用户名: 密码: 验证码:
考虑桩—土相对位移的桩基沉降计算及桩基时效性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基是一种常用的基础形式,因具有高承载力、可以有效控制沉降和不均匀沉降而得到广泛使用,其沉降计算是一个非常重要的研究课题。桩基的沉降计算因涉及到桩、土、承台的相互作用和土体力学行为的非线性而十分复杂,以往的计算方法多假定桩侧摩阻力与桩端力互不影响。随着跨海大桥等大型工程的兴建和高层建筑的迅猛增多,超长桩和长短组合桩基在工程上的应用越来越多,但与之相应的理论研究远远落后于工程实践,桩基工程也面临新的研究课题。本文对竖向荷载作用下,桩基的沉降计算开展了解析与半解析研究,主要工作和创新如下:
     (1)提出了一种新的桩侧摩阻力与桩-土相对位移的指数函数关系,并用于描述桩端力与桩端沉降的关系。
     (2)考虑桩-土相对位移与桩-土接触面上力学行为的非线性,推导了均质土层中由桩端微小位移引起基桩沉降的计算公式。逐步增大桩端位移并按(1)中提出的函数关系计算桩侧土体和桩端土的刚度变化,并进一步应用于成层土中单桩的沉降计算。
     (3)考虑桩身竖向压缩变形,建议了超长桩在竖向荷载作用下的沉降计算方法,分析了超长桩的承载特性。通过计算分析指出,超长桩的沉降计算需考虑桩身的非线性压缩变形。考虑桩-土接触面上力学行为的非线性,计算了由位移控制的有效桩长,并对影响有效桩长的因素进行了分析。
     (4)基于ABAQUS有限元软件,分析不同桩长的相互作用,对比了不同桩间距和桩长差对受荷桩与非受荷桩沉降的影响。基于Wong和Poulos建议的计算不同桩长相互作用系数的修正方法,修正了桩-桩相互作用,应用Mindlin位移解计算得到长短桩桩端的相互作用,并应用于长短组合桩基的沉降计算。本文计算结果与ABAQUS计算结果吻合较好。
     (5)考虑桩基的承载力随时间的变化,结合已有的研究成果和实测试验资料提出了桩基承载力随时间的计算方法。
     (6)提出了长期荷载作用下桩基的沉降计算公式,对其中的影响参数进行分析,并应用已有的实测研究数据证明了本方法的合理性。
     (7)结合某实际工程,考虑桩基承载力的时间效应,应用本文建议的长短组合桩基的沉降计算方法对该工程进行计算分析。
     最后,对本文工作进行了总结,并建议了进一步的研究方向。
Pile foundations are usually used in practice, because of its high bearing capacity and its ability to control the settlement and reduce non uniform settlement, so the research about the settlement calculation is very significant in pile foundation design. The settlement calculation about piles is very complicated due to the interactions among the piles, the caps and surrounding soils, and the nonlinear behavior of the soils. The existing methods to calculate the settlement of piles usually considered the pile shaft and the pile end, respectively. As the sea-crossing bridges and high-rise buildings increasing, the super-long piles and long-short compound piles are widely used in practice. But the corresponding researches are backward in actual project, and the researches about pile foundations are also faced with new topics. In this paper, the analytical and semi-analytical researches about piles are present. The main work and innovative achievements are as follows:
     1. The Boxluscal function is present to simulate the pile shaft resistance and the corresponding relative displacement. The relationship between the pile end resistance and pile end settlement is also described using the function.
     2. Considering the relative displacement and the nonlinear behavior between pile shaft and surrounding soils, the calculation method about pile settlement in homogeneous soils is obtained. As the pile end settlement increased, the rigidity of the surrounding soils and pile end soils varied using the Boxluscal functions, and then disseminated in layered soils.
     3. Considering the nonlinear deformation of pile shaft concrete, the approach to calculate the settlement of super-long piles is obtained, and the behavior of the super-long piles is analyzed. The results show that the settlement of super-long piles is mainly due to the nonlinear deformation of the pile shaft. The effective length of super-long piles is discussed considering the nonlinearity between the pile shaft and surrounding soils, and the factors that affect the effective length of super-long piles are also analyzed.
     4. Based on the FEM software ABAQUS, the interactions between piles with different lengths are analyzed, considering the different space between piles and the difference in pile length. Based on the methods to revise the interaction factors proposed by Wong and Poulos, the interaction factors between piles with different lengths are revised. The interaction factors between pile bases are calculated by the displacement solution obtained by Mindlin, and then used to calculate the settlement of the long-short compound piles. The results obtained by the proposed method are well consist with that from ABAQUS.
     5. Considering the change of pile bearing capacity with times and the existing researches, the method to calculate the pile bearing capacity changed with time is obtained.
     6. The settlement calculation of pile foundations with time is proposed in this thesis, and the factors that affect the calculation are analyzed. The rationality of the proposed method is validated by the present data.
     7. Considering the time-effect in pile bearing capacity, a practical engineering is analyzed by the proposed methods to calculate the settlements of long-short compound piles.
     At the last part of this thesis, the main work is summarized and the future researches are recommended.
引文
[1]Almeida V S, de Paiva J B. Static analysis of soil/pile interaction in layered soil by BEM/BEM coupling [J]. Advances in Engineering Software,2007,38:835-845.
    [2]Aristonous M T, Jacobo B, Paul C. Three-dimensional nonlinear study of piles [J]. Journal of geotechnical engineering,1991,117(3):429-447.
    [3]Armaleh S, Desai C S. Load deformation response of axially loaded piles [J]. Journal of the Geotechnical Engineering Division, ASCE,1987,113(12):1483-1499.
    [4]Asaoka A. Observational procedure of settlement prediction [J]. Soils and Foundations,1978, 18(4):34-41.
    [5]Axelsson G. Long-term set-up of driven piles in sand [D]. Stockholm, Royal Institute of Technology,2000.
    [6]Axelsson G. A conceptual model of pile set-up for driven piles in non-cohesive soils [C]. Proceedings of the International Deep Foundations Congress:Orlando,2002,64-79.
    [7]Banerjee. (1970). A contribution to the study of axially loaded pile foundations [D]. University of Southampton,1970.
    [8]Basile F. Non-linear analysis of pile groups [J]. Geotech. Engng,1999,137:105-115.
    [9]Boonsrang Niumpradit, Pisidhi Karasudhi. Load transfer from an elastic pile to a saturated porous elastic soil [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981,(5):115-138.
    [10]Bowman E T, Soga K. Mechanisms of setup of displacement piles in sand:laboratory creep tests [J]. Canadian Geotechnical Journal,2005,42(5):1391-1407.
    [11]Box G E P, Lucas H. Design of experiments in non-linear situations. Biometrika,1959,46:77-90.
    [12]Bullock P J. Pile friction freeze:a field and laboratory study [D]. University of Florida, Gainesville, Fla.1999.
    [13]Bullock P J, Schmertmann J H, McVay M C, et al. Side Shear Setup. I:Test Piles Driven in Florida [J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(3):292-300.
    [14]Bullock P J, Schmertmann J H, McVay M C, et al. Side Shear Setup. II:Results From Florida Test Piles [J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(3):301-310.
    [15]Butterfield R, Banerjee P K. The elastic analysis of compressible piles and pile groups [J]. Geotechnique,1971,21 (1):43-60.
    [16]Caputo V, Viggiani C. Pile foundation analysis:a simple approach to nonlinearity effects [J]. Rivista Italiana di Geotecnica,1984,18(2):32-51.
    [17]Castelli F, Maugeri M. Simplified nonlinear analysis for settlement prediction of pile groups [J]. Journal of geotechnical and geoenvironmental engineering,2002,128(1):76-84.
    [18]Castelli F, Motta E. Settlement prevision of piles under vertical load [J]. Geotechnical Engineering, 2003,156:183-191.
    [19]Castelli F, Motta E. An Analytical expression for the nonlinear evaluation of the soil-pile interaction [J]. The art of foundation engineering practice,2010,179-189.
    [20]Chen S L, Song C Y, Chen L Z. Two-pile interaction factor revisited [J]. Can. Geotech,2011, 48:754-766.
    [21]Chow F C, Jardine J, Brucy F, et al. Effects of time on capacity of pipe piles in dense marine sand [J]. Journal of geotechnical and geoenvironmental engineering.1998:254-264.
    [22]Chow F C, Jardine J, Nauroy J F, et al. Time-related increases in the shaft capacities of driven piles in sand [J]. Geotechnique,1997,47(2):353-361.
    [23]Chow Y K. Analysis of vertically loaded pile groups [J]. International journal for numerical and analytical methods in geomechanics,1986,10(1):59-72.
    [24]Chow Y K. Three-dimensional analysis of pile groups [J]. Journal of geotechnical engineering, 1987,113(6):637-651.
    [25]Chow Y K, Thevendran V. Optimisation of pile groups. Computers and Geotechnics [J].1987, 4(1):43-58.
    [26]Chow Y K, Yong K Y, Shen W Y. Analysis of piled raft foundations using a variational approach [J]. The international journal of geomechanics,2001,1(2):129-147.
    [27]Clancy P, Randolph M F. Simple design tools for piled raft foundations [J]. Geotechnique,1996, 46(2):313-328.
    [28]Clough G W, Duncan J M. Finite element analysis of retaining wall behavior [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1971.97(SM12):1657-1673.
    [29]Coyle H M, Reese L C. Load transfer for axially loaded piles in clay [J]. J Soil Mech Found Div 1966,92(2):1-26.
    [30]Desai C S. Numerical design analysis for piles in sands [J]. Journal of geotechnical engineering division,1974,100(6):613-635.
    [31]Dung N T, Chung S G, Kim S R. Settlement of piled foundations using equivalent raft approach [J]. Geotechnical Engineering,2010,163:65-81.
    [32]D'Appolonia, Thurman A G. Computed movement of friction and end-bearing piles ambedded in uniform and stratified soils [C]. Proceeding of 6th international conference on soil mechanics and foundations engineering, montereal,1963.
    [33]Edil T B, Mochtar B. Creep response of model pile in clay [J]. J Geotech Engng,1988,114(11): 1245-1260.
    [34]Ellison R D, D'Appolonia E, Theirs G R. Load-deformation mechanism for bored piles [J]. Journal of the soil mechanics and foundations division, ASCE,1971,97(4):661-678.
    [35]Fleming W G K. A new method for single pile settlement prediction and analysis [J]. Geotechnique,1992,42(3):411-425.
    [36]Geddes J D. Stress in foundation soils due to vertical subsurface load [J]. Geotechnique,1966, 16:231-255.
    [37]Guo W D, Randolph M F. Vertically loaded piles in non-homogeneous media [J]. International journal for numerical and analytical methods in geomechanics,1997,21:507-532.
    [38]Guo W D, Randolph M F. An efficient approach for settlement prediction of pile groups [J]. Geotechnique 1999; 49(2):161-179.
    [39]Hain S J, Lee I K. The analysis of flexible raft-pile systems [J]. Geotechnique,1978,28(1):65-83.
    [40]Hewitt C M. Cyclic response of offshore pile groups [D]. School of Civil and Mining Engineering, The University of Sydney,1988.
    [41]Hognestad E. A study of combined bending and axial load in reinforced concrete members [J]. Bulletin Series No.399, Engineering Experiment Station, University of Illinois, Urbana, Ⅲ; 1951.
    [42]Hognestad E. A study of combined bending and axial load in reinforced concrete members [M]. Urbana:University of Illinois Engineering Experiment Station,1951, Bulletin Series, No.399.
    [43]Hognestad E, Hanson N W, Mchenry D. Concrete stress distribution in ultimate strength design [J]. ACI Structural Journal,1955,52(4):455-79.
    [44]Hong D C, Chow Y K, Yong K Y.A method for the analysis of large vertically loaded pile groups [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999, 23:243-262.
    [45]Horikoshi K, Randolph M F. A contribution to optimum design of piled rafts. Geotechnique 1998 48(3):301-317.
    [46]Jardine R J, Standing J R, Chow F C. Some observations of the effects of time on the capacity of piles driven in sand [J]. Geotechnique,2006,56(4):227-244.
    [47]Katzenbach R, Ramm H. Reuse of historical foundations[C]. Proceedings of the International Conference on Reuse of Foundations for Urban Sites, Watford.2006:395-403.
    [48]Kezdi A. Pile foundations. In Foundation engineering handbook [M]. Edited by H.F. Winterkorn and H.Y. Fang. Van Nostrand Reinhold Company, New York, Chap.1975.
    [49]Kraft L M, Ray R P, Kakaaki T. Theoretical t-z curves [J]. J Geotech Eng Div, ASCE 1981;107(11):1543-61.
    [50]Laefer D F, Manke J P. Building reuse assessment for sustainable urban reconstruction [R]. Journal of Construction Engineering and Management,2008,134(3):217-227.
    [51]Lee C Y. Pile group settlement analysis by hybrid layer approach [J]. Journal of geotechnical engineering,1993,119(6):984-997.
    [52]Lee C Y. Settlement of pile group-practical approach [J]. J Geotech Eng Div, ASCE,1993, 119(9):1449-61.
    [53]Lee K M, Xiao Z R. A simplified nonlinear approach for pile group settlement analysis in multilayered soils [J]. Canadian geotechnical journal 2001,38:1063-108.
    [54]Leung F Y. Foundation optimisation and its application to pile reuse [D]. England, University of Cambridge,2010.
    [55]Leung Y F, Klar A, Soga K. Theoretical study on pile length optimization of pile groups and piled rafts [J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(2):319-330.
    [56]Leung Y F, Soga K, Lehane B M, et al. Role of linear elasticity in pile group analysis and load test interpretation [J]. Journal of Geotechnical and Geoenvironmental Engineering 2010,136(12): 1686-1694.
    [57]Leung Y F, Soga K, Klar A. Multi-objective foundation optimization and its application to pile reuse [C]. Foundations and Ground Improvement,2011,75-84.
    [58]Liang F Y, Chen L Z, Han J. Integral equation method for analysis of piled rafts with dissimilar piles under vertical loading. Computers and Geotechnics 2009,36:419-426.
    [59]Long J H, Kerrigan J A, Wysockey, M H. Measured time effects for axial capacity of driven piling [R]. Transportation Research Record,1999,1663:8-15.
    [60]Luo Yang, Robert Liang. Incorporating set-up into reliability-based design of driven piles in clay [J]. Canadian Geotechnical Journal,2006,43:964-955.
    [61]Luo Yang, Robert Liang. Incorporating setup into load and resistance factor design of driven piles in sand [J]. Canadian Geotechnical Journal,2009,46:296-305.
    [62]Mandolini A, Viggiani C. Settlement of piled foundations [J]. Geotechnique,1997,47(4):791-816.
    [63]Meyerhof G G. Compaction of sands and bearing capacity of piles [J]. Journal of the Soil Mechanics and Foundations Division,1959,85, (6):1-29.
    [64]Meng L B, McNamara A M. Centrifuge model testing for pile foundation reuse [J]. International Journal of Physical Modelling in Geotechnics,2011,11 (4):166-177.
    [65]Mindlin R D. Force at a point in the interior of a semi-infinite solid. Physics 1936,7:195-202.
    [66]Mylonakis G, Gazetas G. Settlement and additional internal forces of grouped piles in layered soil [J]. Geotechnique,1998,48(1):55-72.
    [67]Ottaviani M. Three dimensional finite element analysis of vertically loaded pile groups [J]. Geotechnique,1975,25(2):159-174.
    [68]Parsons J D. Piling difficulties in New York area J]. Journal of the soil mechanics and foundations division, ASCE,1966,92(1):43-64.
    [69]Paul J, Bullock M, John H, et al. Sile shear setup.Ⅱ:Results from florida test piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2005,131:301-310.
    [70]Preim M J, March R, Hussein M. Bearing capacity of piles in soils with time dependent characteristics [C]. In Proceedings of the 3rd International Conference on Piling and Deep Foundations, London, UK,1989:363-370.
    [71]Poulos H G. Analysis of the settlement of pile groups [J]. Geotechnique 1968,18(4):449-471.
    [72]Poulos H G. Group factors for pile-deflection estimation [J]. Journal of the Geotechnical Engineering Division,1979,105(12):1489-1509.
    [73]Poulos H G and Randolph M.F. Pile group analysis:a study of two methods [J]. Journal of Geotechnical Engineering,1983,109(3):355-372.
    [74]Poulos H G. Simplified design procedure for piled raft foundations [J]. Deep foundations,2002, 116(1):441-458.
    [75]Poulos H G. Pile group settlement estimation-research to practice [C]. Foundation analysis and design, innovative methods, Geotechnical special,2006,153:1-22.
    [76]Randolph M F. Design method for pile group and piled raft [J]. Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi,1994, 5:61-82.
    [77]Randolph M F, Clancy P. Efficient design of piled rafts [C]. Proceedings of the Second International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Ghent,1993: 199-130.
    [78]Randolph M F, Guo W D. An efficient approach for settlement prediction of pile groups [J]. Geotechnique,1999,49(2):161-179.
    [79]Randolph M F, Wroth C P. Analysis of deformation of vertically loaded piles [J]. Geotech Eng Div, ASCE,1978,104(12):1465-88.
    [80]Randolph M F, Wroth C P. An analysis of the vertical deformation of piles groups [J]. Geotechnique,1979,29(4):423-439
    [81]Reese L C, Hudson W R, Vijayvergiya V N. An investigation of the interaction between bored piles and soil [C]. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City,1969.2211-2215.
    [82]Roberto Cairo, Enrico Conte, Giovanni Dente. Interaction Factors for the Analysis of Pile Groups in Layered Soils [J]. Journal of geotechnical and geoenvironmental engineering,2005,131(4): 525-528.
    [83]Roberto Cairo, Enrico Conte. Settlement analysis of pile groups in layered soils [J]. Canadian Geotechnical Journal,2006,43:788-801.
    [84]Samson L, Authier J. Change in pile capacity with time:case histories [J]. Canadian Geotechnical Journal,1986,23(2):174-180.
    [85]Seed H B, Reese L C. The action of soft clay along friction piles [J]. Transactions of the American Society of Civil Engineers,1957,122:731-754.
    [86]Sheng D C, Eigenbrod K D, Wriggers P. Finite element analysis of pile installation using large-slip frictional contact [J]. Computers and Geotechnics,2005,32(1):17-26.
    [87]Shen W Y, Chow Y K, Yong K Y. Variational solution for vertically loaded pile groups in an elastic half-space [J]. Geotechnique,1999,49(2):199-213.
    [88]Shen W Y, Chow Y K, Yong K Y. A variational approach for the analysis of pile group-pile cap interaction [J]. Geotechnique,2000,50(4):349-357.
    [89]Shen W Y, Chow Y K, Yong K Y. Practical method for settlement analysis of pile groups [J]. Journal of geotechnical and geoenvironmental engineering,2000,126(10):890-897.
    [90]Singh A, Mitchell J K. General stress strain time function for soils [J]. Journal of Soil Mechanics and Foundations Div, ASCE,1968,94(1):21-46.
    [91]Skov R, Denver H. Time dependence of bearing capacity of piles [C]. Proceedings of the 3rd International Conference on the Application of Stress-Wave Theory to Piles, Ottawa, 1988:879-888.
    [92]Ta L D, Small J C. Analysis of piled raft systems in layered soilS [J]. Internationalj ournalf or numericala nd analytical methods in geomechanics,1996,20:57-72.
    [93]Titi H H. The increase in shaft capacity with time for friction piles driven into saturated clay [D]. Louisiana:Louisiana State University,1997.
    [94]Trochanis A M, Bielak J, Christiano P. Three-dimensional nonlinear study of piles. Journal of Geotechnical Engineering, ASCE,1991,117(3):429-447.
    [95]Valliappan S, Tandjiria V, Khalili N. Design of raft-pile foundation using combined optimization and finite element approach. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23:1043-1065.
    [96]Wang Z, Xie X, Wang J. A new nonlinear method for vertical settlement prediction of a single pile and pile groups in layered soils [J]. Computers and Geotechnics,2012,45:118-126.
    [97]Wang J J. Behaviour of an over-length pile in layered soils [J]. Geotechnical Engineering,2009, 163(5):257-266.
    [98]Wong S C, Poulos H G Approximate pile-to-pile interaction factors between two dissimilar piles [J]. Computers and Geotechinics,2005,32:613-618.
    [99]Wang S T, Reese L C. Predictions of response of piles to axial loading [C]. In Predicted and observed axial behavior of piles, Geotechnical Special Publication, ASCE,1989:173-187.
    [100]Xu K J, Poulos H G General elastic analysis of piles and pile groups [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2000,24:1109-1138.
    [101]Yang N. Relaxation of piles in sand and inorganic silt [J]. Journal of the soil mechanics and foundations division, ASCE,1970,96(2):395-409.
    [102]Yamashita K, Tomono M, Kakurai M. A method for estimating immediate settlement of piles and pile groups [J]. Soils and Foundations,1987,27(1):61-76.
    [103]York D L, Brusey W G, Clemente F M. et al. Set-up and relaxation in glacial sand [J]. Journal of Geotechnical Engineering,1994,120(9):1498-1513.
    [104]Zhang Ga, Zhang Jianmin. A large apparatus for monotonic and cyclic soil-structure interface test [J]. Geotechnical testing journal,2006,29(5):1-8.
    [105]Zhang Q Q, Zhang Z M, He J Y. A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils [J]. Computers and Geotechnics,2010,37:969-976.
    [106]Zhang Q, Zhang Z. Study on interaction between dissimilar piles in layered soils [J]. International journal for numerical and analytical methods in geomechanics,2011,35:67-81.
    [107]艾智勇,成志勇.层状地基中轴向受荷单桩的边界元法分析[J].岩土力学,2009,30(5):1522-1526.
    [108]曹明,陈龙珠,陈胜立等.长短桩桩筏基础相互作用系数解法及分析[J].地下空间与工程学报,2007,3(2):382-388.
    [109]陈传水,甘正常.超长大直径钻孔灌注桩垂直承载力的试验研究[J].建筑结构,2001,31(5):67-68.
    [110]陈兰云,陈云敏,张卫民.饱和软土中钻孔灌注桩竖向承载力时效分析[J].岩土力学,2006,27(3):471-474.
    [111]陈龙珠,梁国钱,朱金颖,等.桩轴向荷载-沉降的一种解析方法[J].岩土工程学报,1994,16(6):30-37.
    [112]陈龙珠,梁发云,黄大治,王国才.高层建筑应用长-短桩复合地基的现场试验研究[J].岩土工程学报,2004,26(2):167-171.
    [113]陈明中,龚晓南,严平.单桩沉降的一种解析解法[J].水利学报,2001,8:70-74.
    [114]陈仁朋.软弱地基中桩筏基础的工作性状及分析设计方法研究[D].杭州:浙江大学,2001.
    [115]程泽海,陈云敏,夏建中.维持荷载作用下单桩沉降的时间效应[J].岩土力学,2006,27(9):1571-1574.
    [116]程泽海.群桩基础在饱和软土地基中的工作性状研究[D].杭州:浙江大学,2003.
    [117]池跃君,敖立新,顾晓鲁.超长桩荷载传递机理的计算分析[J].特种结构,2000,17(4):12-15.
    [118]池跃君,宋二祥,陈肇元.刚性桩复合地基竖向承载特性分析[J].工程力学,2003,20(4):9-14.
    [119]褚航.复合桩基共同作用分析[D].杭州:浙江大学,2003.
    [120]戴国亮,余奇异,龚维明.基于Winkler模型的有效桩长研究[J].岩土力学,2012,33(2):162-166.
    [121]邓友生,龚维明,袁爱民.超长大直径群桩沉降计算方法探讨[J].铁道学报,2007,29(4):87-90.
    [122]董光辉,杨敏,卢俊义.基于静荷载试验的群桩沉降简化分析[J].水利学报,2009,40(8):983-988.
    [123]方鹏飞.超长桩承载特性研究[D].杭州:浙江大学,2003.
    [124]费勤发,张问清,赵锡宏.桩土共同作用的位移影响系数的计算[J].上海力学,1983,4:10-26.
    [125]冯世进,柯瀚,陈云敏等.黄土地基中超长钻孔灌注桩承载性状试验研究[J].岩土工程学报,2004,26(1):110-114.
    [126]冯忠居,谢永利,李哲.大直径超长钻孔灌注桩承载性状[J].交通运输工程学报,2005,5(1):24-27.
    [127]付佰勇,黄茂松,梁发云.层状弹性半空间中群桩竖向沉降简化分析[J].岩土工程学报,2010,32(2):198-204.
    [128]郭院成,李明宇,李永辉.刚性长短桩复合地基桩土应力比试验[J].哈尔滨工业大学学报,2009,41(8):199-201.
    [129]高盟,高广运,杨成斌.层状地基群桩沉降计算的剪切位移解析算法[J].岩土力学,2010,31(4):1072-1077.
    [130]宫全美.基于Mindlin位移解的群桩沉降计算[J].地下空间,2001,21(3):167-172.
    [131]顾培英,王德平,吕惠明.大直径灌注桩桩侧摩阻力试验研究[J].公路交通科技,2004,21(1):62-66.
    [132]何剑.后注浆钻孔灌注桩承载性状试验研究[J].岩土工程学报,2002,24(6):743-746.
    [133]何立明.桩-土-承台非线性共同作用模型试验与数值分析[D].南京:南京工业大学,2004.
    [134]何思明,卢国胜,廖祖伟.群桩沉降计算理论分析[J].岩土力学,2003,24(3):435-441.
    [135]洪鑫,雷国辉,施建勇.双线性荷载传递函数的单桩荷载沉降关系统一解[J].岩土工程学报,2004,26(3):428-431.
    [136]胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究[J].岩土工程学报,2001,23(4):431-435.
    [137]胡立明.第四系土层大直径超长桩的承载特性[J].华东地质学院学报,2000,23(1):35-38.
    [138]胡育佳.桩基非线性静动力学特性研究[D].上海:上海大学,2008.
    [139]黄生根,龚维明.超长大直径桩压浆后的承载性能研究[J].岩土工程学报,2006,28(1):113-117.
    [140]建筑桩基技术规范JGJ 94-2008[S].北京,中国建筑工业出版社,2008.
    [141]金波.层状地基中的单桩沉降分析[J].岩土工程学报,1997,5:35-42.
    [142]蒋建平,章杨松,高广运.基于现场试验的超长桩端阻力承载性状研究[J].工程力学,2010,27(2):149-160.
    [143]赖琼华.桩基沉降实用计算方法[J].岩石力学与工程学报,2004,23(6):1015-1019.
    [144]李素华,周健,殷建华,徐天平.桩-土承载性能剪切流变分析新理论[J].岩石力学与工程学报,2008,27(1):3186-3190.
    [145]李雄,刘金砺.饱和软土中预制桩承载力时效的研究[J].岩土工程学报,1992,14(4):9-16.
    [146]李永辉,吴江斌.基于载荷试验的大直径超长桩承载特性分析[J].地下空间与工程学报,2011,7(5):895-902.
    [147]李早,黄茂松,戴兵.层状地基中刚性承台群桩竖向力学分析[J].同济大学学报,2007,35(4):446-450.
    [148]李正仪,罗群.群桩沉降的非线性简化分析[J].广东土木与建筑,2003,6:3-4.
    [149]梁明德,刘岳.刚性群桩的非线性分析[J].岩土工程学报,1995,17(6):23-31.
    [150]刘冬林,郑刚,刘金砺,李金秀.基于减小筏板差异沉降的刚性桩复合地基试验研究[J].岩土工程学报,2007,29(4):517-523.
    [151]刘金砺.竖向荷载下的群桩效应和群桩基础概念设计若干问题[J].土木工程学报,2004,37(1):78-83.
    [152]刘涛涛,张洁,楼国长.基于Mindlin解的柔性桩临界桩长计算[J].低温建筑技术,2005,1:79-80.
    [153]吕一平.基于Mindlin应力解的桩筏基础设计分析方法研究[D].杭州:浙江大学,2003.
    [154]马晔.超长钻孔灌注桩桩基承载性能的研究[D].武汉:武汉理工大学,2008.
    [155]戚科骏,宰金珉,王旭东等.基于相互作用系数探讨的群桩简化分析[J].岩土力学,2010,31(5):1609-1614.
    [156]钱晓丽,竖向荷载下变刚度群桩变形性状研究[J].岩土工程学报,2008,30(10):1454-459.
    [157]秋仁东.竖向荷载下桩身压缩和桩基沉降变形研究[D].北京:中国建筑科学研究院,2011.
    [158]上海现代建筑设计(集团)有限公司.DGJ08-11-1999地基基础设计规范[S].上海:上海市工程建设标准化办公室,1999.
    [159]舒翔,黄雨.基桩有效桩长的确定方法[J].工业建筑,2001,31(1):72-74.
    [160]唐崇钊,唐太平.江阴大桥特长钻孔桩试验与承载特征[J].水利水运科学研究,1996,2:158-163.
    [161]王传文,梅国雄,宋林辉等.广义荷载传递函数及其应用[J].岩土力学,2007,28(6):1217-1220.
    [162]王东栋,孙钧.基于广义剪切位移法的桥梁桩基长期沉降分析[J].岩土工程学报,2011,33:(2):47-53.
    [163]王建.硬土软岩地层中长大直径桩基竖向承载力研究[D].长沙:中南大学,2008.
    [164]王年香,章为民.苏通长江公路大桥索塔超深基础受力变形专题研究之一.大型超深基础离心模型试验研究报告[R].南京:南京水利科学研究院,2002.
    [165]王涛,高文生,刘金砺.桩基变刚度调平设计的实施方法研究[J].岩土工程学报,2010,32(4):531-537.
    [166]王涛,刘金砺.桩-土-桩相互作用影响的试验研究[J].岩土工程学报,2008,30,(1):100-105.
    [167]王陶,马晔.超长钻孔桩竖向承载特性的试验研究[J].岩土力学,2005,26(7):1053-1057.
    [168]王幼青,张克绪,朱腾明.桩-承台-地基土相互作用试验研究[J].哈尔滨建筑大学学报,1998,31(2):31-37.
    [169]温晓贵.复合地基三维性状数值分析[D].杭州:浙江大学,1999.
    [170]肖宏彬.竖向荷载作用下大直径桩的荷载传递理论与应用研究[D].长沙:中南大学,2005.
    (171]谢新宇,杨相如,施尚伟,朱向荣.刚柔性长短桩复合地基性状分析[J].岩土力学,2007,28(5):877-882.
    [172]辛公锋.大直径超长桩侧阻软化试验与理论研究[D].杭州:浙江大学,2006.
    [173]辛公锋,张忠苗,夏唐代,等.高荷载水平下超长桩承载性状试验研究[J].岩石力学与工程学报,2005,24(13):2397-2402.
    [174]徐洪钟,施斌,李雪红.全过程沉降量预测的Logistic生长模型及其适用性研究[J].岩土力学,2005,26(3):387-391.
    [175]闫静雅,张子新,黄宏伟,等.大直径超长钻孔灌注桩荷载传递分析[J].同济大学学报,2007,35(5):592-596.
    [176]杨桦.长短桩组合桩基础工作性状及工程设计问题研究[D].上海:同济大学,2006.
    [177]杨敏,王树娟,王伯钧,等.使用Geddes应力系数公式求解单桩沉降[J].同济大学大学报,1997,25(4):379-385.
    [178]杨敏,杨桦,王伟.长短桩组合桩基础设计思想及其变形特性分析[J].土木工程学报,2005,38(12):103-108.
    [179]杨敏,赵锡宏.分层土中的单桩分析法[J].同济大学学报,1992,20(4):421-428.
    [180]阳吉宝,赵锡宏.软土中桩长对桩承载力的影响[J].港口工程,1995,6:17-19.
    [181]阳吉宝.确定超长桩有效长度方法[J].建筑科学,1996,1:37-38.
    [182]阳吉宝,钟正雄.超长桩的荷载传递机理[J].岩土工程学报,1998,20(6):108-112.
    [183]曾庆有,周健,屈俊童.考虑应力应变时间效应的桩基长期沉降计算方法[J].岩土力学,2005,26(8):1283-1287.
    [184]曾友金,章为民,王年香,等.超长单桩轴向刚度的计算及其影响因素[J].水利水运工程学报,2003,9(3):32-37.
    [185]曾友金.超长单桩荷载传递机理及其桩筏基础共同作用研究[D].南京:南京水利科学研究院,2002.
    [186]郑刚,任彦华.桩承载力时效对桩土相互作用及沉降的影响分析[J].岩土力学,2003,24(1):65-74.
    [187]张保良,姜洪伟,赵锡宏.层状土中群桩沉降分析[J].1996,17(1):69-75.
    [188]张嘎,张建民.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报,2004,26(1):21-25.
    [189]张继红,顾国荣,陈晖.上海地区预制桩承载力时间效应的统计分析与研究[J].土木工程学报,2002,35(4):98-102.
    [190]张乾青,李连祥,李术才等.成层土中单桩受力性状简化算法[J].岩石力学与工程学报,2005,31:3390-3394.
    [191]张世民,魏新江,秦建堂.长短桩在深厚软土中的应用研究[J].岩石力学与工程学报,2005,24(2):5427-432.
    [192]张忠苗,张乾青.后注浆抗压桩受力性状试验研究[J].岩石力学与工程学报,2009,28(3):475-82.
    [193]张忠苗.软土地基超长嵌岩桩的受力性状[J].岩土工程学报,2001,23(5):552-556.
    [194]赵春彦,郑国勇,杨龙才.软土中桩基工后长期沉降的预测模型[J].中南大学学报,2011,42(2):470-475.
    [195]赵明华,张玲,杨明辉.基于剪切位移法的长短桩复合地基沉降计算[J].岩土工程学报,2005,27(9):993-998.
    [196]赵明华,何俊翘,曹文贵等.基桩竖向荷载传递模型及承载力研究[J].湖南大学学报,2005,32(1):37-42.
    [197]赵明华,张玲,李立新等.长短桩复合地基沉降计算方法研究[J].沈阳建筑大学学报,2005,21(4):310-314.
    [198]赵明华,邹丹,邹新军.群桩沉降计算的荷载传递法[J].工程力学,2006,23(7):119-123.
    [199]赵锡宏,董建国,袁聚云.桩基减少桩数与沉降问题的研究[J].土木工程学报,2000,33(3):71-74.
    [200]周罡,林荫.用Mindlin应力解求单桩沉降的方法[J].地下空间,2001,21(3):173-177.
    [201]朱向荣,方鹏飞,黄洪勉.深厚软基超长桩工程性状试验研究[J].岩土工程学报,2003,25(1):76-79.
    [202]朱小军,杨敏,杨桦,李锋利.长短桩组合桩基础模型试验及承载性能分析[J].岩土工程学报,2007,29(4):580-586.
    [203]朱小军.长短桩组合桩基础模型试验及承载性能研究[D].上海:同济大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700