用户名: 密码: 验证码:
基于吸收式换热的热电联产集中供热系统配置与运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发掘热电联产的节能潜力,提高热电联产集中供热的可实施性,已成为我国节能工作的一项重点任务。针对目前热电联产供热能力不足、集中热网输送能力不足的瓶颈问题,清华大学提出了“基于吸收式换热的热电联产集中供热系统(简称Co-ah系统)”,可以同时实现电厂的凝汽余热利用和热网的大温差输送热量。本文围绕Co-ah系统集成配置和运行调节方面的问题展开研究,成果用于指导系统的优化设计和运行。
     首先,针对凝汽余热利用引发的大型供热机组安全及能效的机理问题,提出机组最大抽凝比的定义,确定了在安全性约束条件下,基于凝汽余热利用的大型供热机组抽、凝参数的关联与选择依据,并指出应从低压缸凝汽流有效焓降和凝汽流量两方面因素综合考虑凝汽余热利用对机组发电的影响。
     针对系统能效的评价,指出Co-ah系统通过凝汽余热利用可以实现3种基本目标;针对系统供热和机组发电两方面因素的影响,提出供热等效电的定义及其分析方法,用来分析抽汽和凝汽两种热源的“质”与“量”对系统全工况运行能效的影响,由此完善了Co-ah系统综合能效评价方法。
     针对系统的集成配置,归纳了湿冷系统和空冷系统机组冷端连接的形式和吸收式热泵机组的型式。引进系统抽凝比的定义,通过对系统抽凝比与机组抽凝比匹配关系的分析,明确了Co-ah系统性能优化的方向。在此基础上,提出了供热机组参数和一次网系统参数的优化原则及方法。明确了吸收式换热机组与电厂吸收式热泵机组配置的匹配关系,以及通过增设吸收式换热机组改善系统性能的合理性。
     针对系统的运行,提出了适合Co-ah系统的热网综合运行调节方式;优化供热机组的运行方式,提出并论证了变背压及变抽凝比的调节思路,根据能源梯级利用的原理,提出热网水系统串联布置和冷端联通布置的系统形式,在运行中提高系统能效,并缓解冷却塔冬季防冻的安全性问题。
     将理论研究与工程实践结合,在大同市建成首个大规模工业应用性示范项目,通过实测检验了两类吸收式设备的性能和系统运行的效果。通过对电厂首站系统的试验与分析,确定了系统在实际运行中合理的运行工况和运行方式,由此验证了部分理论研究工作的成果。
One of the emphasis tasks of energy saving is to explore the energy savingpotential of co-generation and enhance the feasibility of co-generation district heating inChina. In view of the insufficient ability of co-generation heating source and poordelivery capacity of heating network, Tsinghua University proposes a new type ofdistrict heating system with cogeneration based on absorption heat exchange (Co-ahSystem). It could recycle exhaust steam waste heat of power plant and transport heatwith a larger temperature difference. This paper focuses on the configuration and theoperation strategy of Co-ah system. These research results may be of guidance fordesign and operation of Co-ah system.
     Because the safety and efficiency of large heating unit is affected by exhaustedheat recovery from condensers, the maximum ratio of extraction steam and condensedsteam of turbine is defined. In a safe condition, define the parameter of large extractioncondensing combination unit based on exhaust steam waste heat utilization. As evaluatethe effect of exhausted heat recovery from condensers on generate electricity, botheffective enthalpy drop and condensed steam flow of low pressure cylinder should beconsidered.
     For evaluate the energy efficiency, this paper puts forward three roles of exhauststeam waste heat utilization of Co-ah system. Considering the influence of exhauststeam waste heat utilization on heating and power, the definition of heating equivalentelectric is given. It is used to analyze that how quality and quantity of extraction steamand condensed steam effect the operation efficiency on the total operating period. Thusa comprehensive efficiency evaluation method of Co-ah system is completed.
     For the system configuration of Co-ah system, the terminal connecting formats ofair and wet cooling steam turbine and the type of absorption heat pump are sum up. Thedefinition of the ratio of extraction steam and condensed steam of Co-ah system isproposed. By analysis the matching relations of the ratio of system and turbine units, theCo-ah system performance optimization direction is clear. Some suggestions are given,namely, parameter optimization principle and method of the cogeneration unit andnetwork system; the matching relations of absorption heat exchanger unit and absorption heat pump; the rationality of improving the performance of the systemthrough adding absorption heat exchange units.
     For the operation control of Co-ah system, a suitable operation adjustment mode ofheating network and changing back pressure operation ideas of turbine are proposed.Based on the method of cascade utilization of energy, this paper puts forward twooptimization method: heat network water series arrangement and linking with coldterminal, to improve energy efficiency further in the operation and ease thecontradiction of exhaust steam waste heat utilization and condenser winter antifreeze inplant.
     To integrate theory research with project practice, the first large-scale industrialapplication demonstration project is built in Datong city. By actual test, the performanceof two kinds of absorption units is verified. In addition, based on the measurement andanalysis of head power system, reasonable operation condition and mode is determined,and the theoretical research of this paper is verified.
引文
[1]清华大学建筑节能研究中心.中国建筑节能年度发展报告2008.北京:中国建筑工业出版社,2008:3-46.
    [2]武学素.热电联产.西安:西安交通大学出版社,1988:1-20.
    [3]孙奉仲,杨祥良,高明.热电联产技术与管理.北京:中国电力出版社,2007:18-45.
    [4] E.I.Benenson, V.I.Dlugosel, L.I.Levin, et al. Scientific and technical progress indistrict heating and congeneration. Chur:Harwood Academic Publishers,1990:47-70.
    [5] Lazzarin RM, Gasparellat. A. New idea for energy utilization in combined heatand power with cooling: Ⅱ Applications. Applied Thermal Engineering,1997,5(17):479-500.
    [6] Erich Unterwurzacher. CHP development: Impacts of energy markets andgovernment policies. Energy Policy,1992,20(9):893-900.
    [7] International Energy Agency. Combined heat and power: Evaluate the benefits ofglobal investment[EB/OL].[2009-10-01]. http://www.iea.org/CHP/docs/ny.pdf.
    [8]节能与环保编辑部.丹麦能源发展及对我国的启示.节能与环保,2007,8(2):5-6.
    [9] International Energy Agency. Denmark-Answer to a Burning Platform:CHP/DHC[EB/OL].[2009-10-01]. http://www.iea.org/G8/CHP/docs/denmark.pdf.
    [10] Anna Korppoo, Nina Korobova. Modernizing residential heating in Russia:End-use practices, legal developments, and future prospects. Energy Policy,2012,42(9):213-220.
    [11]邹平华.借鉴俄罗斯经验积极发展我国集中供热事业.暖通空调,2000,33(4):33-37.
    [12] COGEN Europe. How to achieve the Energy Efficiency Potential of cogenerationin Europe. Brussels:The European Association for the Promotion of Cogeneration,2008:89-90.
    [13] H.I. Onovwiona, V.I. Ugursal. Residential cogeneration systems: review of thecurrent technology. Renewable and Sustainable Energy Reviews,2006,10(5):389-431.
    [14] G. Anandalingam, Government policy and industrial investment in cogeneration inthe USA. Energy Economics,1985,7(2):117-126.
    [15] Cyane B. Dandridge, Jacques Roturier, Leslie K. Norford. Energy policies forenergy efficiency in office equipment Case studies from Europe, Japan and theUSA. Energy Policy,1994,22(9):735-747.
    [16]王振铭.我国热电联产发展状况分析.热电技术,2011,(2):1-5.
    [17]徐中堂.六十年发展中的城市集中供热.区域供热,2010,(2):1-7.
    [18]康艳兵,张建国,张扬.我国热电联产集中供热的发展现状、问题与建议.中国能源,2008,30(10):8-13.
    [19]清华大学建筑节能研究中心.中国建筑节能年度发展报告2009.北京:中国建筑工业出版社,2008:18-19.
    [20]徐中堂.城市热电联产集中供热的发展与挑战.第九届工程前沿研讨会文集.北京:高等教育出版社,2008:40-50.
    [21]杨旭中,郭晓亮,康慧.热电联产规划设计手册.北京:中国电力出版社,2009:81-88.
    [22]杨旭中.对热电联产汽轮机容量和参数的优化意见.电力勘探设计,2009,(4):1-4.
    [23]张建业,徐述.热电联产项目中机组的选型及参数确定方法.电力设备,2008,9(1):23-25.
    [24] Danlila Nicolae. Heat production in Co-generation plants and its transport overlarge distances. Proceedings of the symposium with international partipation onenergy conservation and international cooperational,1982:89-96.
    [25]沈士一,贺庆,康松,等.汽轮机原理.北京:中国电力出版社,2006:164-174.
    [26]康慧.北京市集中供热热源的探考.中国能源,2009,31(10):30-34.
    [27]邹平华,赵耀.热电厂不同采暖抽汽压力对经济性的影响.节能技术,2010,(5):474-477.
    [28]黄锦涛.降低凝汽/抽汽机组抽汽压力的节煤效果.节能技术,1998,(06):6-8.
    [29]宋克俭.大容量抽汽供热机组分缸压力的合理确定.发电设备,1996,(9):24-28.
    [30]何坚忍,徐大懋.节能增效的NCB新型专用供热机.热电技术,2009,(3):1-4.
    [31]孟晓雄,李建国.东方汽轮机厂300MW分缸机组完善改造.华北电力技术,2003,27(5):9-12.
    [32] Carl-Johan Fogelholm. Multi-period steam turbine network optimisation. PartII:Development of a multi-period MINLP model of a utility system. AppliedThermal Engineering,2006,26(14):1730-1736.
    [33]郭小玲.分缸300MW机组流通部分改造技术及性能试验研究[硕士学位论文].北京:华北电力大学,2009:20-40.
    [34]史进渊,张兆鹤.大型汽轮机研究的某些新进展.动力工程,1999,19(2):1-7.
    [35]李远锡,郭本煌.供热汽轮机旋转隔板现代化研究结果.发电设备,1991,(4):31-34.
    [36]陈海生,贾明飞.蒸汽减温减压过程火用损失与余压发电.煤气与热力,2005,(12):47-49.
    [37]朱振军,赵肃铭.背压式汽轮机加装后置式汽轮机后最佳工况的选择.节能技术,2004,(2):49-51.
    [38]孙玉庆,王建军,卢广才.背压机组替换减温减压器节能分析.区域供热,2008,(4):1-8.
    [39]林振娴,杨勇平,何坚忍.热网加热器在热电联产系统中的全工况分析.中国机电工程学报,2010,30(23):14-18.
    [40]林振娴,杨勇平,何坚忍.热电联产系统中最佳冷源热网加热器的选择方法.中国机电工程学报,2010,30(26):1-6.
    [41]何坚忍,杨勇平.供热系统串联布置方式的应用.中国机电工程学报,2010,30(35):13-17.
    [42]何坚忍.串并联供热装置:中国,200620022561.0[P].2007-09-12.
    [43]徐宝鹏,王晓放.凝汽式汽轮发电机组冬季低真空运行余热供暖的节能分析.节能,2001,(09):6-8.
    [44]于洪志,徐霞.低真空供热系统的热力学分析.煤气与热力,1988,(6):56-62.
    [45]杨黎昱.凝汽机组低真空循环水供暖调节方法的研究.煤气与热力,1995,15(3):39-45.
    [46]谢鸣,朱振军.凝汽式汽轮机低真空供热参数的确定.热能动力工程,1994,9(3):32-36.
    [47]赵生麟.低真空供热实践.煤气与热力,1986,(02):48-57.
    [48] Mago P J, Fumo N, Chamra L M.Performance analysis of CHP and CHP systemsoperating following the thermal and electric load.International Journal of EnergyResearch,2009,33(9):852-864.
    [49]宋之平.从可持续发展的战略高度重新审视热电联产.中国电机工程学报,1998,18(4):225-230.
    [50]宋之平.单耗分析的理论和实施.中国电机工程学报,1992,12(4):15-21.
    [51] Song,Zhi-Ping. Total energy system analysis of heating. Energy(Oxford),2000,25(9):807-822.
    [52]张世钢.热电联产中的深度余热回收技术研究[博士后研究报告].北京:清华大学建筑技术科学系,2006.
    [53]高岩,付林,燕达,等.利用电厂循环冷却水的暖通空调方案比选.暖通空调,2007,37(1):52-54.
    [54]胡鹏,付林,肖常磊,等.电厂循环水源热泵区域供热系统研究.全国暖通空调制冷2008年学术年会论文集,2008:103-106.
    [55]马福军.利用火力发电厂的循环水通过热泵进行采暖供热的可行性探讨.节能技术,2002,20(4):23-24.
    [56]吴健中,李宝林.水源热泵在电厂中的应用分析.建筑热能通风空调,2005,24(1):61-63.
    [57]清华大学建筑节能研究中心.中国建筑节能年度发展报告2011.北京:中国建筑工业出版社,2010:104-110.
    [58]季杰,刘可亮,裴刚,等.以电厂循环水为热源利用热泵区域供热的可行性分析.暖通空调,2005,35(2):104-107.
    [59]汪滔.吸收式热泵用于大连华能电厂的供暖改造研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2011.
    [60]周振起,马玉杰,王静静,等.吸收式热泵回收电厂余热预热凝结水的可行性研究.流体机械,2010,38(12):73-76.
    [61]张振新.吸收式热泵在热电联产集中供热中的应用.第六届热电联产学术交流会文集,2010:405-407.
    [62]朱启保.吸收式热泵技术在电厂冷却水系统中的应用.有色冶金节能,2010,(5):27-29.
    [63]李岩,付林,张世刚,等.电厂循环水余热利用技术综述.建筑科学,2010,26(10):10-14.
    [64]宋之平,张光,周少祥.新模式热电联产系统:联产供热的一个发展.工程热物理学报,1997,18(5):536-539.
    [65]宋之平.以总能系统观点与用热终端高效化为特征的大中型火电机组联产供热系统新模式.中国电机工程学报,1998,18(1):1-5.
    [66]付林,江亿,张世钢.基于Co-ah循环的热电联产集中供热方法.清华大学学报:自然科学版,2008,48(2):1377-1380.
    [67]付林,李岩,张世钢,等.吸收式换热的概念与应用.建筑科学,2010,26(10):136-140.
    [68] Yan Li, Lin Fu, Shigang Zhang. A new type of district heating method withco-generation based on absorption heat exchange (co-ah cycle). EnergyConversion and Management,2011,(52):1200-1207.
    [69]薛志峰,刘晓华,付林,等.一种评价能源利用方式的新方法.太阳能学报,2006,27(04):33-39.
    [70] Mohammad Tajik Mansouri, Pouria Ahmadi, Abdolsaeid Ganjeh Kaviri. Exergeticand economic evaluation of the effect of HRSG configurations on the performanceof combined cycle power plants. Energy Conversion and Management,2012,(58):47-58.
    [71] M. Ghazi, P. Ahmadi, A.F. Sotoodeh, A. Taherkhani. Modeling andthermo-economic optimization of heat recovery heat exchangers using amultimodal genetic algorithm. Energy Conversion and Management,2012,(58):94-103.
    [72]杨东华.火用分析和能级分析.北京:科学出版社,1986:20-22.
    [73] Verkhivker GP, Kosoy BV. On the exergy analysis of power plants. EnergyConversion and Management,2001,(42):2053-2059.
    [74] Yan Li, Lin Fu, Shigang Zhang. A new type of district heating system based ondistributed absorption heat pumps.Energy,2011,(36):4570-4576.
    [75] José Martín, Medina-Flores, Martín Picón-Nú ez. Modelling the power productionof single and multiple extraction steam turbines. Chemical Engineering Science,2010,65(9):2811-2820.
    [76] Xianglong Luo, Bingjian Zhang, Ying Chen, Songping Mo. Modeling andoptimization of a utility system containing multiple extractions steam turbines.Energy,2011,36(5):3501-3512.
    [77]徐基豫,汽轮机组给水回热系统优化的研究.中国电机工程学报,1988,8(1):55-61.
    [78]李勇,黄萍力.汽轮机回热系统加热器给水焓升的优化分配.汽轮机技术,2008,50(06):404-409.
    [79]张世钢,付林,李世一,等.赤峰市基于吸收式换热的热电联产集中供热示范工程暖通空调,2010,40(11):71-75.
    [80]冯恩泉.乏汽型吸收式热泵研发[硕士论文].北京:清华大学建筑技术科学系,2010.
    [81]孙健,付林,张世钢.吸收式热泵中表面活性剂的强化机制研究.制冷与空调,2010,10(03):16-19.
    [82] Sun Jian, Fu Lin, Zhang Shigang. Performance calculation of single effectabsorption heat pump using LiBr+LiNO3+H2O as working fluid. Applied ThermalEngineering,2010,(30):2680-2684.
    [83] Sun Jian, Fu Lin, Zhang Shigang. Experimental study on vertical vapor absorptioninto LiBr solution with and without additive. Applied Thermal Engineering,2011,(31):2850-2854.
    [84] Peng Hu, Lin Fu, Shigang Zhang, Yong Luo, Changlei Xiao. Study on a NewlyAbsorption Heat Pump District Heating System. ASME3rd InternationalConference on Energy Sustainability (ES2009). July19-23,2009, San Francisco,California.
    [85]李岩,付林,张世钢,等. Co-ah技术对北京市建筑能源供应事业的意义.暖通空调,2011,41(7):91-94.
    [86]肖常磊.电厂余热回收系统的优化匹配研究[硕士学位论文].北京:清华大学建筑学院,2008.
    [87]胡鹏.基于吸收式循环的热电联产集中供热新技术应用研究[博士后研究报告].北京:清华大学建筑学院,2009.
    [88]周显丁,李伯武.大型供热汽轮机中压末端叶片设计.东方电气评论,2007,21(2):43-45.
    [89] B. Stani a, V. Ivu i. Erosion behaviour and mechanisms for steam turbine rotorblades.Wear,1995,186:395-400.
    [90] Kim Ravn-Jensen. A shell analysis of turbine blade vibrations. InternationalJournal of Mechanical Sciences,1982,24(10):581-587.
    [91]金建国,李勇,曹丽华.小容积流量工况下汽轮机末级流场的计算研究.汽轮机技术,2004,46(6):411-414.
    [92]王仲博.祁枢田,张永宁.高背压小容积流量下汽轮机末级长叶片可靠性的试验研究.热力发电,1986,(02):1-6.
    [93]刘志真,邱丽霞.热电联产.北京:中国电力出版社,2006:22-25.
    [94]林振娴.热电联产系统冷源领域节能及耦合机理研究[博士学位论文].北京:华北电力大学,2011.
    [95]彭泽瑛.大容量热电联供汽轮机设计的有关问题.第九届工程前沿研讨会文集.北京:高等教育出版社,2008:40-50.
    [96]徐大懋,柯严,王世.汽轮机功率背压特性的通用计算方法及其应用.热能动力工程,2010,25(6):605-608.
    [97]樊庆林.空冷汽轮机低压排汽面积选择和变工况特性分析.热力透平,2007,36(01):49-52.
    [98]吴其林.大型空冷汽轮机末级叶片设计技术条件讨论.四川工程职业技术学院学报,2009,(03):43-47.
    [99]中国动力工程学会.火力发电设备技术手册第二卷汽轮机.北京:机械工业出版社,2007:4-34.
    [100]陈建功.直接空冷系统主要设计参数确定.电力勘探设计,2006(05):10-16.
    [101]吴其林,潘家成.空冷汽轮机末级长叶片设计特点.热力透平,2007,36(02):89-91.
    [102]李秀云,严俊杰,林万超.用等效热降法确定排汽压力变化对机组经济性的影响.热能动力工程,1999,14(05):353-355.
    [103]张世钢.一种多级发生的吸收式热泵机组:中国,200910092464.9.2008-12-24.
    [104]付林.一种回收低压蒸汽余热的吸收式热泵蒸发器结构:中国,201110026935.3.2011-06-15.
    [105]张世钢.一种利用电厂凝汽余热的水源热泵供热系统:中国,200610112861.4.2007-05-09.
    [106] Kai Wang, Omar Abdelaziz, Padmaja Kisari. State-of-the-art review oncrystallization control technologies for water/LiBr absorption heat pumps.International Journal of Refrigeration,2011,34(6):1325-1337.
    [107] Paiguy Armand, Ngouateu Wouagfack, Réné Tchinda. Optimal ecologicalperformance of a four-temperature-level absorption heat pump. InternationalJournal of Thermal Sciences,2012,(54):209-219.
    [108] Bahador Bakhtiari, Louis Fradette, Robert Legros. A model for analysis and designof H2O–LiBr absorption heat pumps. Energy Conversion and Management,2011.52(2):1439-1448.
    [109]付林.一种热泵型换热机组:中国,200810101064.5.2008-12-29.
    [110]张世钢.一种整体型吸收式换热机组:中国,200810117040.9.2008-12-24.
    [111]贺平,孙刚.供热工程.北京:中国建筑工业出版社,1993:135-150
    [112]王潇.低温地面辐射供暖系统调节的研究[硕士学位论文].哈尔滨:哈尔滨工业大学市政环境工程学院,2006.
    [113]程代京,王立,翁泽民.大功率汽轮机低压缸的变工况性能计算与分析.动力工程,1991(3):5-11.
    [114]王骏.供热机组性能计算模型研究[硕士学位论文].南京:东南大学,2004.
    [115]李永玲.火电厂单元机组变负荷运行方式热经济性分析[硕士学位论文].河北:华北电力大学,2007.
    [116]李如翔,李维特.凝汽式汽轮机末级的变工况特性.汽轮机技术,1995(5):306-309.
    [117]邵峰.汽轮机末级变工况特性研究[硕士学位论文].河北:华北电力大学,2008.
    [118]谢基攒.汽轮机变工况下内效率修正计算方式.汽轮机技术,1991(3):57-59.
    [119]程超峰,姚秀平,张莉.基于回热系统分析的汽轮机变工况热力计算.上海理工大学学报,2010(6):515-518.
    [120]章熙民,任泽霈.传热学.北京:中国建筑工程出版社,2002:276-277.
    [121] Andersson S. Influence of the net structure and operating strategy on the heat loadof a district heating network. Applied Energy,1993,46(2):171-179.
    [122] Benonysson A, Benny B,Hans F R. On optimum operation in a district heatingsystem. Energy Conversion and Management,1995,(5):297-314.
    [123] Zhao H P, Benny B, Hans F R. On optimum operation of a CHP type districtheating system by mathematical modelling. Fernwarme International,1995,(11):618-622.
    [124]石兆玉.供热系统运行调节与控制.北京:清华大学出版社,1994.
    [125]姚秀平,李红梅,俞茂铮.双背压凝汽式汽轮机变工况运行的热经济性分析.热力发电,1998,(3):26-30.
    [126]高清林.双背压汽轮机冷端系统的优化.电站系统工程,2010,26(3):39-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700