用户名: 密码: 验证码:
厦门地区非饱和残积土土水特征及强度性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
残积土层约占厦门岛土地面积的三分之二,是工程建设岩土层的重要组成部分。在自然或人为地改变环境条件下,残积土常经受脱湿、增湿及干湿交替作用。此时,残积土会呈现出与其在饱和状态迥异的体积、强度、渗透和固结等性状。非饱和土的强度在土坡稳定、地基承载力及侧向土压力等分析计算中起着重要作用。而土水特征曲线(简称SWCC)是基质吸力与含水量或饱和度的关系曲线,它可帮助我们了解含水量对非饱和土强度的影响。因此,研究非饱和残积土的土水特征曲线及抗剪强度具有重要的工程意义和应用前景。本文针对厦门地区常见的残积砂质粘性土和残积粘土,进行了不同干密度、含水量、竖向应力和干湿循环作用下SWCC测定、无侧限抗压强度和直接剪切的试验研究,建立了SWCC模型、无侧限抗压强度及剪切强度模型。主要研究内容如下:
     1.采用滤纸法测定基质吸力,分析了干密度、含水量、竖向应力及干湿循环作用等因素对残积砂质粘性土和残积粘土的脱湿曲线、吸湿曲线及滞回环的影响。试验结果表明,砂质粘性土的SWCC与粘土的SWCC相比,前者的脱湿速率较大,进气值较低,持水能力较弱。砂质粘性土的SWCC对干密度和竖向应力的变化较敏感,而粘土SWCC对含水量的变化较敏感;3次干湿循环中,第1次干湿循环对两类残积土SWCC的影响较大。
     2.选择了6个SWCC模型,剔除残余饱和度参数,建立修正SWCC模型。设置了考虑参数个数的模型权值,根据已测残积土的SWCC试验数据,综合考虑拟合精度及模型参数个数,评估各修正SWCC模型的优劣。计算结果表明修正Gardner模型是最适合于厦门地区的残积砂质粘性土和粘土的SWCC模型。推导了修正的SWCC模型特征值计算公式,它们可取代作图法,从而较准确地计算出空气进气值、曲线拐点的斜率、残余基质吸力及残余饱和度等参数。
     3.设计了残积砂质粘性土和粘土的无侧限抗压强度试验,得到了考虑初始干密度和含水量下砂质粘性土的无侧限抗压强度经验模型和不同初始含水量下粘土的无侧限抗压强度经验模型。另外,测定了不同干湿幅度、路径及次数下两类残积土的无侧限抗压强度,得到了干湿幅度、次数和路径对两类残积土的无侧限抗压强度的影响规律。
     4.采用普通的直剪仪进行非饱和残积土的剪切强度试验,并用滤纸法测定各不同含水量状态下的基质吸力,研究剪切强度及强度指标随初始含水量的变化规律,建立不同初始含水量下残积砂质粘性土和粘土的剪切强度模型,能够较好地预测残积土的抗剪强度及强度指标。同时,开展了干湿循环作用对残积土的试验研究,得到了不同干湿循环幅度、路径及次数下两类残积土的剪切强度和强度指标的变化规律,为今后干湿循环作用下残积土强度模型的研究奠定基础。
Residual soils cover nearly two-thirds of the land area in Xiamen and construction of earth structures involves the use of them. Under natural or imposed changes in environmental conditions, drying processes (evaporation or drainage), wetting processes (infiltration or capillary), and alternate wetting and drying processes caused by seasonal variation or groundwater level fluctuation are normally occurs for residual soil. The residual soil deposits might undergo severe change in volume, strength, seepage and consolidation behaviors in response to these processes. Among them, the shear strength of an unsaturated soil plays an important role in many geotechnical problems such as soil slope stability, bearing capacity and lateral earth pressures. Furthermore, the soil-water characteristic curve (SWCC) is a relationship between suction and water content or degree saturation and it can assist in the understanding of the influence of water content on the unsaturated soil strength. Therefore, matric suction, unconfined compression strength(UCS) and direct shear strength tests under different initial dry density, water content, vertical stress and drying and wetting cycles have been done. Based on the tests results, SWCC model, UCS model and shear strength model of two residual soils (i.e. sandy clayey and clay) are established. The main research work on SWCCs and strength of unsaturated residual soil are presented as follows:
     (1) Matric suction was conducted by filter paper method and the influences of initial dry density and initial water content, soil structure, the stress and drying and wetting, upon the desorption and adsorption soil-water characteristics of sandy clayey and clay residual soil in Xiamen are examined and discussed. The SWCC of the sandy clayey specimens are different from that of the clay specimens. The sandy clayey specimens have low air-entry value and high rate of desorption and the opposite of the clay specimens.
     (2) Removing a parameter of the residual degree of saturation, six modified SWCC models are gained based on the published SWCC models which were selected for evaluation and model scores are calculated according to the fitting precision of experimental data. The weights of SWCC models are put forward by considering the number of model fitting parameters. Then, the recalculated model scores, taking the model weight into account, show that the modified Gardner model gets the highest score for residual soil in Xiamen among all of the modified SWCC models. Furthermore, the equations for determining of parameters of SWCC such as air-entry value, slope at the inflection point, residual suction and residual degree of saturation are deduced. These equations can be used for computational analyses to replace the conventional graphical method in providing consistent results.
     (3) Experimental programs of considering the influence of the initial dry density and initial water content on the UCS of the sandy clayey and clay were designed and two UCS models are proposed respectively which can be used to predict the UCS of residual soil in Xiamen. At the same time, the effects of the level, path and times of drying and wetting cycle processes on the UCS of two kinds of residual soil are investigated.
     (4) A scries of unsaturated direct shear tests were conducted on the residual sandy clayey and clay soil, the matric suction of specimens with different water content were also measured. The experimental results show cohesion, friction angle and shear strength of two kinds of residual soil change behavior due to changes of water content and soil suction. Two different total shear strength equations are established by the test results, Then, the comparison shear strength tests were done to examine the validity of the proposed equations. The errors between the tested shear strength and the predicted shear strength are small and the proposed equations are shown to provide the good predictions on shear strength. The shear strength tests under different level, path and times of drying and wetting cycles on two kinds of residual soil were also conducted and the strength behavior is concluded on the changes of the level, path and times of drying and wetting cycles
引文
[1]Terzaghi, K. Theoretical Soil Mechanics. New York:Wiley,1943.
    [2]Bishop A.W., The principle of effective stress [J]. Teknisk Ukeblas,1959,106(39):113-143.
    [3]Croney D., Coleman, Bridge, P.M. The suction of moisture held in soils and other porous materials. Tech. Paper, Road Research Board, No.24, H.M.S.O., London,1952.
    [4]Aitchison, G.D. Relationship of moisture and effective function in unsaturated soils. Pore Pressure and Suction in soils Conf., London, England:Butterworth,1961:47-52.
    [5]Jeanings, J.E., Burland, J.B. Limitation to the use of effective stress in partly saturated soils. Geotechnique,1962,12(2):125-144.
    [6]Richards B. G. The significance of moisture flow and equilibria in unsaturated soils in relation to the design of engineering structures built on shallow foundations in Australia. The Symp. on Permeability and Capillary, Amer. Soc. Testing Materials, Atlantic City, NJ,1966.
    [7]Coleman J.D. Stress-strain for partly saturated soils [J]. Geotechnique,1962,12(4):348-350.
    [8]Bishop A.W., Blight G.E. Some aspects of effective stress in saturated and partly saturated soils [J]. Geotechnique,1963,13(3):177-197.
    [9]Blight G.E. Effective stress evaluation for unsaturated soils [J]. Journal of the Soil Mechanics and Foundations Division,1967,93(2):125-148.
    [10]Fredlund D.G., Morgenstem N R. Stress state variables for unsaturated soils. Journal of the Geotechnical Engineering Division,1977,103(GT5):437-446.
    [11]Fredlund D.G., Rahardjo. Soil mechanics for unsaturated soils. New York:John Wiley & Sons,1993.
    [12]Houston S.L. Applied unsaturated soil mechanics, state of the art report[M]//Juca Jft, Dd Campos Tmp, Marinho Fam, eds. Unsaturated Soils, Balkema, Lisse,2002(3):1127-1134.
    [13]Alonso E.E., Gen A., Josa A. A constitutive model for partially saturated soils [J]. Geotechnique,1990, 40:405-430.
    [14]Gens A. Constitutive modeling:Application to compacted soils [M]//Alonso E.E., Delage P., eds. Unsaturated Soils, Balkema, Rotterdam,1996(3):1179-1200.
    [15]Wheeler S.J., Karube D. Constitutive modeling [M]//Alonso E.E., Delage P., eds. Unsaturated Soils, Balkema, Rotterdam,1996(3):1323-1356.
    [16]Toll D.G. A framework for unsaturated soil behavior [J]. Geotechnique,1990,40(l):31-44.
    [17]Kohgo Y. Review of constitutive models for unsaturated soils and initial-boundary value analyses [M]//Karube D., Iizuka A., Kato S., et al. Unsaturated Soils-Geotechnical and Geoenvironmental Issues, Proc 2 Asian Conf.,2003:21-40.
    [18]Croney D., Coleman J. D.,& Black W. P. M. The movement and distribution of water in soil in relation to highway design and performance [M]. Road Research Laboratory, Research Note 3209,1958:1-14.
    [19]Langfelder L.J., Chen C.F., Justice J.A. Air permeability of compacted cohesive soils [J]. Journal of Soil Mechanics and Foundation Division[C]//. Proceedings of ASCE,1968,94(6):981-1002.
    [20]Blight G.E. Flow of air through soils [J]. Journal of Soil Mechanics and Foundation Division[C]//. Proceedings of ASCE,1971,97(4):607-624.
    [21]Klute A. Laboratory measurement of hydraulic conductivity of unsaturated soil [M]. In:Black C.A., Evans D.D., White J.L., et al. Methods of Soil Analysis, Madison:American Society of Agronomy,1965: 253-261.
    [22]Hamilton J.M., Daniel D.E. Measurement of hydraulic conductivity of partially saturated soils. In: Zimmie T.F., Riggs C.O. Permeability and Groundwater Contaminant Transport, New York:ASTM Special Technical Publication,1981:182-196.
    [23]Scott R.F. Principles of Soil Mechanics, Addison-Wesly Pub. Co., Inc., Mass., U.S.A.,1963:62-78, 177-184.
    [24]Barden L. Consolidation of compacted and unsaturated clays [J]. Geotechnique,1965,15(3):267-286.
    [25]Fredlund D.G., Hasan J.U. One-dimensional consolidation theory [J]. Unsaturated Soils, Canadian Geotechnical Journal,1979,16(3):521-531.
    [26]Bishop A.W., Blight G.E. Some aspects of effective stress in saturated and partly saturated soils [J]. Geotechnique,1963,13(3):177-197.
    [27]Fredlund D.G., Morgenstem N R, Widger R A. The shear strength of unsaturated soils [J]. Canadian Geotechnical Journal,1978,15(3):313-321.
    [28]孔令伟,陈正汉.特殊土与边坡技术发展综述[J].土木工程学报,2012,45(5):141-161.
    [29]龚晓南.21世纪岩土工程发展展望[J].岩土工程学报,2000,22(2):238-242.
    [30]俞培基,陈愈炯.非饱和土的水-气形态及其力学性质的关系[J].水力学报,1965,2(1):16-23.
    [31]包承纲.非饱和压实土的多相形态及孔压消散问题[C]//第三届全国土力学和基础工程会议论文集,北京:建筑工业出版社,1979.
    [32]陈正汉,王永胜,谢定义.非饱和土的有效应力探讨[J].岩土工程学报,1994,16(3):62-69.
    [33]刑义川,谢定义,李振.非饱和土的应力传递机理与有效应力原理[J].岩土工程学报,2001,23(1):53-57.
    [34]刘奉银.非饱和土基本试验设备的研制与新有效应力原理的探讨[D].西安:西安理工大学,1999.
    [35]赵成刚,蔡国庆.非饱和土广义有效应力原理[J].岩土力学,2009,30(11):3232-3236.
    [36]汤连生,王思敬.湿吸力及非饱和土的有效应力原理探讨[J].岩土工程学报,2000,22(1):83-88.
    [37]Sheng D., Gens A., Fredlund D.G., et al. Unsaturated soils:from constitutive modeling to numerical algorithms [J]. Computers & Geotechnics,2008,35:810-824.
    [38]Sun D. A., Matsuoka H., Cui H.B. An elasto-plastic model for unsaturated soil in three-dimensional stresses [J]. Soils and Foundations,2000,40(3):17-28.
    [39]Shen Z.J., Hu Z.Q. Damage function and a masonry model for loess [C]//Proceedings of the Asian Conference on Unsaturated Soils. Beijing:International Academic Publishers,1998,2:180-193.
    [40]黄义,张引科.非饱和土本构关系的混合物理论:非线性本构方程和场方程[J].应用数学和力学,2003a,24(2):111-164.
    [41]Li X.S. Thermodynamics-based constitutive framework for unsaturated soils [J]. Geotechnique,2007, 57(5):411-435.
    [42]蒋彭年.非饱和土工程性质简论[J].岩土工程学报,1989,11(6):39-59.
    [43]李锡夔.非饱和土变形及渗流过程的有限元分析[J].岩土工程学报,1998,20(4):20-24.
    [44]陈正汉.非饱和土固结的混合物理论数学模型试验研究[D],陕西:陕西机械学院,1991.
    [45]杨代泉,沈珠江.非饱和土一维固结简化计算[J].岩土工程学报,1991,13(5):70-78.
    [46]Yin Z.Z., Sun C.L., Miao L.C. Consolidation of unsaturated expansive soils,2"'International Conference on Unsaturated Soils,1998.
    [47]沈珠江.广义吸力和非饱和土的统一变形理论[J].岩土工程学报,1996,18(2):1-10.
    [48]刘祖德,陆士强,包承纲等.发展水平报告之一土的抗剪强度特性[J].岩土工程学报1986,3(1):6-46.
    [49]包承纲.非饱和土的应力应变关系和强度特性[J].岩土工程学报,1986,8(1):26-31.
    [50]包承纲.非饱和土的性状及膨胀土边坡稳定问题[J].岩土工程学报,2004,26(1):1-15.
    [51]卢肇钧,张惠明,陈建华等.非饱和土的抗剪强度与膨胀压力[J].岩土工程学报,1992,14(3):1-8.
    [52]卢肇钧,吴肖茗,孙玉珍等.膨胀力在非饱和土强度理论中的作用[J].岩土工程学报,1997,19(5):20-27.
    [53]徐永福.非饱和土强度理论及其工程应用[M].南京:东南大学出版社,2000:186-187.
    [54]杨和平,张锐,郑健龙.非饱和膨胀土总强度指标随饱和度变化规律[J].土木工程学报,2006,39(4):58-62.
    [55]党进谦,李靖.非饱和黄土的强度特征[J].岩土工程学报,1997,19(2):56-61.
    [56]王钊,龚壁卫-,包承纲.鄂北膨胀土坡基质吸力的量测[J].岩土工程学报,2001,23(1):64-67.
    [57]詹良通,吴宏伟,包承纲等.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩土力学,2003,24(2):151-158.
    [58]王清.闽南三角地区花岗岩残积土及其工程特性的研究[J].福建地质,1990,9(2):90-99.
    [59]张永波.厦门花岗岩残风化残积土工程地质特征及浅层地基承载力研究[C]//第四届全国工程地质大会论文集(二).北京:海洋出版社,1992:146-153.
    [60]张永波.花岗岩残积土工程类型划分体系研究[J].地球学报,1997,18(3):201-204.
    [61]福建省建筑设计研究院.福建省工程建设地方标准:岩土工程勘察规范(DBJ1J3-84-2006)[M].福州:福建科学技术出版社.2006.11.
    [62]吴能森.结构性花岗岩残积土的特性及工程问题研究[D].南京林业大学,2005年6月.
    [63]Brooks R.H., Corey A.T. Hydraulic properties of porous media Colorado State University (Fort Collins). Hydrology Papers.1964, No.3.
    [64]Fredlund D.G., Xing A.Q., Fredlund, M. D.& Barbour, S. L. The relationship of the unsaturated soil shear strength function to the soil-water characteristic [J]. Canadian Geotechnical Journal. 1996,33:440-448.
    [65]Van Genuchten, M. Th. A closed-form equation predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society.1980,44:892-898.
    [66]Vanapalli S.K., Fredlund D.G., Pufahl D.E. Model for the prediction of shear strength with respect to soil suction [J]. Canadian Geotechnical Journal,1996,33(3):379-392.
    [67]Fleureau J.M., Kheirbek-Saoud S., Soemitro R.,& Taibi S. Behavior of clayey soils on drying-wetting paths [J]. Canadian Geotechnical Journal.1993,30:287-296.
    [68]Fredlund D.G. Comparison of soil suction and one-dimensional consolidation characteristics of a highly plastic clay [D]. M. Sc. Thesis. Department of Civil Engineering, University of Alberta, Edmonton, 1964:30-32.
    [69]Vanapalli S.K. Simple test procedures and their interpretation in evaluating the shear strength of unsaturated soils [D]. Ph.D. thesis. University of Saskatchewan, Saskatoon,1994:42-44.
    [70]Richards B. G. Measurement of the free energy of soil moisture by the psychrometric technique using thermistors. In Moisture Equilibria and Moisture Changes in Soils beneath Covered Areas. A Symposium in Print. Sydney. Australia,1965:35-46.
    [71]Lebedeff A.F. The movement of ground and soil waters. Proc.1stInt.Cong. Soil.1927,1:459-494.
    [72]Sillers W.S., Fredlund D. G. Statistical assessment of soil water characteristic curve models for geotechnical engineering [J]. Canadian Geotechnical Journal.2001,38:1297-1313.
    [73]Russam K. An investigation into the soil moisture conditions under roads in Trinidad, B.W.I. Geotechnique,1958,8:55-71.
    [74]Vanapalli S.K., Fredlund D.G., Pufahl D.E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till [J]. Geotechnique.1999,49(2):143-159.
    [75]龚壁卫,刘艳华,詹良通.非饱和膨胀土残余含水量与缩限的关系[C]//南水北调膨胀土渠坡稳定和滑动早期预报研究论文集,长江科学院,1998,11:24-25.
    [76]Black W.P.M. A method of estimating the California bearing ratio of cohesive soils from plasticity data. Geotechnique,1962,12(4):271-282.
    [77]Mitchell P.W., Avalle D.L. A technique to predict expansive soil movements. Proc.,5th Int. Conf. on Expansive Soils, Adelaide,1984:124-130.
    [78]Fleureau J.M., Taibi S., Soemitro R. Prise en compte de la pression interstitielle negative du sol dans l'estimation du gonflement[C]//Colloque Internationale'Foundations Specials', Tlencem, Mars,1990.
    [79]Miller C.J. Impact of soil type and compaction conditions on soil water characteristic [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2002,128(9):733-742.
    [80]龚壁卫,吴宏伟,王斌.应力状态对膨胀土SWCC的影响研究[J].岩土力学,2004,25(12):1915-1918.
    [81]李志清,胡瑞林,王立朝等.非饱和膨胀土SWCC研究[J].岩土力学,2006,27(5):730-734.
    [82]Miu L.C. Jing F., Houston S.L. Soil-water characteristic curve of remolded expansive soils[C]//. In proceedings of unsaturated soil, ASCE,2006:997-1004.
    [83]张文杰.城市生活垃圾填埋场中水分运移规律研究[D].杭州:浙江大学,2007.
    [84]李永乐,张红芬,余小光等.原状非饱和黄土的三轴试验研究[J].岩土力学,2008,29(10):2859-2863.
    [85]詹良通,包承纲,龚壁卫.土-水特征曲线及其在非饱和土力学中的应用[C]//南水北调膨胀土渠坡稳定和滑动早期预报研究论文集,长江科学院,1998.11.
    [86]Kawai K., Karube D., Kato S. The model of water retention curve considering effects of void ratio[C]//Rahardjo H., Toll D.G., Leong E.C. Unsaturated soils for Asia. Rotterdam:Balkema, 2000:329-334.
    [87]Delage P., Lefebvre G. Study of the structure of sensitive Champlain clay and of its evolution during consolidation. Geotechnique.1983,21:21-35.
    [88]Charles W.W.NG, Pang Y.W. Experimental investigations of the soil-water characteristics of a volcanic soil [J]. Canadian Geotechnical Journal.2000,37:1252-1264.
    [89]汪东林,栾茂田,杨庆.重塑非饱和粘土的土-水特征曲线及其影响因素研究[J].岩土力学,2009,30(3):751-756.
    [90]关亮,陈正汉,黄雪峰等.非饱和重塑黄土的三轴试验研究[J].工程勘察,2011,11:14-18.
    [91]胡孝鹏,赵仲辉,倪晓雯.应力状态对土-水特征曲线的影响[J].河海大学学报,2013 41(2):150-155.
    [92]赵天宇,王锦芳.考虑密度与干湿循环影响的黄土SWCC[J].中南大学学报(自然科学版).2012,43(6):2446-2453.
    [93]刘奉银,张昭,周冬等.密度和干湿循环对黄土土-水特征曲线的影响[J].岩土力学,2011,32(Supp.2):132-136.
    [94]王铁行,卢靖,岳彩坤.考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J].岩土力学,2008,29(1):1-5.
    [95]周建.非饱和土SWCC主要影响因素研究综述[C]//第二届全国非饱和土学术研讨会论文集.杭州,浙江大学.2005.04.
    [96]刘艳华,龚壁卫,苏鸿,非饱和土的土水特征曲线研究[J].工程勘察,2002,3:8-11.
    [97]陈正汉,孙树国,方祥位等.非饱和土与特殊土测试技术新进展[J].岩土工程学报,2006,28(2):148-169.
    [98]Bulut R., Lytton R.L., Warren W. K. Soil suction measurement by filter paper [C]. Expansive Clay Soils and Vegetative Influence on Shallow Foundations. Geotechnical Special Publication No.115. Houston, TX:243-261.
    [99]Ridley A.M., Dineen K., Burland J.B.etc. Soil matrix suction:some examples of its measurement and application in geotechnical engineering [J]. Geotechnique,2003,53(2):241-253.
    [100]王钊,杨金鑫,况娟娟等,滤纸法在现场基质吸力量测中的应用[J].岩土工程学报,2003,25(4):405-408.
    [101]《土壤水分测定方法》编写组.土壤水分测定方法[M].北京:水利电力出版社,1986.
    [102]Houston S. L., Houston W. N., Wagner M. Laboratory filter suction measurements [J]. Geotechnical Testing Journal,1994,17:1209-1217.
    [103]白福青,刘斯宏,袁骄.滤纸法测定南阳中膨胀土SWCC试验研究[J].岩土工程学报,2011,33:928-933.
    [104]南京水利科学研究院.中华人民共和国行业标准:土工试验规程(sL237-1999)[M].北京:中国水利水电出版社,1999.04.
    [105]Faybishenko B.A. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air [J]. Water resource reservation.1995,31:2421-2435.
    [106]Gupta R.P., Swartzendruber D. Entrapped air content and hydraulic conductivity of quartz sand during prolonged liquid flow [J]. Soil Science Society,1964,28:9-12.
    [107]Koga K. Reduction in entrapped air by percolation and the change in permeability-study on the permeability of compacted soil [J]. Japanese Social Irrigation Drainage Reclaim.1987,131:69-77.
    [108]Ford E.J. Soil water retention determination using the'Wetlab'facility at CSIRO, Davies Laboratory, CSIRO land and water, Australia.
    [109]Scott H.D. Soil Physics:Agricultural and Environmental Applications [M], Iowa State University Press, 2000.
    [110]Hillel D. Introduction to soil physics. New York:Academic Press,1982.
    [111]Hillel D. Environmental soil physics. San Diego, Calif:Academic Press,1998.
    [112]熊承仁,刘宝琛,张家生.重塑粘性土的基质吸力与土水分及密度状态的关系[J].岩石力学与工程学报,2005,24(2):321-327.
    [113]吴恒,张信贵,易念平等.水土作用与土体细观结构研究[J].岩石力学与工程学报,2000,19(2):194-204.
    [114]Willams J., Preeble R.E., Williams W.T. The influence of texture, structure and clay mineralogy on the soil moisture characteristics [J]. Australian Journal of Soil Research,1983,21:15-32.
    [115]Gardner W.R. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table [J]. Soil Science,1958,85:228-232.
    [116]Mckee C.R., Bumb A.C. The Importance of unsaturated flow parameters in designing a monitoring system for hazardous waters and environmental emergencies. In Proceedings Hazardous Materials Control Research Institute National Conference, Houston, Tex. March 1984:50-88.
    [117]Fredlund D.G., Xing Anqing. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal.1994,31:521-532.
    [118]Farrel D.A., Larson W.E. Modeling the pore structure of porous media [J]. Water Resource Research. 1972,3:699-706.
    [119]Roger B.C., Hornberger G.M. Empirical equations for some soil hydraulic properties [J]. Water Resources Research,1978,14:601-604.
    [120]Mckee C.R., Bumb A.C. Flow-testing coalbed methane production wells in presence of water and gas. SPE Formation Evaluation,1987:599-608.
    [121]高大钊著.土力学与岩土工程师——岩土工程疑难问题答疑笔记整理之一[M].北京:人民交通出版社,2008:150-160.
    [122]松冈元著,罗汀,姚仰平编译.土力学[M].北京:中国水利水电出版社,2001,5:236-242.
    [123]Miao L.C, Yin Z.Z, Liu S.Y. Empirical function representing the shear strength of unsaturated soils [J] Geotechnical Testing Journal,2001,24(2):220-223.
    [124]沈珠江.当其非饱和土力学研究中的若干问题[C]//魏道垛等.区域性土的岩土工程问题学术讨论会论文集.南京:原子能出版社,1996:1-9.
    [125]谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报,2001,23(1):3-13.
    [126]刑义川.黄土力学性质研究的发展和展望[J].水力发电学报,2000(4):54-65.
    [127]Lamborn M. J. A micromechanical approach to modeling partly saturated soils [D]. College Satation: Texas A & M University,1986.
    [128]Oberg A.L, Sallfors G. Determination of shear strength parameters of unsaturated silt and sands based on the water retention curve. [J] Geotechnical Testing Journal,1997,20(1):40-48.
    [129]Khalili N, Khabbaz M.H. A unique relationship for x for the determination of the shear strength of unsaturated soils. [J]. Geotechnique,1998,48(5):681-687.
    [130]Bao C.G., Gong B.W., Zhan L.T. Properties of unsaturated soils and slope stability of expansive soil[C]// ASCE. Proceedings of the 2nd international conference on unsaturated soils. Beijing:ASCE,1998: 71-98.
    [131]Garven E.A., Vanapalli S.K. Evaluation of empirical procedures for predicting the shear strength of unsaturated soils[C].
    [132]Peterson R.F.W. Interpretation of triaxial compression test results on partially saturated soils [J]. Advanced Triaxial Testing of Soil and Rock, ASTM STP977, American Society for Testing and Materials, Philadelphia,1988:512-538.
    [133]Hossain M.A, Yin J.H. Shear Strength and dilative characteristics of an unsaturated compacted completely decomposed granite soil [J]. Canadian Geotechnical Journal,2010,47(10):1112-1126.
    [134]Hossain M.A, Yin J.H. Behavior of a Compacted Completely Decomposed Granite Soil from Suction Controlled Direct Shear Tests [J]. Journal of Geotechnical and Geoenvironmental Engineering,2010, 136(1):189-198.
    [135]Rassam D.W, Cook F. Predicting the shear strength envelope of unsaturated soils [J]. Geotechnical Testing Journal,2002,25(2):215-220.
    [136]Lee I M, Sung S G, Cho G C. Effects of stress state on the unsaturated shear strength of a weathered grainte [J]. Canadian Geotechnical Journal,2005,42(2):624-631.
    [137]Houston S.L., Perez-Garcia N., Houston W.N. Shear strength and shear-induced volume change behavior of unsaturated soils from a triaxial test program [J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(11):1619-1632.
    [138]Zhou A.N., Sheng D.C. Yield stress, volume change, and shear strength behaviour of unsaturated soils: validation of the SFG Model [J]. Canadian Geotechnical Journal,2009,46(9):1034-1045.
    [139]Rohm S.A., Vilar O.M. Shear strength of an unsaturated sandy soil [C]//ASCE. Proceedings of the 1st international conference on unsaturated soils. Paris:ASCE,1995:189-193.
    [140]Lee S.J, Lee S.R., Kim Y.S. An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation [J]. Computers and Geotechnics,2003,30(6):489-503.
    [141]Jiang M J, Leroueil S, Konrad J M. Insight into shear strength functions of unsaturated granulates by DEM analysis [J]. Computers and Geotechnics,2004,31(6):473-489.
    [142]Vilar O.M. A simplified procedure to estimate the shear strength envelope of unsaturated soils [J]. Canadian Geotechnical Journal,2006,43(10):1088-1095.
    [143]李培勇,杨庆.非饱和土抗剪强度的非线性分析[J]大连交通大学学报,2009,30(1):1-4.
    [144]Xu Y.F. Fractal approach to unsaturated shear strength [J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(3):264-273.
    [145]Kayadelen C, Tekinsoy M A, Taskiran T. Influence of matric suction on shear strength behavior of a residual clayey soil [J] environmental geology,2007,53(4):891-901.
    [146]马少坤,黄茂松,范秋雁.基于饱和土总应力强度指标的非饱和土强度理论及其应用[J].岩石力学与工程学报,2009,28(3):635-640.
    [147]Escario V., Juca J. Strength and deformation of partly saturated soils[C]//Bolton M D, Lau C K. Proceedings of the 12th International Conference on soil mechanics and Foundation engineering. New York:Taylor & Francis,1989:43-46.
    [148]凌华,殷宗泽.非饱和土强度随含水量的变化[J].岩石力学与工程学报,2007,26(7):1499-1503.
    [149]王中文,洪宝宁,刘鑫,周清.红粘土抗剪强度的水敏性研究[J].四川大学学报(工学版),2011,43(1):17-22.
    [150]边佳敏,王保田.含水量对非饱和土抗剪强度影响研究[J].人民黄河,2010,32(11):124-125.
    [151]罗军,王桂尧,匡波.含水量对粉土强度影响的试验研究[J].路基工程,2010(1):116-118.
    [152]肖治宇,陈昌富,杨剑祥.非饱和残坡积土强度随含水量变化试验研究[J].湖南大学学报:自然科学版,2010,37(10):20-24.
    [153]汤连生.从粒间吸力特性再认识非饱和土抗剪强度理论[J].岩土工程学报,2001,23(4):412-417.
    [154]Gan J.K., Fredlund D.G., Rahardjo H. Determination of shear parameters of an unsaturated soil using the direct shear test [J]. Canadian Geotechnical Journal,1988,25(8):500-510.
    [155]扈胜霞,周云东,刘丰收等.非饱和原状黄土强度特性的试验研究[J].岩土力学,2005,26(4):660-672.
    [156]闫亚景,文宝萍,计博勋.基质吸力对非饱和土重塑黄土抗剪强度的贡献[J].工程地质学报,2011,19(6):865-874.
    [157]黄志全,陈贤挺,刘丰收等.基质吸力对小浪底水库滑坡非饱和土强度影响试验研究[J].中国水运,2007,7(7):123-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700