45.
    [145]孙宗光,倪一清,高赞明,丁皓江.基于斜拉索振动测量与神经网络技术的斜拉桥损伤位置识别方法[J].工程力学,2003,20(3):27-30.
    [146]姜绍飞,刘明.基于自适应概率神经网络的大跨悬索桥损伤定位研究[J].土木工程学报,2003,36(8):74-78.
    [147]姜绍飞,杨晓楠,陈兆才,倪一清,高赞明.基于主组分分析的概率神经网络损伤定位研究[J].地震工程与工程振动,2004,24(2):187-191.
    [148]Yuan S F, Wang L, Peng G. Neural network method based on a new damage signature for structural health monitoring[J]. Thin-Walled Structures,2005,43(4):553-563.
    [149]Li Z X, Yang X M. Damage identification for beams using ANN based on statistical property of structural responses[J]. Computers and Structures,2008,86(1):64-71.
    [150]Bakhary N, Hao H, Deeks A J. Structure damage detection using neural network with multi-Stage substructuring[J]. Journal of Advances in Structural Engineering,2010, 13(1):95-110.
    [151]李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [152]孙晓丹,李宏伟,欧进萍.大型桥梁动力检测测点优化的改进遗传算法及其应用[J].西安建筑科技大学学报(自然科学版),2006,38(5):624-628.
    [153]尹涛,朱宏平,余岭,运用改进的遗传算法进行框架结构损伤检测[J].振动工程学报,2006,19(4):525-531.
    [154]张保强,陈国平,郭勤涛.使用有效模态质量和遗传算法的有限元模型修正[J].振动、测试与诊断,2012,32(8):577-580.
    [155]朱劲松,肖汝诚.基于定期检测与遗传算法的大跨度斜拉桥损伤识别[J].土木工程学报,2006,39(5):85-89.
    [156]刘娟,黄维平,石湘.基于遗传算法的海洋平台损伤诊断[J].振动、测试与诊断,2012,32(2):327-331.
    [157]Kennedy J, Eberhart R. Particle swarm optimization[J]. Proceedings of IEEE international conference on neural networks,1995,4:1942-1948.
    [158]余岭,万祖勇,朱宏平等.基于POS算法的结构模型修正与损伤检测[J].振动与冲击,2006,25(5):37-39,53.
    [159]万祖勇,朱宏平,余岭等.基于改进PSO算法的结构损伤检测[J].工程力学,2006,23(S1):73-78.
    [160]郭惠勇,王磊,李正良等.基于改进PSO算法的两阶段损伤识别方法[J].西南交通大学学报,2011,46(6):926-932.
    [161]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94.
    [162]扶名福,谢明祥,饶泓.模糊聚类分析法在抽风机故障诊断中应用[J].工程力学,2007,24(S1):36-40.
    [163]Reda Taha M M, Lucero J. Damage identification for structural health monitoring using fuzzy pattern recognition[J]. Engineering Structures,2005,27(12):1774-1783.
    [164]姜绍飞,张帅.基于模糊神经网络和证据理论的结构损伤识别新方法[J].地震工程与工程振动,2008,28(4):139-145.
    [165]Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,11 (5):341-356.
    [166]Pawlak Z. Rough sets:theoretical aspects of reasoning about data[M]. Dordrecht:Kluwer Academic Publishers,1991.
    [167]于艳.基于信息熵的粗糙集在故障诊断中的应用研究[D].长沙:湖南大学,2004.
    [168]林晓男.基于信息熵的粗糙集在结构损伤诊断中的应用[D].武汉:武汉理工大学,2007.
    [169]郭惠勇.多传感器信息融合技术的研究与进展[J].中国科学基金,2005,19(1):17-21.
    [170]姜绍飞,殷晓志,刘明.结构健康监测中的数据融合技术[J].沈阳建筑大学学报,2005,21(1):16-19.
    [171]吴小俊,曹奇英,陈保香,刘同明.基于Bayes估计的多传感器数据融合方法研究[J].系统工程理论与实践,2000,7:45-48.
    [172]付华,杜晓坤.基于Bayes估计理论的数据融合方法[J].自动化技术与应用,2005,24(4):10-12.
    [173]童树鸿,沈毅,刘志言.数据融合的模糊模型和算法研究[J].哈尔滨工业大学学报,2002,34(1):7-10.
    [174]GuoHY. Structural damage detection using information fusion technique[J]. Mechanical Systems and Signal Processing,2006,20(5):1173-1188.
    [175]姜绍飞,张春梅,金子巍.基于BP神经网络和D-S证据理论的损伤识别方法[J].沈阳建筑大学学报(自然科学版),2007,23(1):1-5.
    [176]Li H, Bao Y Q, Ou J P. Structural damage identification based on integration of info rmation fusion and shannon entropy[J]. Mechanical Systems and Signal Processing,2008, 22(6):1427-1440.
    [177]Bao Y Q, Li H, An Y H, Ou J P. Dempster-shafer evidence theory approach to structural damage detection[J]. Structural Health Monitoring,2012,11 (1):13-26.
    [178]Yang Z C, Wang L. Structural damage detection by changes in natural frequencies[J]. Journal of Intelligent Material Systems and Structures,2010,21(3): 309-319.
    [179]Sazonov E S, Klinkhachorn P, Gangarao H V S, Halabe U B. Fuzzy logic expert system for automated damage detection from changes in strain energy mode shapes[J]. Nondestructive Testing and Evaluation,2002,18(1):1-20.
    [180]Ren W X, De Roeck G. Structural damage identification using modal data. Ⅱ:test verification[J]. ASCE Journal of Structural Engineering,2002,128(1):96-104.
    [181]任伟新,陈华斌.基于响应面的桥梁有限元模型修正[J].土木工程学报,2008,41(12):73-78.
    [182]Sankararaman S, Mahadevan S. Bayesian methodology for diagnosis uncertainty quantification and health monitoring[J]. Structural Control and Health Monitoring,2013, 20(1):88-106.
    [183]An Y H, Ou J P. Experimental and numerical studies on model updating method of damage severity identification utilizing four cost functions[J]. Structural Control and Health Monitoring,2013,20(1):107-120.
    [184]Beck J L, Katafygiotis L S. Probabi listic system identification and health monitoring of structures, Proceedings of the 10th World Conference on Earthquake Engineering[C]. Boca Raton:CRC Press,1992.
    [185]Housner G W, Bergman L A, Caughey T K, Chassiakos A G, Claus R O, Masri S F, Skelton R E, Soong T T, Spencer Jr B F, Yao J T P. Structural control:past, present, and future[J].ASCE Journal of Engineering Mechanics,1997,123(9):897-971.
    [186]李杰.地震循环载荷下钢结构梁柱焊接节点耗能与损伤行为的研究[D].天津:天津大学,2002.
    [187]胡汉舟.叶梅新.桥梁事故及经验教训[J].桥梁建设,2002,3:71-75.
    [188]Rytter A. Vibration based inspection of civil engineering structures[D].Denmark: University of Aalborg,1993.
    [189]安永辉,欧进萍.大跨度钢桁桥模型的精细化损伤定位模拟和试验研究[J].计算力学学报,2011,28(5),730-736.
    [190]安永辉,欧进萍.大跨度钢桁桥健康监测的Benchmark模型研究.第十九届全国桥梁学术会议论文集[C].北京:人民交通出版社,2010:1284-1291.
    [191]James G H, Carne T G, Lauffer J P. The natural excitation technique (NExT) for modal parameter extraction from operating structures[J]. Journal of Analytical and Expertimental Modal Analysis,1995,10(4):260-277.
    [192]Juang J N, Pappa R S. An eigensystem realization algorithm for modal parameter identification and model reduction [J]. Journal of Guidance, Control, and Dynamics,1985, 8(5):620-627.
    [193]Nagayama T, Spencer Jr B F, Rice J A. Autonomous decentralized structural health monitoring using smart sensors[J]. Structural Control and Health Monitoring, 2009,16(7-8),842-859.
    [194]Ni Y Q, Zhou H F, Chan K C, Ko J M. Modal Flexibility analysis of cable-stayed Ting Kau Bridge for damage identification[J]. Computer-Aided Civil and Infrastructure Engineering,2008,23(3):223-236.
    [195]Gao Y, Spencer Jr B F. Damage localization under ambient vibration using changes in flexibility [J]. Earthquake Engineering and Earthquake Vibration,2002,1(1):136-144.
    [196]Yan A M, Golinval J C. Structural damage localization by combining flexibility and stiffness methods[J]. Engineering Structures,2005,27(12):1752-1761.
    [197]段忠东,闫桂荣,欧进萍,Spencer Jr B F.结构比例柔度矩阵[J].哈尔滨工业大学学报,2006,38(8)1236-1238.
    [198]Duan Z D, Yan G R, Ou J P, Spencer Jr B F. Damage detection in ambient vibration using proportional flexibility matrix with incomplete measured DOFs[J]. Structural Control and Health Monitoring,2007,14(2):186-196.
    [199]杨海峰,韩晖,吴子燕.基于MIGA的结构模型修正及其应用[J].振动、测试与诊断,2012,32(2)261-266.
    [200]郑飞,许金余,颜祥程.利用单元模态应变能法的地下框架结构损伤诊断[J].振动、测试与诊断,2010,30(6):642-645.
    [201]王正盛.特征值反问题的结构探伤方法[J].振动、测试与诊断,2010,30(4):446-450.
    [202]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2001:129-131.
    [203]Wang J L, Qiao P Z. Improved damage detection for beam-type structures using a uniform load surface[J]. Structural Health Monitoring,2007,6(2):99-110.
    [204]Law S S, Zhang K, Duan Z D. Structural damage detection from coupling forces between substructures under support excitation[J]. Engineering Structures,2010, 32(8):2221-2228.
    [205]Lin Y Q, Ren W X, Fang S E. Structural damage detection based on stochastic subspace identification and statistical pattern recognition:Ⅱ. Experimental validation under varying temperature[J]. Smart Matererials and Structures,2011,20(11),115010.
    [206]Farrar C R, Jauregui D A. Comparative study of damage identification algorithms applied to a bridge[J]. Smart Materials and Structures,1998,7(5):704-719.
    [207]Shi Z Y, Law S S, Zhang L M. Structural damage detection from elemental modal strain energy change[J]. Journal of Engineering Mechanics,2000,126(12):1216-1223.
    [208]Xu Z D, Wu Z S. Energy damage detection strategy based on acceleration responses for long-span bridge structures[J]. Engineering Structures,2007,29(4):609-617.
    [209]Sharifi A, Banan M R. Energy index method:Technique for identification of structural damages[J].ASCE Journal of Structural Engineering,2008,134(6):1061-1064.
    [210]Xu Z D, Liu M, Wu Z S, Zeng X. Energy damage detection strategy based on strain responses for long-span bridge structures[J]. ASCE Journal of Bridge Engineering, 2011,16(5):644-652.
    [211]Reddy D M, Swarnamani S. Application of the FRF curvature energy damage detection method to plate like structures[J]. World Journal of Modelling and Simulation,2012,8(2):147-153.
    [212]Joo D J. Damage Detection and system identification using a wavelet energy based approach[D]. NewYork:Columbia University,2012.
    [213]An Y H, Ou J P. Experimental and numerical studies on damage localization of simply supported beams based on curvature difference probability method of waveform fractal dimension[J]. Journal of Intelligent Material Systems and Structures,2012,23 (4): 415-426.
    [214]An Y H, Li B B, Ou J P. An algorithm for damage localization in steel truss structures: numerical simulation and experimental validation[J]. Journal of Intelligent Material Systems and Structures,2013,24(14):1683-1698.
    [215]Jozefaciuk G, Matyka-Sarzynska D. Effect of acid treatment and alkali treatment on nanopore properties of selected minerals[J]. Clays and Clay Minerals,2006, 54(2):220-229.
    [216]Higuchi T. Approach to an irregular time series on the basis of the fractal theory [J]. Physica D:Nonlinear Phenomena,1988,31(2):277-283.
    [217]Katz M J. Fractals and the analysis of waveforms[J]. Computers in Biology and Medicine,1988,18(3):145-156.
    [218]Paramanathan P, Uthayakumar R. An algorithm for computing the fractal dimension of waveforms[J].Applied Mathematics and Computation,2008,195(2):598-603.
    [219]Craig R R, Kurdila A J. Fundamentals of structural dynamics[M].Hoboken:John Wiley and Sons, Inc. Second Edition,2006.
    [220]Casas J R, Cruz P J S. Fiber optic sensors for bridge monitoring[J]. ASCE Journal of Bridge Engineering,2003,8(6):362-373.
    [221]Tennyson R C, Mufti A A, Rizkalla S, Tadros G, Benmokrane B. Structural health monitoring of innovative bridges in Canada with fiber optic sensors [J]. Smart Materials and Structures,2001,10(3):560-573.
    [222]Moyo P, Brown John J M W, Suresh R, Tjin S C. Development of fiber Bragg grating sensors for monitoring civil infrastructure [J]. Engineering Structures,2005,27(12):1828-1834.
    [223]Pincus S M. Approximate entropy as a measure of system complexity [J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(6):2297-2301.
    [224]Pincus S M, Gladstone I M, Ehrenkranz R A. A regularity statistic for medical data analysis[J]. Journal of Clinical Monitoring,1991,7(4):335-345.
    [225]Lin L, Chu F L. Approximate entropy as acoustic emission feature parametric data for crack detection[J]. Nondestructive Testing and Evaluation,2011,26(2):119-128.
    [226]Cavanaugh J T, Mercer V S, Stergiou N. Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults:a methodological report[J].Journal of Neuroengineering and Rehabilitation,2007,4:42.
    [227]Zhang T L, Ding Y S, Chou K C. Prediction protein structural classes with pseudo-amino acid composition:Approximate entropy and hydrophobicity pattern[J]. Journal of Theoretical Biology,2008,250(1):186-193.
    [228]胡红英,马孝江.局域波近似熵及其在机械故障诊断中的应用[J].振动与冲击,2006,25(4):38-45.
    [229]Yan R Q, Gao R X. Approximate Entropy as a diagnostic tool for machine health monitoring[J]. Mechanical Systems and Signal Processing,2007,21(2):824-839.
    [230]符玲,何正友,麦瑞坤,钱清泉.近似熵算法在电力系统故障信号分析中的应用[J].中国电机工程学报,2008,28(28):68-73.
    [231]An Y H, Ou J P. Structural damage localization for a frame structure from changes in curvature of approximate entropy feature vectors[J].Nondestructive Testing and Evaluation. DOI:10.1080/10589759.2013.858716.
    [232]Hornero R, Aboy M, Abasolo D, McNames J, Wakeland W, Goldstein B. Complex analysis of intracranial hypertension using approximate entropy[J]. Critical Care Medicine, 2006,34(1):87-95.
    [233]Pincus S M, Huang W M. Approximate entropy:statistical properties and applications [J]. Communications in Statistics-Theory and Methods,1992,21(11):3061-3077.
    [234]Pincus S M, Cummins T R, Haddad G G. Heart rate control in normal and aborted SIDS infants[J].The American journal of physiology,1993,264 (3):R638-R646.
    [235]Wolf A, Swift J B, Swinney H L, Vastano J A. Determining lyapunov exponents from a time-series[J]. Physica D:Nonlinear Phenomena,1985,16(3):285-317.
    [236]Pincus S M. Assessing serial irregularity and its implications for health[J]. Annals New York Academy of Sciences,2001,954(1):245-267.
    [237]An Y H, Ou J P. A signal energy change-based damage localization approach for beam structures[J]. Measurement, Available online 16 November 2013, http://dx. doi. org/10.1016/j. measurement.2013.11.009.
    [238]Qiao Y F. GIBBS-APPELL'S equations of variable mass nonl inear nonholonomic mechanical systems[J]. Applied Mathematics and Mechanics,1990,11 (10):973-983.
    [239]Vujanovic B D, Atanackovic T M. An Introduction to modern variational techniques in mechanics and engineering[M]. Boston:Birkhauser Boston,2004:45-46.
    [240]Lewis A D. The geometry of the Gibbs-Appell equations and Gauss's principle of least constraint[J].Reports on Mathematical Physics,1996,38(1):11-28.
    [241]Cue A I. Vibration-based techniques for damage detection and health monitoring of mechanical systems[D]. Columbia:University of South Carolina,2002.
    [242]Veeer P, Kreidl M, Smid R. Condition indicators for gearbox condition monitoring systems[J].Acta Polytechnica,2005,45(6):35-43.
    [243]Radzienski M, Dolinski L, Krawczuk M,Zak A, Ostachowicz W. Application of RMS for damage detection by guided elastic waves. Journal of Physics:Conference Series[J]. 2011,305(1),012085.
    [244]陈晓强,朱宏平,王丹生,閤东东.基于动能密度的结构损伤识别[J].振动与冲击,2009,28(8):35-41.
    [245]Hobson E W. John Napier and the invention of logarithms,1614 [M].Cambridge:The University Press,1914.
    [246]Engels F. Dialectics of nature[M]. First Published in Russian and German in the USSR (1925), except for Part Played by Labour (1896) and Natural Science and the Spirit World (1898).
    [247]Ricciardi L M. Lectures in applied mathematics and informatics[M]. Manchester: Manchester University Press,1990.
    [248]Richter C F. An instrumental earthquake magnitude scale[J]. Bulletin of the Seismological Society of America,1935,25(1):1-31.
    [249]An Y H, Ou J P. Numerical studies on a novel damage localization feature of cantilever beams using standard deviation and curvature method. Proceedings of SPIE 8348, Health Monitoring of Structural and Biological Systems[C]. San Diego, California,2012.
    [250]Schot S H. Jerk:The time rate of change of acceleration[J]. American Journal of Physics,1978,46(11):1090-1094.
    [251]Sandin T R. The jerk[J]. The Physics Teacher,1990,28(1):36-40.
    [252]高欣,李冬生,邓年春,欧进萍.拱桥吊杆荷载效应光纤光栅监测与安全评定[J].大连理工大学学报,2006,46(S):137-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700