用户名: 密码: 验证码:
弦支穹顶的弹塑性抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弦支穹顶是一种性能优越的新型大跨度空间结构体系,本文对此类结构在中震和大震作用下的弹塑性响应特点及其抗震设计问题进行了研究,主要工作包括以下四个方面:
     (1)对人工地震波的强度指标进行了研究。发现对于由同一反应谱生成的不同人工波,当按单一强度指标进行调整后会使得结构地震响应出现不可忽视的差异,而且这种差异对于结构自振周期或人工波持时长短较为敏感。本文提出了一种基于反应谱指标的改进强度指标。采用该改进指标对人工波进行调幅,发现在不同地震波下的结构响应差异明显减小,且差异程度也不因结构自振周期的不同而有较大的波动。此外,结构的地震响应也不会因为人工波持时取值的长短而产生较大差异。
     (2)对弦支穹顶弹塑性分析的精细化建模问题开展了研究。考察了圆钢管杆件单元划分的有效性,发现当杆件划分为4个三节点Timshenko梁单元且端部与中部单元长度比值为1:4时,可以有效地模拟杆件在复杂压弯状态下的弹塑性屈曲反应。分析了杆件初弯曲对弦支穹顶弹塑性响应及极限承载能力的影响,发现当地震动强度较大时,结构的位移响应会随着杆件初弯曲的形状、方向和幅值的变化产生较大差异。此外,还提出了一种能较准确定位结构动力失稳临界点的位移响应差法。
     (3)借助24个算例,系统地分析了初始预张力、下部结构刚度和对称性、支座连接条件、网壳矢跨比以及杆件截面验算标准等因素对中震和大震下弦支穹顶结构的动力响应特性的影响。研究表明,中震和大震作用下上部网壳的塑性杆件主要出现在跨中而不在临支座区域;下部结构的对称性和网壳矢跨比对结构的弹塑性响应最为敏感。提出了
     个极限承载力剩余率指标用以定量评价弦支穹顶的震后破坏程度,并发现7度大震作用下结构的极限承载力剩余率依然很高,但是8度时明显降低。进一步根据24个算例的结构极限承载力剩余率分析,建议7度时弦支穹顶的杆件截面可采用小震弹性设计,8度时则采用中震弹性设计。
     (4)对中震和大震作用后弦支穹顶结构的索力变化进行了考察。研究表明,中震作用后,按7度小震弹性设计的结构基本未出现索力变化,8度小震弹性设计的结构索力变化基本在10%以内。大震作用后,按7度小震弹性设计时结构索力变化率基本在10%以内,而8度小震弹性设计时的结构索力变化率多数在20%以上,有些还出现了完全损失的情况。当采用中震弹性设计后,弦支穹顶的索力变化率会明显减小,多数模型在20%以内。布索方式、下部结构的对称性以及网壳的矢跨比是影响结构索力损失的主要因素。建议以索力损失率作为弦支穹顶结构抗震性能化设计的参考指标。
Suspendome is a new type large-span space structure with superior capability. In this paper, characteristics of the elasto-plastic response under the intensity of fortification and rare earthquake as well as problems of seismic design of this kind of structures are studied. Specifically, the main work includes the following four aspects:
     (1) Intensity measure of artificial seismic waves are studied. The seismic response caused by different artificial seismic waves, which were generated by the same response spectrum and modulated according to a single intensity measure(IM), varies distinctly. Besides, the variations of seismic response are sensitive to the natural vibration period of structures and durations of artificial seismic waves. An improved response spectrum IM is put forward. When the amplitudes of artificial seismic waves were modulated by the improved IM, differences of structural seismic responses caused by different artificial seismic waves are reduced obviously, and the level varies lightly with the natural vibration period of structures In addition, the variations of structural seismic responses under artificial seismic waves with different durations reduced significantly by using the improved IM.
     (2) Efficiency of segmentation for round steel bar beam element is studied. It shows that, when the rod is divided into four three-node beam elements and the ratio of the length of end element to that of the central unit is1:4, response of elasto-plastic buckling under compression and bending can be efficiently simulated. The effect of member's initial curvature on buckling capacity and elasto-plastic seismic response is analyzed.In case of the larger intensity earthquake, the seismic response of the structure will vary greatly according to the shape, direction and peak value of initial curvature. In addition, displacement response's difference (DRD) method is put forward in order to find the critical point of dynamic instability.
     (3) By means of24suspendome models, effect of initial pretension of cable-bar system, rigidity and symmetry of substructure, connection condition of abutments, rise-span ratio and criteria of cross section checking on the structural elasto-plastic dynamic behaviors are analyzed. The results reveal that, for most of models, the members with residual plastic strains mainly located in the central of the roof under the intensity of fortification and rare earthquakes. The dynamic behaviors of suspendomes are more sensitive to the symmetry of substructure and the rise-span ratio of roof. A reference index, the ratio of residual ultimate bearing capacity, is put forward in order to evaluate the damage level of suspendomes. It reveals that the ratio of residual ultimate bearing capacity for the suspendome under7-degree rare earthquake is very high. However, it reduces much under8-degree rare earthquake. Furthermore, by the analysis of the ratio of residual ultimate bearing capacity of24suspendome models, it is suggested that the member's cross sections of the upper reticulated shell should be checked against frequent earthquake in7-degree district and the intensity of fortification earthquake in8-degree district.
     (4) Changes of cable force in suspendomes after the intensity of fortification and rare earthquakes are investigated. It shows that, after the intensity of fortification earthquakes, the cable force does not change in most of those models designed according to elastic behavior in7-degree frequent earthquake, and the changes of cable force in most of those models designed according to elastic behavior in8-degree frequent earthquake, are less than10%. After rare earthquakes, the changes of cable force in most of those models designed according to elastic behavior in7-degree frequent earthquake are less than10%, and in most of those models designed according to elastic behavior in8-degree frequent earthquake are more than20%and some cables may even be totally relaxed. When according to elastic behavior in7-degree the intensity of fortification earthquake, the changes of cable force reduce much. Cable layout, asymmetry of substructure and the rise-span ratio of upper dome are important influence factors to the loss of cable force. It is suggested that the ratio of cable force's loss can be regard as a reference index for performance-based seismic design of suspendomes.
引文
[1]董石麟,罗尧治,赵阳.新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
    [2]傅学怡,曹禾,张志宏,等.济南奥体中心体育馆整体结构分析[J].空间结构.2008(4):3-7.
    [3]张爱林,葛家琪,刘学春.2008奥运会羽毛球馆大跨度新型弦支穹顶结构体系的优化设计选定[J].建筑结构学报.2007(6):1-9.
    [4]丁洁民,孔丹丹,杨晖柱,等.安徽大学体育馆屋盖张弦网壳结构的试验研究与静力分析[J].建筑结构学报.2008(1):24-30.
    [5]冯远,夏循,王立维,等.常州体育馆会展中心结构设计[J].建筑结构.2010(9):35-40.
    [6]王泽强,张迎凯,付炎,等.重庆市渝北体育馆弦支穹顶结构预应力施工技术研究[J].空间结构.2012(3):60-67.
    [7]SEAOC Vision 2000 Committee. Performance-based seismic engineering of buildings [M]. Sacramento, California, USA, Structural Engineers Association of California,1995.
    [8]FEMA-273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings [S]. Federal Emergency Management Agency:Washington. DC,1997.
    [9]ATC40. Seismic Evaluation and Retrofit of Concrete Buildings [S]. Redwood City,1996.
    [10]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2010)[S].北京:中国建筑工业出版社,2010.
    [11]Sozen M A. Review of Earthquake Response of RC Buildings with A View to Drift Control [J]. State of The Artin Earthquake Engineering, Ankara,1981:383-418.
    [12]Qi X, Moehle J P. Displacement Design Approach for Reinforced Concrete Structures Subjected to Earthquakes [R]. Report No. UCB EERC-9102, Berkeley, Earthquake Engineering Research Center, University of California,1991:44-52.
    [13]Freeman S A, Nicoletti J P, Tyrell J V. Evalution of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard, Bremerton, Washington [C]. Proceedings of 1st U.S. National Conference on Earthquake Engineering, EERI, Berkeley,1975:113-122.
    [14]Fajfar P. Capacity Spectrum Method Based on Inelastic Demand Spectra [J]. Earthquake Engineering and Structural Dynamics,1999,28(9):979-993.
    [15]Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings [J]. Earthquake Engineering and Structural Dynamics,2002,31(3):561-582.
    [16]葛家琪,张爱林,杨维国,等.基于性能的大跨度钢结构设计研究[J].建筑结构学报,2011,12(32):29-36.
    [17]支旭东.网壳结构在强震下的失效机理[D].哈尔滨:哈尔滨工业大学,2006.
    [18]YJ Park, AHS Ang. Mechanistic seismic damage model for reinforced concrete [J]. Journal of Structural Engineering,1985,111(4):722-739.
    [19]杜文风.基于性能的空间网壳结构设计理论研究[D].杭州:浙江大学,2007.
    [20]Karo S, Nakazawa S. Seismic risk analysis of large lattice dome supported by buckling restrained barces [C]. Proceedings of the 6th International Conference on Computation of Shell & Spatial Structures NY, USA:IASS. IACM,2008.
    [21]Nakazawa S, Kato S, Shibata R. Seismic risk evaluation of spatial structures by using grid computing system[C]. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium Valencia, Spairc CEDEX,2009.
    [22]Nakazawa S, Kato S. Study on evaluation of seismic risk of gymnasia subjected to longitudinal earthquake motions based of elasto-plastic dynamic response analysis [C]. Proceedings of the 9th Asian Pacific Conference on Shell and Spatial Structures Nagoya, Japan:Nagoya University,2009.
    [23]郭晨喜.网架结构基于位移的抗震设计方法[D].北京:清华大学,2008.
    [24]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999.
    [25]叶继红,沈祖炎.初始缺陷对网壳结构动力稳定性能的影响[J].土木工程学报.1997,30(1):108-113.
    [26]王琼,黄莉,邓华.网格结构的杆件更换问题[J].空间结构,已录用.
    [27]薛素铎,曹资.多维地震作用下网壳结构的随机分析方法[J].空间结构,2002,8(1):44-51.
    [28]张敏.建筑结构抗震分析与减震控制[M].成都:西南交大出版社,2007.
    [29]R W Clough, J Penzien. Dynamics of Structures [M]. New York:Mcgraw-Hill Inc,1975.
    [30]谢道清.罕遇地震下考虑压杆屈曲的网壳弹塑性分析[D].杭州:浙江大学,2010.
    [31]黄旭乐.网格结构多维地震响应计算方法的对比研究[D].杭州:浙江大学,2011.
    [32]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [33]孙景江,江近仁.与规范反应谱相对应的金井清谱的谱参数[J].世界地震工程,1990(1):42-48.
    [34]J Penzien. Characteristics of 3-Dimensional Earthquake Ground Motions [J]. Earthquake Engineering and Structural Dynamics,1975(3):365-373.
    [35]欧进萍,王光远.结构随机振动[M].高等教育出版社,1995.
    [36]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析[M].北京:中国建筑工业出版社,2009.
    [37]Neumann F. A broad formula for estimating earthquake forces on oscillators [A]. In:Gakujutsu, Bunken, Fukyu-Kaieds. Proceedings of the 2nd World Conference on Earthquake Engineering [C]. Tokyo:Science Council of Japan,1960:849-862.
    [38]刘恢先.论地震力[J].土木工程学报,1958,5(2):86-106.
    [39]赫敏,谢礼立,徐龙军.关于地震烈度物理标准研究的若干思考[J].地震学报,2005,27(2):230-234.
    [40]Housner G W, Jennings P C. Generation of artificial earthquakes [J]. Journal of the Engineering Mechanics Division.1964,90(5):113-150.
    [41]Nau J M, Hall W J. An evaluation of scaling methods for earthquake response spectra [M]. Structural Research Series No.499, Dept. of Civil Engineering, University of Illinois, Urbana.1982.
    [42]Peter J Brockwell, Richard A Davis时间序列的理论与方法(田铮译)[M].北京:高等教育出版社,2003.
    [43]Chan S L, Zhou Z H. Second-order elastic analysis of frames using single imperfect element per member [J]. Journal of Structural Engineering,1995,121(36):939-945.
    [44]葛家琪,张国军,王树,等.2008奥运会羽毛球馆弦支穹顶结构整体稳定性能分析研究[J].建筑结构学报,2007,28(6):22-30.
    [45]罗永峰,刘慧娟,韩庆华.弦支穹顶结构动力稳定性分析方法[J].西南交通大学学报,2008,43(6):729-735.
    [46]Liew J Y R. Notional load plastic hinge method for frame design [J]. Journal of Structural Engineering (ASCE).1994,120:1434-1454.
    [47]Aslam Kassimali. Structural Analysis [M]. Florida:Nelson Engineering,2010.
    [48]夏拥军,陆念力.梁杆结构二阶效应分析的一种新型梁单元[J].工程力学,2007,24(7):39-43.
    [49]李国强,刘玉姝.一种考虑初始缺陷影响的非线性梁单元[J].计算力学学报,2005,22(1):69-72.
    [50]崔晓强,郭彦林.弦支穹顶结构的抗震性能研究[J].振动与冲击,2005,25(1):67-75.
    [51]罗永峰,刘慧娟,韩庆华.弦支穹顶结构动力稳定性分析方法[J].西南交通大学学报,2008,43(6):729-735.
    [52]陈志华,张立平,李阳.弦支穹顶结构实物动力特性研究[J].工程力学,2007,24(3):131-137.
    [53]董石麟,罗尧治,赵阳.新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
    [54]中华人民共和国国家标准.建筑结构荷载规范(GB50009-2001)[S].北京:中国建筑工业出版社,2001.
    [55]中华人民共和国国家标准.钢结构工程施工质量验收规范(GB 50205-2001)[S].北京:中国计划出版社,2001.
    [56]中华人民共和国国家标准.空间网格结构技术规程(JG7-2010)[S].北京:中国建筑工业出版社,2010.
    [57]Clough R, Penzien J.结构动力学(王光远译)[M].北京:高等教育出版社,2007.
    [58]Jurkevics, U lrych T J.Representing and simulating strong ground motion [J]. BSSA,1978, 68(3):781-801.
    [59]Spanos P D, Mingnolet M P. Simulation of stationary random processes:two-stage MA to ARM A approach [J]. Journal of Engineering Mechanics.1990,116(3):620-641.
    [60]陈予恕,唐云。非线性动力学中的现代分析方法[M].北京,科学出版社,2000.
    [61]凤登台.应用非线性振动力学[M].北京:中国铁道出版社,1982.
    [62]Lorenz E N. Deterministic nonperiodic flow [J]. Journal of the atmospheric sciences.1963,20(1): 130-141.
    [63]Ruelle D, Takens F. On the natrue of turbulence [C]. Communications in mathematical physics.1971 20,167-192.
    [64]Li T Y, Yorke J A. period three implies chaos [J]. The American Mathematical Monthly.1975,82(10), 985-992.
    [65]May R M. Simple mathematical models with very complicated dynamics [J]. Nature.1976,261: 459-467.
    [66]Feigenbaum M J. Quantitative universality for a class of nonlinear transformations [J]. Journal of statistical physics.1978,19(1):25-52.
    [67]White D W. Chen W F.Plastic-hinge based methods for advanced analysis and design of steel frames[C]. Bethlehem, PA:Structural Stability Research Council, Lehigh University,1993.
    [68]Izzuddin B A, Elnashai A S. A daptive space frame analysis-Part I:A Plastic hinge approach [J]. Structures and Buildings Journal, Proceedings of the Institution of Civil Engineers.1993,99(3): 303-316.
    [69]Mari A R. Nonlinear geometric, material, and time dependent analysis of three dimensional reinforced concrete frames, division of structural engineering and structural mechanics [R]. Report No.UCB/SESM-84/12. Department of Civil Engineering. University of California, Berkeley,1984.
    [70]Izzuddin B A, Elnashai A S.Adaptive space frame analysis-Part II:A distributed plasticity approach [J]. Structures and Buildings Journal, Proceedings of the Institution of Civil Engineers.1993,99(3): 317-326.
    [71]Spacone E,Filippou F C, Taucer F F. Fiber beam-column model for non-linear analysis of R/C frames(Part Ⅰ) formulation [J]. Earthquake Engineering and Structural Dynamics.1996,25:711-725.
    [72]Spacone E, Filippou F C,Taucer F F. Fiber beam-column model for non-linear analysis of R/C frames: (part Ⅱ) Applications[J].Earthquake Engineering and Structural Dynamics.1996,25:727-742.
    [73]栗蕾,郝际平,李广慧,等.考虑损伤双层扁球面网壳的非线性动力学特性[J].振动与冲击.2011(11):106-111.
    [74]王钢,韩明君,邱平.矩形底面扁球面网壳的混沌与控制[J].兰州理工大学学报.2010(4):163-167.
    [75]张善元,张涛.圆柱壳的轴向动力屈曲、参数共振与混沌运动[J].振动与冲击.2010,29(12):34-38,66.
    [76]栗蕾,黄义.具有初始缺陷的扁球面网壳的混沌运动与控制[J].振动与冲击.2009(6):6-7.
    [77]王新志,韩明君,赵艳影,等.扁锥面网壳非线性动力分岔与混沌运动[J].应用数学和力学.2006(5):586-590.
    [78]范峰,支旭东,沈世钊.大跨度网壳结构强震失效机理研究[J].建筑结构学报.2010(6):153-159.
    [79]支旭东,范峰,沈世钊.基于模糊综合判定的网壳结构强震失效模式研究[J].工程力学.2010(1):63-68.
    [80]支旭东,范峰,沈世钊.凯威特型单层球面网壳在强震下的失效研究[J].工程力学.2008(9):7-12.
    [81]沈世钊,支旭东.球面网壳结构在强震下的失效机理[J].土木工程学报.2005(1):11-20.
    [82]史义博,支旭东,范峰,等.单层球面网壳在强震作用下的损伤模型[J].哈尔滨工业大学学报.2008(12):1874-1877.
    [83]支旭东,范峰,沈世钊.强震下单层柱面网壳损伤及失效机理研究[J].土木工程学报.2007(8):29-34.
    [84]范峰,聂桂波,支旭东.三向荷载作用下圆钢管材料本构模型研究[J].建筑结构学报.2011(8):59-68.
    [85]杨飚,支旭东,范峰,等.短程线网壳结构强震作用下的动力强度破坏[J].哈尔滨工业大学学报.2008(12):1878-1882.
    [86]杨飏,支旭东,范峰,等.施威德勒网壳结构的动力强度破坏[J].东北大学学报(自然科学版).2007(1):125-128.
    [87]杨飏,范峰,沈世钊.Schwedler网壳结构强震作用下的动力强度破坏研究[J].振动与冲击.2007(8):27-31.
    [88]陈志华.弦支穹顶结构[M].科学出版社.北京:2010.
    [89]宋荣敏.索杆张力结构的几何误差效应分析和控制[D].杭州:浙江大学,2011.
    [90]Edward L Wilson(北京金土木软件技术有限公司,中国建筑标准设计研究院译).结构静力与动力分析-强调地震工程学的物理方法[M].北京:中国建筑工业出版社,2006.
    [91]Johnson C D, Kienholz D A.. Finite element prediction of damping in structures with constrained viscoelastic layers[J]. AIAA Journal,1963,20(9):1284-1290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700