用户名: 密码: 验证码:
基于性能的高拱坝地震易损性分析与抗震安全评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一批200米甚至300米级的混凝土高拱坝在我国西部强震区陆续建成或正在设计之中。这些高拱坝作为复杂的大型混凝土结构体系,其在地震作用下的响应具有较大的随机性和不确定性,因此有必要从概率的角度对高拱坝在不同强度地震作用下的结构响应和安全性能进行评估。本文尝试将地震易损性分析方法引入高拱坝的动力设计,发展一种基于性能的高拱坝抗震安全评价方法,研究具有重要的理论意义和应用价值。论文的主要内容和成果包括以下几个方面:
     (1)在高拱坝动力分析模型方面,从材料非线性和横缝接触非线性两方面进行了详细分析。对于混凝土材料非线性,将规范中的应力应变曲线与混凝土塑性损伤模型相结合,揭示了塑性损伤对拱坝动力响应的影响;对于拱坝横缝接触非线性,应用了动接触力模型,并针对缝间抗震构造对该模型提出了改进。
     (2)结合混凝土损伤模型与横缝接触力模型对某高拱坝建立了三维有限元模型,分析了不同横缝数量或不同缝间抗震构造对拱坝动力响应的影响,验证了横缝及缝间抗震构造的设置能在不同程度上影响高拱坝在强震下的坝体应力、横缝开度、拱坝变形等动力响应特征。
     (3)通过一系列不同强度地震下的拱坝动力时程分析,研究了结构响应的不确定性问题。以高拱坝坝顶位移和横缝变形为典型响应参数,建立了高拱坝概率地震需求模型,并在此基础上比较了15种不同地震动强度指标与高拱坝响应的相关性,提出了三种改进的地震动强度指标。
     (4)根据拱坝响应随地震强度的变化趋势,提出了以响应拐点作为界限值的拱坝性能划分准则,并结合上述概率地震需求模型,采用高拱坝地震易损性分析方法,提出了不同地震动强度指标下针对拱坝顶部位移以及横缝变形的地震易损性曲线。
     (5)结合高拱坝的地震危险性分析结果与地震易损性曲线,提出了基于性能的高拱坝抗震安全评估方法,最终得到在设计基准期内拱坝响应针对不同性能等级的安全概率,并对高拱坝在极震下的性能目标准则提出了建议。通过对抗震加固优化后高拱坝抗震性能的对比分析验证了所提方法的合理性和适用性。
Recently, a series of arch dams with the height of200-300meters are under construction or will be constructed in the severe seismic regions in western part of China. The high arch dam is such a complicated concrete structural system that the seismic responses are full of great randomness and uncertainty. It's necessary to evaluate the seismic safety performance of high arch dams from the perspective of probability. In this study, seismic fragility analysis method is introduced to the seismic design of high arch dams. Also, a performance-based safety assessment of high arch dams is developed. The study includes:
     (1) Both material nonlinearity and joint contact nonlinearity are considered for the dynamic model of high arch dam. For the concrete material nonlinearity, the stress-strain curves in the code are combined with the concrete plastic damage model, demonstrating the effect of plastic damage to the dynamic response of concrete dams. For the joint contact nonlinearity, dynamic contact force model is applied and also modified for the consideration of seismic constructions set between the joints.
     (2) The three dimensional finite element model of a high arch dam is developed with the consideration of concrete damage model and joint contact model. The seismic responses for the arch dam models with different joint numbers or different seismic constructions between joints are analyzed. The results verify that contraction joints and the constructions between them can affect the arch dam stresses, joint opening and arch dam deformation when the dam is subjected to strong earthquakes.
     (3) The uncertainty of arch dam seismic response is analyzed by means of a series of dynamic time-history analyses under different magnitude earthquakes. The probabilistic seismic demand models of high arch dam are established with the response parameter of the crest displacement and the deformation of contraction joints. Furthermore, the correlation between15earthquake intensity measures and the dam response are compared, and3revised intensity measures are presented.
     (4) According to the variation tendency of the arch dam responses with the seismic intensity, the inflection points are utilized as the limit states of the arch dam performance. On the basis of the probabilistic seismic demand models and the limit states, the seismic fragility analysis method for high arch dam is applied. Also, the fragility curves for the crest displacements and joint deformations of arch dam are presented.
     (5) Combined the seismic fragility curves of the arch dam and the seismic hazard analysis in the dam region, a performance-based seismic safety assessment method is proposed for the high arch dam. The safety probabilities of arch dam in the design reference period for different performance levels are calculated. Also, the performance objective of high arch dams under maximum credible earthquake is suggested. In addition, the seismic safety of the high arch dam after seismic reinforcement and optimal design is assessed and compared to illustrate the rationality and applicability of the above-mentioned seismic safety assessment.
引文
[1]陈厚群.混凝土高坝抗震研究[M].北京:高等教育出版社,2011.
    [2]Ghanaat Y. Failure modes approach to safety evaluation of dams:13th World Conference on Earthquake Engineering, Vancouver, Canada,2004[C].
    [3]Hall J F, Dowling M J. Response of jointed arches to earthquake excitation[J]. Earthquake Engineering & Structural Dynamics,1985,13:779-798.
    [4]陈厚群,吴胜兴,党法宁等.高拱坝抗震安全[M].北京:中国电力出版社,2011.
    [5]朱伯芳,张超然.高拱坝结构安全关键技术研究[M].北京:中国水利水电出版社,2010.
    [6]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [7]谢礼立,马玉宏,翟长海.基于性态的抗震设防与设计地震动[M].北京:科学出版社,2009.
    [8]马晓霞,薛云飞,安平.基于性能的抗震设计理论研究综述[J].现代商贸工业,2008(07):351-352.
    [9]李刚,程耿东.基于性能的结构抗震设计——理论、方法与应用[M].北京:科学出版社,2004.
    [10]Structure Engineers Association of California. Performance based seismic engineering of buildings:Version 2000[R]. California:SEAOC,1995.
    [11]Applied Technology Council. Seismic evaluation and retrofit of concrete buildings:ATC40[R]. Red Wood City:ATC,1996.
    [12]Federal Emergency Management Agency. NEHRP commentary on the guidelines for the rehabilitation of buildings:FEMA 273[R]. Washington D. C.:FEMA,1996.
    [13]Federal Emergency Management Agency. NEHRP guidelines for the rehabilitation of buildings: FEMA 274[R]. Washington D. C.:FEMA,1996.
    [14]贾超,金峰,张楚汉.基于功能的结构抗震设计研究进展[J].世界地震工程,2006,22(01):32-36.
    [15]Yamanouchi H. Performance-based engineering for structural design of buildings[R]. Japan: Building Research Institute,2000.
    [16]小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,30(006):3-9.
    [17]Fragiadakis M, Papadrakakis M. Performance-based optimum seismic design of reinforced concrete structures[J]. Earthquake Engineering and Structural Dynamics,2008,37(6):825-844.
    [18]Zou X K, Chan C M, Li G, et al. Multiobjective optimization for performance-based design of reinforced concrete frames[J]. Journal of Structural Engineering,2007,133:1462.
    [19]Sasani M. Two level performance-based design of reinforced concrete structural walls[C]. Proceedings of 6th US National Conference on Earthquake Engineering, Oakland (CA),1998.
    [20]Munshi J A, Ghosh S K. Seismic performance of coupled wall system designed by displacement based approach[C]. Proceedings of 6th US National Conference on Earthquake Engineering, Oakland (CA),1998.
    [21]Mazzolani F M, Piluso V. A simple approach for evaluating performance levels of moment-resisting steel frames[J]. Seismic Design Methodologies Jbr the Next Generation of Codes, 1997:241-251.
    [22]Taylor A W, Stone W C. Performance-based seismic design of reinforced concrete bridge columns[C]. Proceedings of 5th US National Conference on Earthquake Engineering, vol.1, Oakland (CA),1994.
    [23]Lehman D E, Moehle J P. Seismic performance of well-confined concrete bridge columns[M]. Pacific Earthquake Engineering Research Center,2000.
    [24]Harris S P, Herman K. Performance-based seismic upgrading of lifeline electric utility buildings using probabilistic risk assessment methods[C]. Proceedings of 6th US National Conference on Earthquake Engineering, Oakland (CA),1998.
    [25]蒋欢军,郑建波,张桦.基于位移的抗震设计研究进展[J].工业建筑,2008,38(007):1-5.
    [26]蔡元奇,朱以文,黄建中,等.评估结构抗震性能的能量方法[J].地震工程与工程振动,2003(04):64-68.
    [27]汪梦甫,周锡元.基于性能的建筑结构抗震设计[J].建筑结构,2003,33(003):59-61.
    [28]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报(自然科学版),2002(12):1429-1434.
    [29]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构,2001,31(4):3-6.
    [30]吕大刚,贾明明,李佳,等.钢框架结构直接基于位移的抗震性能设计[J].哈尔滨工业大学学报,2011,43(2):14-18.
    [31]门进杰,史庆轩,周琦.框架结构基于性能的抗震设防目标和性能指标的量化[J].土木工程学报,2008,41(009):76-82.
    [32]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].土木工程学报,2005,38(001):1-10.
    [33]李建中,管仲国.基于性能桥梁抗震设计理论发展[J].工程力学,2011,28:24-30.
    [34]魏标,李建中.基于位移的非规则梁桥抗震设计[J].土木工程学报,2011,44(8):95-101.
    [35]韩建平,阎茹,李慧.基于性能的黏弹性阻尼器减震结构抗震设计[J].地震工程与工程振动,2008,28(001):175-181.
    [36]章丛俊,李爱群.基于性能的消能减震结构抗震设计思想研究[J].建筑结构,2006(36(增刊)):51-54.
    [37]周云,丁春花,邓雪松.基于性能的耗能减震加固设计理论框架[J].工程抗震与加固改造,2005,27(005):45-49.
    [38]林皋,陈健云.混凝土大坝的抗震安全评价[J].水利学报,2001(02):8-15.
    [39]陈厚群.大坝的抗震设防水准及相应性能目标[J].工程抗震与加固改造,2005(S1):7-12.
    [40]张楚汉,金峰,沈怀至,等.基于功能的高坝抗震安全与风险评价[C].新世纪水利工程科技前沿,天津,2005.天津大学出版社.
    [41]贾超,金峰,王品江,等.高坝抗震设防问题的探讨[J].地震工程与工程振动,2005(01):155-158.
    [42]沈怀至,张楚汉,寇立夯.基于功能的混凝土重力坝地震破坏评价模型[J].清华大学学报: 自然科学版,2007,47(012):2114-2118.
    [43]沈怀至.基于性能的混凝土坝—地基系统地震破损分析与风险评价[D].北京:清华大学,2007.
    [44]寇立夯.基于性能的高坝抗震设计分析关键问题研究[D].北京:清华大学,2009.
    [45]Cornell C A, Krawinkler H. Progress and challenges in seismic performance assessment[J]. PEER Center News,2000,3(2):1-4.
    [46]Porter K A. An Overview of PEER's Performance-Based Earthquake Engineering Methodology[C].9th International conference on applications of statistics and probability in civil engineering(1CASP9), San Francisco,2003.
    [47]Cornell C A. Hazard, ground motions and probabilistic assessment for PBSD[C]. Proceeding of the international workshop on performance based seismic design concepts and implementation, Bled, Slovenia,2004.
    [48]Deierlein G G, Krawinkler H, Cornell C A. A framework for performance-based earthquake engineering[C]. Pacific Conference on Earthquake Engineering,2003.
    [49]Keefe POO, Westgate K. N, Wisner B. Taking the Naturalness out of natural disasters[J]. Nature, 1976,260(15):566-567.
    [50]Cuny F C. Disasters and Development[M]. New York:Oxford University Press,1983.
    [51]Varley A. The exceptional and the everyday:Vulnerability analysis in the international decade for natural disaster reduction. In A. Varley(ed). Disasters, Development and Environment[M]. Chichesterl:John Wiley & Sons Ltd,1994.
    [52]Bardat A H, Moya F Y, Canas J A. Damage scenarios simulation for seismic risk assessment in urban zones[J]. Earthquake Spectra,1996,12(3).
    [53]Whitman R V, Reed J W, Hong S T. Earthquake damage probability matrices [C]. Proceedings of the 5th World Conference on Earthquake Engineering,1973.
    [54]张菊辉.基于数值模拟的规则梁桥墩柱的地震易损性分析[D].上海:同济大学,2006.
    [55]Kazuta H, Takahiro S. Fragility estimation of an isolated FBR structure considering the ultimate state of rubber bearings[J]. Nuclear Engineering and Design,1994(147):183-196.
    [56]Yamaguchi A. Seismic failure probability evaluation of redundant fast breeder reactor piping system by probabilistic structural response analysis[J]. Nuclear Engineering and Design, 1997(195):237-245.
    [57]Ghiocel D M. Seismic response and fragility evaluation for an Eastern US NPP including soil-structure interaction effects[J]. Reliability Engineering and System Safety,1998(62):197-214.
    [58]Hwang H H M, Huo J R. Seismic fragility analysis of electric substation equipment and structures[J]. Probabilistic Engineering Mechanics,1998,13(2):107-116.
    [59]Kapilesh B. Evaluation of seismic fragility of structures—a case study[J]. Nuclear Engineering and Design,2002(212):253-272.
    [60]Bhargava K, Ghosh A K, Ramanujama S. Seismic response and fragility analysis of a water storage structure[J]. Nuclear Engineering and Design,2005(235):1481-1501.
    [61]Ellingwood B. Validation studies of seismic PRAs[J]. Nuclear Engineering and Design, 1990,123(2-3):189-196.
    [62]Ellingwood B R. Earthquake risk assessment of building structures[J]. Reliability Engineering& System Safety,2001,74(3):251-262.
    [63]Wen Y K, Ellingwood B R, Veneziano D, et al. Uncertainty modeling in earthquake engineering: Mid-America Earthquake Center Project FD-2 Report[R].Mid-America Earthquake Center,2003.
    [64]Wen Y K, Ellingwood B R, Bracci J M, et al. Vulnerability function framework for consequence-based engineering[M]. Mid-America Earthquake Center,2004.
    [65]Ellingwood B R, Wen Y K. Risk-benefit-based design decisions for low- probability/high consequence earthquake events in Mid-America[J]. Progress in Structural Engineering and Materials, 2005,7(2):56-70.
    [66]Wen Y K, Ellingwood B R. The role of fragility assessment in consequence-based engineering[J]. Earthquake Spectra,2005,21:861.
    [67]Ellingwood B R, Celik O C, Kinali K. Fragility assessment of building structural systems in Mid-America[J]. Earthquake Engineering & Structural Dynamics,2007,36(13):1935-1952.
    [68]Elnashai A S. Assessment of seismic vulnerability of structures[J]. Journal of Constructional Steel Research,2006,62(11):1134-1147.
    [69]Rossetto T, Elnashai A. Derivation of vulnerability functions for European-type RC structures based on observational data[J]. Engineering Structures,2003,25(10):1241-1263.
    [70]Erberik M A, Elnashai A S. Fragility analysis of flat-slab structures[J]. Engineering structures, 2004,26(7):937-948.
    [71]Ji J, Elnashai A S, Kuchma D A. An analytical framework for seismic fragility analysis of RC high-rise buildings[J]. Engineering Structures,2007,29(12):3197-3209.
    [72]Rossetto T, Elnashai A. A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures[J]. Engineering structures,2005,27(3):397-409.
    [73]Kwon O S, Elnashai A. The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure[J]. Engineering structures,2006,28(2):289-303.
    [74]Sasani M, Der Kiureghian A. Seismic fragility of RC structural walls:displacement approach[J]. Journal of Structural Engineering,2001,127(2):219-228.
    [75]Sasani M, Der Kiureghian A, Bertero V V. Seismic fragility of short period reinforced concrete structural walls under near-source ground motions[J]. Structural safety,2002,24(2):123-138.
    [76]Gardoni P, Der Kiureghian A, Mosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations[J]. Journal of Engineering Mechanics,2002,128(10):1024-1038.
    [77]高小旺,钟益村.底层全框架砖房震害预测方法[J].建筑科学,1990,2:47-53.
    [78]尹之潜.地震灾害及损失预测方法[M].地震出版社,1995.
    [79]尹之潜,杨淑文.地震损失分析与设防标准[M].地震出版社,2004.
    [80]赵少伟,寞远明,张书祥,等.建筑结构震害预测方法研究与实践[J].地震工程与工程振动,2006,26(3).
    [81]钟德理,冯启民.基于地震动参数的建筑物震害研究[J].地震工程与工程振动,2004,24(005):46-51.
    [82]郭小东,马东辉,苏经宇,等.城市抗震防灾规划中建筑物易损性评价方法的研究[J].世界地震工程,2005,21(2):129-135.
    [83]李静,陈健云,温瑞智.框架结构群体震害易损性快速评估研究[J].振动与冲击,2012,31(7):99-103.
    [84]吕大刚,王光远.基于可靠度和灵敏度的结构局部地震易损性分析[J].自然灾害学报,2006,15(004):157-162.
    [85]吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析[J].自然灾害学报,2006,15(2):107-114.
    [86]刘晶波,刘阳冰,闫秋实,等.基于性能的方钢管混凝土框架结构地震易损性分析[J].土木工程学报,2010(2):39-47.
    [87]Basoz N I, Kiremidjian A S. Evaluation of bridge damage data from the Loma Prieta and Northridge, California earthquakes[R].MCEER,1998.
    [88]Karim K R, Yamazaki F. Comparison of empirical and analytical fragility curves for RC bridge piers in Japan[C].8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability,1999.
    [89]Karim K R, Yamazaki F. Effect of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation[J]. Earthquake Engineering & Structural Dynamics, 2001,30(12):1839-1856.
    [90]Karim K R, Yamazaki F. A simplified method of constructing fragility curves for highway bridges[J]. Earthquake engineering & structural dynamics,2003,32(10):1603-1626.
    [91]Lupoi A, Franchin P, Schotanus M. Seismic risk evaluation of RC bridge structures[J]. Earthquake engineering & structural dynamics,2003,32(8):1275-1290.
    [92]Kim S H, Shinozuka M. Development of fragility curves of bridges retrofitted by column jacketing[J]. Probabilistic Engineering Mechanics,2004,19(1-2):105-112.
    [93]Hwang H.,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报,2004,37(6):47-51.
    [94]王天威,杨春环.铁路桥梁的震害预测和抗震加固[J].铁道建筑,1991,8:1.
    [95]朱美珍.公路桥梁震害预测的实用方法[J].同济大学学报:自然科学版,1994,22(3):279-283.
    [96]刘兴业,王海超,邓文樵.人工神经元网络在公路工程震害预测方面的应用[J].地震工程与工程振动,1996,16(4):97-103.
    [97]赵艳林,梅占馨.拱桥震害预测的灰色聚类方法[J].自然灾害学报,1998,7(002):92-98.
    [98]程海根,董明.桥梁震害的模糊综合评估[J].云南交通科技,1999,15(4):32-35.
    [99]王建民.基于概率的桥梁结构抗震性能研究[D].北京:北京交通大学,2006.
    [100]吴子燕,王其昂,韩晖,等.基于响应面法的桥梁地震易损性分析研究[J].西北工业大学学报,2011,29(001):103-107.
    [101]Applied Technology Council. Earthquake damage evaluation data for California:ATC-13[R]. Redwood City, California:ATC,1985.
    [102]Lin L, Adams J. Lessons for the fragility of Canadian hydropower components under seismic loading[C].9th Canadian Conference on Earthquake Engineering, Ottawa, Ontario,2007.
    [103]Lin L, Adams J. Seismic vulnerability and prioritization ranking of dams in Canada[C].14 World conference of earthquake engineering, China, Beijing,2008.
    [104]Tekie P B. Fragility Analysis of Concrete Gravity Dams[D]. The Johns Hopkins University,2002.
    [105]Papadrakakis M, Papadopoulos V, Lagaros N D, et al. Vulnerability analysis of large concrete dams using the continuum strong discontinuity approach and neural networks[J]. Structural Safety, 2008,30(3):217-235.
    [106]钟红,李晓燕,林皋.基于破坏形态的重力坝地震易损性研究[J].大连理工大学学报,2012,52(1):60-65.
    [107]陈厚群.混凝土高坝强震震例分析和启迪[J].水利学报,2009,40(1):10-18.
    [108]Ngo D, Scordelis A C. Finite Element Analysis of Reinforced Concrete Beams[J]. ACI Journal, 1967,64:152-163.
    [109]钟红,林皋,李建波,等.高拱坝地震损伤破坏的数值模拟[J].水利学报,2008,39(007):848-853.
    [110]Rashid Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968,7(4):334-344.
    [111]Cope R J, Rao P V, Clark L A, et al. Modeling of reinforced concrete behavior for finite element analysis of bridge slabs[M]//Numerical Methods for Nonlinear Problems. Swansea:Pineridge Press, 1980:457-470.
    [112]De Borst R, Nauta P. Non-orthogonal cracks in a smeared finite element model[J]. Engineering Computations,1985,2(1):35-46.
    [113]Bazant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Materials and structures, 1983,16(3):155-177.
    [114]Bhattacharjee S S, Leger P. Seismic cracking and energy dissipation in concrete gravity dams[J]. Earthquake engineering & structural dynamics,1993,22(11):991-1007.
    [115]Guanglun W, Pekau O A, Chuhan Z, et al. Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics[J]. Engineering Fracture Mechanics,2000,65(1):67-87.
    [116]Lotfi V, Espandar R. Seismic analysis of concrete arch dams by combined discrete crack and non-orthogonal smeared crack technique[J]. Engineering structures,2004,26(1):27-37.
    [117]周元德.混凝土非线性断裂力学模型与高拱坝开裂分析研究[D].北京:清华大学,2004.
    [118]Calayir Y, Karaton M. Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction[J]. Computers & structures,2005,83(19):1595-1606.
    [119]钟红.高拱坝地震损伤开裂的大型数值模拟[D].大连:大连理工大学,2008.
    [120]谢和平.岩石混凝土损伤力学[M].中国矿业大学出版社,1990.
    [121]Dougill J W, Lau J C, Burt N J. Toward a theoretical model for progressive failure and softening in rock, concrete and similar materials[J]. Journal of Engineering Mechanics, ASCE-EMD, 1976:333-355.
    [122]Mazars J. A description of micro-and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics,1986,25(5):729-737.
    [123]Mazars J, Pijaudier-Cabot G. Continuum damage theory-application to concrete[J]. Journal of Engineering Mechanics,1989,115(2):345-365.
    [124]Cervera M, Oliver J, Faria R. Seismic evaluation of concrete dams via continuum damage models[J]. Earthquake engineering & structural dynamics,1995,24(9):1225-1245.
    [125]Valliappan S, Yazdchi M, Khalili N. Seismic analysis of arch dams—a continuum damage mechanics approach[J]. International journal for numerical methods in engineering, 1999,45(11):1695-1724.
    [126]Faria R, Oliver J, Cervera M. Modeling material failure in concrete structures under cyclic actions[J]. Journal of Structural Engineering,2004,130:1997.
    [127]陈健云,林皋,胡志强.考虑混凝土应变率变化的高拱坝非线性动力响应研究[J].计算力学学报,2004,21(1):45-49.
    [128]潘坚文,王进廷,张楚汉.超强地震作用下拱坝的损伤开裂分析[J].水利学报,2007,38(02):143-149.
    [129]Niwa A, Clough R W. Shaking table research on concrete dam models[M]. University of California, Earthquake Engineering Research Center,1980.
    [130]徐轶慷.考虑横缝影响的拱坝地震损伤分析与抗震设计[D].杭州:浙江大学,2008.
    [131]赵兰浩.考虑坝体-库水-地基相互作用的有横缝拱坝地震响应分析[D].南京:河海大学,2006.
    [132]胡志强.考虑坝-基动力相互作用的有横缝拱坝地震响应分析[D].大连:大连理工大学,2004.
    [133]Kuo J S H. Joint-opening nonlinear mechanism:Interface smeared crack model [R].EERC Report, No. UCB/EERC 82/09, University of California at Berkeley,1982.
    [134]晏启祥.有横缝高拱坝的非线性地震响应分析[D].成都:四川大学,2002.
    [135]Fenves G L, Mojtahedi S, Reimer R B. Effect of contraction joints on earthquake response of an arch dam[J]. Journal of structural engineering,1992,118(4):1039-1055.
    [136]刘晶波,王铎.考虑界面摩擦影响的可接触型裂纹动态分析的动接触力模型[M].北京:科学出版社,1995.
    [137]Dowling M J. Nonlinear seismic analysis of arch dams[R].Earthquake engineering research laboratory, California Institute of Technology,1987.
    [138]Dowling M J, Hall J F. Nonlinear seismic analysis of arch dams[J]. Journal of engineering mechanics,1989,115:768-789.
    [139]Fenves G L, Mojtahedi S, Reimer R B. ADAP-88:A computer program for nonlinear earthquake analysis of concrete arch dams[M]. Earthquake Engineering Research Center, College of Engineering, University of California at Berkeley,1989.
    [140]Lau D T, Noruziaan B, Razaqpur A G. Modeling of contraction joint and shear sliding effects on earthquake response of arch dams[J]. Earthquake Engineering & Structural Dynamics, 1998,27(10):1013-1029.
    [141]徐艳杰,张楚汉,王光纶,等.小湾拱坝模拟实际横缝间距的非线性地震反应分析[J].水利学报,2001(04):68-74.
    [142]涂劲,陈厚群,杜修力.高拱坝非线性地震反应分析中横缝模拟方案研究[J].水力发电学报,2001(02):18-25.
    [143]林皋,胡志强.拱坝横缝影响及有效抗震措施的研究[J].世界地震工程,2004,20(03):1-8.
    [144]盛志刚,张楚汉,王光纶,等.拱坝横缝非线性动力响应的模型试验和计算分析[J].水力发电学报,2003(01):34-43.
    [145]盛志刚,徐艳杰,刘海笑.拱坝横缝配筋动力响应的模型试验和计算分析[J].清华大学学报(自然科学版),2009,49(03):317-320.
    [146]盛志刚,徐艳杰,刘海笑.带横缝拱坝地震破坏机理的振动台试验研究[J].水力发电学报,2009(03):21-24.
    [147]郭永刚,涂劲,陈厚群.高拱坝伸缩横缝间布设阻尼器对坝体地震反应影响的研究[J].世界地震工程,2003,19(03):44-49.
    [148]陈观福,徐艳杰.强震区高拱坝横缝配筋抗震措施[J].清华大学学报:自然科学版,2003,43(002):266-269.
    [149]李南生,楼梦麟,周晶,等.拱坝横缝间附加弹簧,阻尼的减震计算[J].土木工程学报,2008,41(005):94-99.
    [150]Karaa F, Krzysztofowicz R. Bayesian decision analysis of dam safety[J]. Applied mathematics and computation, 1984,14(4):357-380.
    [151]Yegian M K, Marciano E A, Ghahraman V G. Seismic risk analysis for earth dams[J]. Journal of Geotechnical Engineering,1991,117(1):18-34.
    [152]Lave L B, Balvanyos T. Risk analysis and management of dam safety[J]. Risk analysis, 1998,18(4):455-462.
    [153]Varbanov G, Kostov M, Stefanov D, et al. Seismic risk assessment for large dams[C]. Proceedings of 8th Pacific Conference on Earthquake Engineering, Singapore,2007.
    [154]Tosun H, Zorluer I, Orhan A, et al. Seismic hazard and total risk analyses for large dams in Euphrates basin, Turkey[J]. Engineering geology,2007,89(1-2):155-170.
    [155]王志军,顾冲时,娄一青.基于支持向量机的溃坝生命损失评估模型及应用[J].水力发电,2008,34(1):67-70.
    [156]苏怀智,胡江,吴中如,等.基于时变风险率的大坝使用寿命评估模型[J].全国大坝安全监测技术信息网2008年度技术信息交流会暨全国大坝安全监测技术应用和发展研讨会论文集,2008.
    [157]金峰,贾超,王品江,等.基于功能的高坝建设方案的风险决策研究[J].岩土力学,2006,27(008):1421-1424.
    [158]沈怀至,金峰,张楚汉.基于功能的混凝土重力坝抗震风险模型研究[J].岩土力学,2008,29(12):3323-3328.
    [159]马玉宏,赵桂峰.地震灾害风险分析及管理[M].北京:科学出版社,2008.
    [160]Goodman J. Structural fragility and principle of maximum entropy[J]. Structural safety, 1985,3(1):37-46.
    [161]Tekie P B, Ellingwood B R. Seismic fragility assessment of concrete gravity dams[J]. Earthquake engineering & structural dynamics,2003,32(14):2221-2240.
    [162]Federal Emergency Management Agency. HAZUS99 User's Manual[R]. Washington D.C.: FEMA,1999.
    [163]Shinozuka M, Feng M Q, Lee J, et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics,2000,126(12):1224-1231.
    [164]Elnashai A, Borzi B, Vlachos S. Deformation-Based Vulnerability Functions for RC Bridges[J]. Structural Engineering and Mechanics,2004,17(2):215-244.
    [165]Yamazaki F, Hamada T, Motoyama H, et al. Earthquake Damage Assessment of Expressway Bridges in Japan [J]. Technical Council on Lifeline Earthquake Engineering Monograph, 1999(16):361-371.
    [166]Chryssanthopoulos M K, Dymiotis C, Kappos A J. Probabilistic evaluation of behaviour factors in EC8-designed R/C frames[J]. Engineering Structures,2000,22(8):1028-1041.
    [167]Mosalam K M, Ayala G, White R N, et al. Seismic fragility of LRC frames with and without masonry infill walls[J]. Journal of Earthquake Engineering,1997,1(4):693-720.
    [168]Reinhorn A M, Barron-Corverra R, Ayala A G. Spectral evaluation of seismic fragility of structures[C]. Proceedings ICOSSAR,2001.
    [169]Kappos A, Pitilakis K, Stylianidis K, et al. Cost-benefit analysis for the seismic rehabilitation of buildings in Thessaloniki, bases on a hybrid method of vulnerability assessment[C]. International conference on seismic zonation,1996.
    [170]Lin S L. An integrated earthquake impact assessment system[D]. University of Illinois at Urbana-Champaign,2010.
    [171]Jeong S H, Elnashai A S. Probabilistic fragility analysis parameterized by fundamental response quantities[J]. Engineering Structures,2007,29(6):1238-1251.
    [172]Elnashai A S, Borzi B, Vlachos S. Deformation-based vulnerability functions for RC bridges[J]. Structural Engineering and Mechanics,2004,17(2):215-244.
    [173]秦权,林道锦,梅刚.结构可靠度随机有限元[M].清华大学出版社,2006.
    [174]王薇.土石坝安全风险分析方法研究[D].天津:天津大学,2012.
    [175]Box G E P, Wilson K B. On the Experimental Attainment of Optimum Conditions[J]. Journal of the Royal Statistical Society, Series B,1951,13(1):1-45.
    [176]Faravelli L. A response-surface approach for reliability analysis[J]. Eng. ASCE, 1989,115(12):2763-2781.
    [177]潘峰.钢筋混凝土框架结构的整体概率地震需求分析[D].哈尔滨:哈尔滨工业大学,2007.
    [178]Towashiraporn P. Building seismic fragilities using response surface metamodels[D]. Georgia Institute of Technology,2004.
    [179]Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines[J]. Journal of Structural Engineering, 2002,128(4):526-533.
    [180]Federal Emergency Management Agency. Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings:FEMA350[R]. Washington D.C.:FEMA,2000.
    [181]Shome N. Probabilistic seismic demand analysis of nonlinear structures[D]. Stanford University, 1999.
    [182]Pinto P E, Giannini R, Franchin P. Seismic reliability analysis of structures[M]. IUSS Press,2004.
    [183]Nielson B G. Analytical fragility curves for highway bridges in moderate seismic zones[D]. Georgia Institute of Technology,2005.
    [184]Hamburger R O, Foutch D A, Cornell C A. Translating research to practice:FEMA/SAC performance-based design procedures[J]. Earthquake Spectra,2003,19:255.
    [185]寇立夯,金峰,王进廷.基于概率的混凝土重力坝地震反应分析[J].水力发电学报,2009,28(005):23-28.
    [186]Aslani H, Miranda E. Probability-based seismic response analysis[J]. Engineering Structures, 2005,27(8):1151-1163.
    [187]Lemaitre J, Plumtree A. Application of Damage Concepts of Predict Creep-Fatigue Failures[J]. J. Eng. Mater. Technol.,1979,101(3):284-292.
    [188]Sidoroff F. Description of anisotropic damage application to elasticity[C]. IUTAM Colloquium, Physical nonlinearities in structural analysis,1981.
    [189]Loland K E. Continuous damage model for load-response estimation of concrete[J]. Cement and Concrete Research,1980,10(3):395-402.
    [190]Mazars J. A description of micro-and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics, 1986,25(5-6):729-737.
    [191]中华人民共和国住房和城乡建设部.混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [192]中国水利水电科学研究院.DL5073-2000水工建筑物抗震设计规范[S].北京:中国电力出版社,2000.
    [193]Westergaard H M. Water pressures on dams during earthquakes[J]. Transactions of the American Society of Civil Engineers, 1933,98(2):418-433.
    [194]李建华,李杰.考虑反应谱变异特性的人工合成地震波[J].同济大学学报:自然科学版,2002,30(009):1038-1043.
    [195]Pacific Earthquake Engineering Research Center:NGA Database [EB/OL]. http://peer.berkeley.edu/nga/index.html.
    [196]Shome N, Cornell C A, Bazzurro P, et al. Earthquakes, records, and nonlinear responses[J]. Earthquake Spectra, 1998,14(3):469-500.
    [197]Bommer J J, Martinez Pereira A. The effective duration of earthquake strong motion[J]. Journal of Earthquake Engineering,1999,3(2):127-172.
    [198]Arias A. A measure of earthquake intensity[R].In Seismic Design for Nuclear Power Plants, MIT Press, Cambridge, MA, USA,1970.
    [199]Elnashai A, Di Sarno L. Fundamentals of earthquake engineering[M]. Wiley,2008.
    [200]Pagratis D. Prediction of earthquake strong ground-motion for engineering use[D]. London: Imperial College,1995.
    [201]Kwon O, Elnashai A. Probabilistic Seismic Assessment of Structure, Foundation, and Soil Interacting Systems[D]. University of Illinois at Urbaba-Champaign,2007.
    [202]陈亮,李建中,管仲国,等.强地面运动持时对钢筋混凝土桥墩地震需求的影响[J].振动与 冲击,2008,27(11):154-159.
    [203]王亚勇,刘小弟,程民宪.建筑结构时程分析法输入地震波的研究[J].建筑结构学报,1991,12(2):51-60.
    [204]Neumann F. A broad formula for estimating earthquake forces on oscillators[C]. Proceeding of 2nd World Conference on Earthquake Engineering, Tokyo,1960.
    [205]郝敏,谢礼立,徐龙军.关于地震烈度物理标准研究的若干思考[J].地震学报,2005,27(2):230-234.
    [206]Riddell R, Garcia J E. Hysteretic energy spectrum and damage control[J]. Earthquake engineering & structural dynamics,2001,30(12):1791-1816.
    [207]Kramer S L. Geotechnical earthquake engineering[M]. Upper Saddle River, N.J.:Prentice-Hall, 1996.
    [208]Park Y J, Ang A H S, Wen Y K. Seismic damage analysis of reinforced concrete buildings[J]. Journal of Structural Engineering,1985,111(4):740-757.
    [209]Mackie K, Stojadinovic B. Seismic demands for performance-based design of bridges[M]. Pacific Earthquake Engineering Research Center, College of Engineering, University of California,2003.
    [210]Von Thun J L, Roehm L H, Scott G A, et al. Earthquake ground motions for design and analysis of dams[C]. Earthquake Engineering and Soil Dynamics Ⅱ—Recent Advances in Ground-Motion Evaluation,1988. Geotechnical Special Publication.
    [211]Housner G W. Spectrum intensities of strong-motion earthquakes[C]. Proceedings of the symposium on earthquake and blast effects on structures, Los Angeles, CA,1952.
    [212]Martinez-Rueda J E. Scaling procedure for natural accelerograms based on a system of spectrum intensity scales[J]. Earthquake Spectra,1998,14(1):135-152.
    [213]范书立,陈健云,王建涌,等.高拱坝振动台地震破坏试验研究及数值仿真[J].岩石力学与工程学报,2009,28(003):467-474.
    [214]万正东.RC框架结构基于概率损伤模型的地震易损性与风险分析[D].哈尔滨:哈尔滨工业大学,2009.
    [215]陈健云,郑毅.强震下拱坝损伤整体判别指标的初步探讨[J].水利学报,2010,41(7):826-832.
    [216]中华人民共和国住房和城乡建设部.GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [217]ICOLD. Selecting parameters for large dams-guidelines and recommendations. ICOLD Bulleton[R].1989.
    [218]U.S. Army Corps of Engineers. Earthquake design and evaluation for civil works projects. ER 1110-2-1806[R]. Washington, DC:U.S. Army Corps of Engineers,1995.
    [219]Federal Emergency Management Agency. Federal guidelines for dam safety:hazard potential classification systems for dams:FEMA333[R]. Washington D.C.:FEMA,1998.
    [220]Yasuda N, Shimamoto K, Yamaguchi Y. Outline of "Guidelines for Seismic Performance Evaluation of Dams During Large Earthquakes (Draft)"[C].39th Joint meeting panel on wind and seismic effects, Tsukuba,2007.
    [221]Mejia L, Gillon M, Walker J, et al. Criteria for developing seismic loads for the safety evaluation of dams of two New Zealand owners[J]. ANCOLD BULLETIN,2002:65-74.
    [222]Gutenberg B, Richter C F. Seismicity of the earth and associated phenomena[M]. Hafner New Delhi,1965.
    [223]陈厚群,侯顺载,梁爱虎.水电工程抗震设防概率水准和地震作用概率模型[J].自然灾害学报,1993,2(2):91-98.
    [224]Bureau G J. In:Chenh, W.F., Scawthorn, C. (Eds.), Dams and Appurtenant Facilities in Earthquake Engineering Handbook[Z].200321-26.
    [225]Bureau G J, Ballentine G D. A comprehensive seismic vulnerability and loss assessment of the State of South Carolina using HAZUS[C].7th National Conference on Earthquake Engineering, Boston, 2002.
    [226]Kennedy R P, Short S A. Basis for seismic provisions of DOE-STD-1020[R].Lawrence Livermore National Laboratory and Brookhaven National Laboratory,1994.
    [227]曹去修,向光红,崔玉柱.高地震烈度区特高拱坝抗震设计[J].水力发电,2009,35(05):52-55.
    [228]陈观福,张楚汉,徐艳杰.小湾拱坝跨横缝抗震钢筋的影响因素分析[J].水电能源科学,2005,23(1).
    [229]陈观福,张楚汉,徐艳杰.强震作用下小湾拱坝横缝变形控制研究[J].水力发电,2003,29(009):23-26.
    [230]梁通,周元德.强震区高拱坝的两种抗震措施效果研究[J].水电能源科学,2011,29(011):100-102.
    [231]孙万泉,吕爱钟.高拱坝横缝间布设SMA耗能棒材的减震分析与研究[J].水力发电学报,2011,30(2):96-99.
    [232]王品江,王进廷,周元德,等.强震区高拱坝抗震措施比较[J].水利水电科技进展,2006,26(004):15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700