用户名: 密码: 验证码:
地震及汽车作用下长大混凝土桥梁振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和社会的发展,鉴于线路平顺性和稳定性要求、环境保护等诸多因素的考量,可能建造连续几公里甚至是几十公里的长大桥梁。桥梁结构,尤其是预应力混凝土结构桥梁,在公路交通线路总长的比重日益增加。在地震多发区域,一方面,长大桥梁的不同支撑可能经受差异较大地震作用,而对地震动的空间变异性研究相对滞后;另外一方面,汽车行驶在桥梁上遭遇突发地震作用的可能性大大提高,地震及汽车联合作用下桥梁耦合振动响应需要深入研究,然而国内外的相关研究几乎是一片空白。在总结和吸取前人研究成果的基础上,本论文以长大混凝土桥梁为背景,重点对地震动空间变异性、地震及汽车联合作用下桥梁耦合振动这两个方面的关键问题进行了研究。
     本文主要的研究内容和结论如下:
     1.深入研究了地震波空间变异性机理,提出了一套切实可行的地震动模拟方案:在已知场地特征、空间相关模型条件下使用无条件模拟技术产生多点地震加速度时程样本;在给定参考点地震波、空间相干模型条件下使用有条件模拟技术产生多点地震加速度时程样本。针对地震波中存在的误差问题,系统的研究了剔除方法,给出了各种方法的适用性。
     2.采用解析方法研究简支梁遭遇两点地震激励的振动问题,并结合数值方法给出了梁体的动力响应。研究结果表明地震波中相位成分的变化对结构的动力响应有显著的影响。
     3.针对桥梁抗震计算方法中存在的误区,研究了精确求解法、大质量法、大刚度法的适用性。研究结果表明:不同的时程输入方式对数值求解方法的收敛速度、计算精度有较大影响;精确求解法中输入地震加速度时程只能用于线性分析,输入地震位移时程的求解方法可以用于非线性分析;相对于大刚度法而言,大质量法求解精度较高。
     4.选取某连续刚构桥梁作为研究对象,选定一条实际地震加速度时程记录作为参考,采用有条件模拟技术生成满足空间变异特征的多点地震加速度时程,借助于零残余位移法对其进行修正,消除误差影响,并施加到桥梁纵向上;采用大质量法求解结构动力响应。数值分析结果表明:在实际桥梁抗震分析过程中,地震波失相干性的影响不可忽略,只有充分考虑完全变异特性才能得到偏于安全的分析结果。
     5.提出了地震激励及汽车联合作用下桥梁耦合振动问题,并建立了相关分析模型。将耦合系统划分为桥梁、车辆两个子系统;引入刚体部件,基于有限元方法推导并建立车辆运动方程;采用有限元方法建立桥梁子系统模型,并使用振型叠加法缩减动力自由度;桥面平整度作为耦合系统的自激励源,而地震荷载直接施加到桥梁结构上;使用耦合关系将两个子系统联结在一起。提出了数值求解流程以及其中关键问题的解决方案,并编制DIARVB计算软件。
     6.应用地震及汽车联合作用下桥梁耦合振动分析模型及DIARVB计算软件,分析一辆两轴货车以不同行驶速度通过三跨预应力混凝土连续刚构桥梁遭遇突发地震作用时耦合系统的动力响应。研究结果表明:桥梁子系统的动力响应完全由地震激励决定;地震激励通过桥梁结构传递给汽车子系统,会导致其振动放大的现象,从而危及汽车的行走安全;车速对汽车系统动力响应影响较大;地震波的频谱特性改变了汽车-桥梁耦合振动系统的动力响应规律以及峰值。
With the development of economy and society, the long-extension bridges of which totallengths are beyond several or tens of kilometers have been built in order to meet therequirements including the smoothness and the stability of the road and the environmentalprotection pressure. And the ratio of the concrete bridges to the road traffic line increasesgreatly. On one hand, different supports of the long-extension bridge may suffer fromvariational seismic ground motions. Yet the spatial variability of ground motion study islagging behind. On the other hand, the possiblity that a road vehicle is driven on a bridgewhen earthquakes occur is higher and higher, which shows that road vehicle-bridge coupledsystem subjected to seismic excitation should be in-depth study. However, no valuableinformation on this subject is available. On the basis of the summary and general study of thepredecessor’s research experiences in China and abroad, the paper deals with the vibration oflong-extension concrete bridge under the actions of earthquake and road vehicle, in which thespatial variation of seismic ground motion and the bridge vibration under the simultaneousaction of earthquake and road vehicle are considered.
     The main contents and research results are as follows:
     1. The mechanism of spatial variability of seismic ground motion is discussed. Anoperable scheme for the seismic wave simulation is presented. According to the spectraltheory, the unconditional simulation method is used to generate seismic acceleration timehistories of bridge supports where site characteristics and coherent model are known. Theconditional simulation method based on multivariate linear prediction theory is used wherethe seismic acceleration time history of one support and coherent model are provided. Themethods to eliminate error of earthquake wave and their applicabilities are discussed.
     2. Dynamic response of a simply-supported beam subjected to two-point seismicexcitation is studied using the analytic method and the numerical solution, which results showthat the phase component of seismic wave plays an important role.
     3. Some mistakes are popular in the computation methods of the bridge seismic analysis.The applicabilities of accurate solution method, large mass method and large stiffness methodin bridge aseisimatic analysis are discussed. The numberical results show that different input pattern of seismic has great impact to convergence speed and solving precision. Input patternof seismic acceleration in accurate solution method is only suitable for linear analysis, andinput pattern of seismic displacement applies to nonlinear analysis. Compare with largestiffness method, the solving precision of large mass method is higher.
     4. A continuous rigid frame bridge is taken as a case study. The time history of realearthquake record is taken as a reference. The conditional simulation method is used togenerate seismic acceleration time histories of bridge supports. The errors in time historiesare eliminated using residual value method of zero final displacement. Large mass method isused to solve the equilibrium equations of motion bridge structure. The numberical resultsshow that the influence of loss of earthquake wave coherence on bridge dynamic responsecan not be neglected and only full consideration of spatial variability can obtain safer results.
     5. The dynamic interaction model of road vehicle-bridge coupled system subjected toseismic ground motion is established, which consists of road vehicle subsystem and bridgesubsystem. Both of them are established with finite element method. The rigid componentassumption is introduced to the road vehicle subsystem, the mode superposition method isapplied to the bridge subsystem to reduce the degrees-of-freedom, and the dynamicinteraction between two subsystems is expressed with wheel road relation. The numbericalsolution flow is introduced, in which some key schemes are presented. And a calculationsoftware named DIARVB is prepared.
     6. A freight car running over a3-span continuous rigid frame bridge subject toearthquakes is taken as a case study to verify the applicability. The results show that dynamicof bridge subsystem is completely controlled by seismic excitation. The seismic excitationtransferred by bridge subsystem may amplify the vibration of road vehicle, which mayendanger the running safety of vehicle. The vehicle speed plays an important role in dynamicresponse of vehicle subsystem. And the spectral characteristic of earthquake wave influencesdynamic response of coupled system.
引文
[1]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [2] A. Zerva, V.Zervas. Spatial variation of seismic ground motions: An overview [J].Applied Mechanics Reviews,2002,55(3):271-296.
    [3] Kiureghian A D,Neuenhofer A. Response spectrum method for multi-support seismicexcitations [J]. Earthquake Eng. Struct. Dyn.,1992,21(8):713-740.
    [4]中华人民共和国交通运输部.公路桥梁抗震设计细则[S], JTG/T B02-01-2008.北京:人民交通出版社,2008.
    [5] CEN. EUROCODE8: Design of Structures for Earthquake Resistance–Part2: Bridges,EN1998-2:2005[S]. Brussels:2005.
    [6] Hao H. A parametric study of the required seating length for bridge decks duringearthquake [J]. Earthquake Engineering and Structural Dynamics.1998,27:487~502.
    [7] George Deodatis. Non-stationary stochastic vector process: Seismic ground motionapplications [J]. Probabilistic Engineering Mechanics.1996,11:149-168.
    [8] V.Saxena. Spatial variation of earthquake ground motion and development of bridgefragility curves [J]. Doctoral Dissertation, Princeton:2000.
    [9]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动.1991,3(11):45~54.
    [10]曹国安,张鸿儒.地震动强度包络函数模型[J].北方交通大学学报.1998,22(1):29~33,38.
    [11]屈铁军,王前信.空间相关的多点地震动合成(I)基本公式[J].地震工程与工程振动.1998,18(1):8~15.
    [12]屈铁军,王前信.空间相关的多点地震动合成(П)合成实例[J].地震工程与工程振动.1998,18(2):25~32.
    [13]姜海鹏,王航,杨庆山.空间变异地震作用下大型连续刚构桥的延性性憾研究[J].铁道工程学报.2001,70(2):37-45.
    [14]杨庆山,姜海鹏,陈英俊.基于相位差谱的时-频非平稳人造地震动的生成.地震工程与工程振动[J].2001,21(3):10~16.
    [15]杨庆山,姜海鹏.基于相位差谱的时-频非平稳人造地震动的反应谱拟合.地震工程与工程振动[J].2002,22(1):32~38.
    [16]谢异同,张同亿,吴敏哲.时程分析中设计地震动调整的小波分析方法[J].地震工程与工程振动.2002,22(3):27~31.
    [17]曹晖,赖明,白绍良.基于小波变换的地震地面运动仿真研究[J].土木工程学报.2002,35(4):40~46.
    [18]曹晖,赖明,白绍良.地震地面运动局部谱密度的小波变换估计[J].工程力学.2004,21(5):109~115.
    [19]程纬,刘光栋,易伟建.平稳地震动过程功率谱拟合及收敛性分析[J].世界地震工程.2002,18(2):43~47.
    [20]董汝博,周晶,冯新.一种考虑局部场地收敛性的多点地震动合成方法[J].振动与冲击.2007,26(4):5~9.
    [21]董汝博,周晶,冯新.非平稳空间相关多点地震动合成方法研究[J].地震工程与工程振动.2007,27(3):10~14.
    [22]王波,张海龙,武修雄,等.基于大质量法的高墩大跨连续刚构桥地震时程反应分析[J].桥梁建设.2006,(5):17~20.
    [23]杨永漪,廖海黎,郑史雄.空间变化的非平稳地震场模拟[J].四川建筑科学研究.2005,31(6):137~139.
    [24]俞瑞芳,樊珂,彭凌云,等.地震动非平稳特性对结构反应影响的试验研究[J].土木工程学报.2010,43(12):13~20.
    [25]丁海平,刘启方,金星,袁一凡.基岩地震动的一个相干函数模型—走滑断层情形[J].地震学报.2004,26(1):62~67.
    [26]王志华.平稳随机地震动模型及其激励下土石坝地震反应特性研究[J].岩土工程学报.2006,28(S):1505~1509.
    [27] E.H. Vanmarcke, G.A. Fenton. Conditioned simulation of local fields of earthquakeground motion [J]. Structural Safety.1991.10(1-3):247~264.
    [28] E.H. Vanmarcke, E. Heredia-Zavoni, G.A. Fenton. Conditional simulation of spatiallycorrelated earthquake ground motion [J]. Journal of Engineering Mechanics.1993,119(11):2332~2352.
    [29] E. Heredia-Zavoni, S. Santa-Cruz. Conditional simulation of a class of nonstationaryspace-time random fields [J]. Journal of Engineering Mechanics.2000,126(4):398-404
    [30] Hoshiya H. Kriging and conditional simulation of Gaussian field [J]. Journal ofEngineering Mechanics. ASCE,1995,121(2):181~186.
    [31] Clough R W,Penzien J. Dynamics of structures [M]. McGraw-Hill:New York,1993.
    [32]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报.2001,18(3):358~363.
    [33]武芳文,薛成凤,赵雷.地震动空间相干效应对大跨度斜拉桥随机地震反应的影响[J].世界地震工程.2010,26(2):107~113.
    [34]李小军,赵凤新,胡聿贤.空间相关地震动场模拟的研究[J].地震学报.1997,19(2):212~215.
    [35]李忠献,黄信.行波效应对深水连续刚构桥地震响应的影响[J].工程力学.2013.30(3):120~125.
    [36]史小伟,李黎,杨军,夏正春.地震动空间变异性对大跨刚构桥地震反应的影响[J].公路交通科技.2006,23(1):86~90.
    [37]闫晓宇,李忠献,韩强,杜修力.多点激励下大跨度连续刚构桥地震响应振动台阵试验研究[J].土木工程学报.2013,46(7):81~89.
    [38]王蕾,屈铁军.大跨曲线桥多点激励下的地震响应分析[J].世界地震工程.2010,26(3):67~73.
    [39] Edward L.Wilson.结构静力与动力分析[M].北京:中国建筑工业出版社,2006.
    [40] Grant Sitton. Basic dynamic analysis, MSC/NASTRAN, User’s guide version68[M].The MacNea-Schwendler Corporation,1997.
    [41]刘先明,叶继红,李爱群.竖向地震动场的空间相干函数模型[J].工程力学.2004,21(2):140~144.
    [42]秦权,孙晓燕,贺瑞,等.苏通桥对非一致地震地面运动的反应和人工波质量的讨论[J].工程力学.2006,23(9):71~83.
    [43]白宇琨.基于空间变化特性的地震动模拟及悬索桥地震反应分析[D].大连:大连理工大学,2007.
    [44]全伟,李宏男.基于小波变换的拟合规范反应谱多维地震动模拟[J].地震工程与工程振动.2007,27(4):103~108.
    [45]龙晓鸿,陈恩友,李黎.山区大跨悬索桥考虑空间变异性的地震响应[J].工程力学.2009,26(S1):130~133.
    [46]张笈玮.考虑地震空间效应的大跨度空间结构抗震分析与设计方法[D].天津:天津大学,2009.
    [47]王付.大跨度结构多点抗震分析及程序研制[D].大连:大连理工大学,2009.
    [48]余玲玲,王解军.非一致激励下高墩大跨连续刚构桥地震反应分析[J].中外公路.2010,30(2):122~127.
    [49]文华斌.高墩大跨连续刚构桥的动力特性及抗震性能分析[D].成都:西南交通大学,2010.
    [50]周国良,李小军,喻畑,等结构地震作用的基底激励模型及其适用性[J].建筑结构学报.2010,(S2):82~88.
    [51]潘晓东.非平稳随机地震下堤坝非线性有效应力动力响应可靠度分析[D].杭州:浙江大学,2004.
    [52]王东升,李宏男,赵颖华.钢筋混凝土桥墩基于位移的抗震设计方法[J].土木工程学报.2006,39(10):80~86.
    [53]江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动.1984,4(3):1~10.
    [54]田玉基,杨庆山.地震地面运动作用下结构反应的分析模型[J].工程力学.2005,22(5):170~174.
    [55]贺瑞,秦权.产生时程分析用的高质量地面运动时程的新方法[J].工程力学.2006,23(8):12~18.
    [56]张翠然,陈厚群.工程地震动模拟研究综述[J].世界地震工程.2008,24(2):150~157.
    [57]代攀,杨涛,胡大琳.高墩大跨曲线连续刚构地震响应分析[J].世界地震工程.2009,25(4):181~187.
    [58]徐扬,王冲,周凌远.大跨高墩连续刚构桥地震响应分析.铁道建筑[J].2010,(2):14~17.
    [59]夏修身,陈兴冲,王常峰,等.高墩大跨连续刚构桥抗震性能研究[J].西北地震学报.2010,32(1):88~91.
    [60]郑飞,叶继红.空间地震动场的相干性研究[J].振动与冲击.2009,28(6):23~28.
    [61] P.Leger, I.M. Ide, P.Paultre. Multiple support seismicanalysis of large structures[J].Computers&Structures.1990,36(6):1153~1158.
    [62] L.Lou, A.Zerva. Effects of spatially variable ground motions on the seismic response ofa skewed, multi-span, RC highway bridge[J]. Soil Dynamic and EarthquakeEngineering.2005,25(7-10):729~740.
    [63] K.Soyluk, A.A.Dumanoglu. Comparison of asynchronous and stochastic dynamicresponses of a cable-stayed bridge [J]. Engineering Structures.2000,22(5):435~445.
    [64]王军文,张运波,李建中,等.地震动行波效应对连续梁桥纵向地震碰撞反应的影响[J].工程力学.2007,24(11):100~105.
    [65] Shehata E. Abdel Raheem, Toshiro Hayashikawa, Uwe Dorka. Ground motion spatialvariability effects on seismic response control of cable-stayed bridges[J]. EarthquakeEngineering and Engineering Vibration.2011,10(1):37-49.
    [66]何度心.桥梁振动研究[M].北京:地震出版社,1989,55-58.
    [67]陈英俊.车辆荷载下桥梁振动基本理论的演变[J].桥梁建设,1975,23(2):21-35.
    [68]曹雪琴.桥梁结构动力分析[M].北京:中国铁道出版社,1987,76-80.
    [69]鲍达尔编,胡人礼译.铁路桥梁与机车车辆相互作用[M].北京:铁道部专业设计院工程建设标准规范管理处,1987,15-21.
    [70]曾华译.铁路桥梁动力计算[M].国外桥梁,1987,4(1):24-41.
    [71] Fryba L. Vibration of solids and structures under moving loads [M].Netherland:Noordhoff International Publishing,1972,134-156.
    [72] Biggs J M. Introduction to structural dynamics [M]. NewYork: McGraw-HillBook,1964,23-30.
    [73]李国豪.桁梁桥的扭转稳定和振动[M].北京:人民交通出版社,1975,45-56
    [74]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992,23-33.
    [75]松浦章夫.高速铁路车辆与桥梁相互作用[M].铁道技术研究资料,1974,31(5):14-17.
    [76]松浦章夫.新干线铁路桥梁竖向允许挠度北京[R].铁道技术研究报告,1974,31(10):445-449.
    [77] Chu K H, Gsrg V K, Dhar C L. Railway-bridge impact of simplified train and bridgemodel[J]. Journal of the Structural Division,ASCE,1979,105(9):1823-1844.
    [78] Chu K H, Gsrg V K, Wiriyachai A. Dynamic interaction of railway trail and bridges[J].Vehicle System Dynamics,1980,9(4):207-236.
    [79] Bhatti M H. Vertical and lateral dynamic response of railway bridges due to nonlinearvehicle and track irregularities [D]. Chicago: Illinois Institute ofTechnology,1982,89-94
    [80] Shahawy M. Impact studies in open-deck steel truss for prestressed concrete railwaybridges:[D]. Chicago: Illinois Institute of Technology,1980,90-100.
    [81] Wang T L, Shahawy M. Bridge dynamic in railway prestressed concrete bridge [J].Journal of Structural Engineering,1991,126(5):1628-1639.
    [82] Green M F,Cebon D.Dynamic response of highway bridges to heavy vehicles loads:Theory and Experimental Validation [J]. Journal of Sound&Vibration,1994,170(1):51-78.
    [83] Loads:Theory and Experimental Validation[J]. Journal of Sound&Vibration,1994,170(1):51-78.
    [84] Green M F,Cebon D,David J Cole.Effects of vehicle suspension design on dynamicsof dighway bridges [J]. Journal of Structural Engineering, ASCE,1995,121(2):272-282
    [85] Bogaert V. Dynamic response of trains crossing large span double-track bridges [J].Journal of Constructional Steel Research,1993,24(1):57-74.
    [86]曾庆元,杨平.桁梁行车空间振动计算的桁段有限元法[J].桥梁建设,1985,21(4):1-16.
    [87]曾庆元,杨平.桁梁空间分析的对号入座法则与桁段有限元法[J].铁道出版社,1999,22(2):73-82.
    [88]曾庆元,郭向荣.列车桥梁时变系统振动分析理论及应用[M].北京:中国铁道出版社,1999,12(2):45-65.
    [89]郭文华,刘海涛.跨座式轻轨与连续轨道梁空间振动分析[J].振动与冲击,2009,28(7):139-145.
    [90]郭文华,路萍.TMD对高速列车通过简支梁时的振动控制研究[J].振动与冲击,2008,27(11):42-48.
    [91]郭文华,曾庆元.多跨简支曲线轨道折线梁桥空间振动分析模型[J].工程力学,2003,20(2):38-46.
    [92]郭文华,曾庆元.半穿式钢桁梁桥与列车系统空间振动分析[J].长沙铁道学院学报,2002,20(1):36-43.
    [93]胡赛龙,郭文华.横风中高速列车以及桥梁的气动特性研究[J].重庆交通大学学报,2009,28(6):1008-1014.
    [94]曹雪琴.列车通过时桥梁结构竖向振动分析[J].上海铁道学院学报,1981,2(3):115-120.
    [95]曹雪琴,吴鹏贤.桁梁桥横向振动实测资料的概率统计分析[J].桥梁建设,1983,12(3):42-51.
    [96]曹雪琴.桁梁桥横向刚度的设计验算[J],桥梁建设.1985,12(3):37-45.
    [97]曹雪琴,陈晓.轮轨蛇行引起桥梁横向振动随机分析[J].铁道学报,1986,8(1):89-97
    [98]曹雪琴.钢桁梁桥横向振动[M],北京:中国铁道出版社,1991,71-78.
    [99]夏禾,陈英俊.车-梁-墩体系动力相互作用分析[]J].土木工程学报,1992,25(2):3-12.
    [100]夏禾,陈英俊.风和列车荷载同时作用下车桥系统的动力可靠性[J].土木工程学报,1994,27(2):14-21.
    [101]夏禾,阎贵平.列车-斜拉桥体系统在风载作用下的动力响应[J].北方交通大学学报,1995,19(2):131-136.
    [102]阎贵平,夏禾.铁路斜拉桥的地震响应特性研究[J].北方交通大学学报,1995,19(2):137-142.
    [103]夏禾.车辆与结构动力相互作用[M].北京:科学出版社,2002,101-121.
    [104]彭献,殷新锋,方志.变速车辆与路面不平弹性支撑桥梁的耦合振动分析[J].振动与冲击.2007,26(5):19~21,37.
    [105]方志,殷新锋,彭献.非匀速车辆与随机路面桥梁的耦合振动分析[J].振动与冲击.2008,27(1):30~36.
    [106]黎明安,崔凯,雷霜.车桥耦合振动系统的半主动控制法[J].应用力学学报.2011,28(4):376~380.
    [107]黄新艺,陈彦江,盛洪飞,李岩.多轴车辆-桥梁耦合振动响应的数值解法[J].公路交通科技.2008,25(12):97~112.
    [108]黄新艺,卓卫东,盛洪飞,李立云.车桥耦合振动系统模型下桥梁冲击效应研究[J].公路交通科技.2010,27(3):59~68.
    [109]韩万水,陈艾荣.风-汽车-桥梁系统空间耦合振动研究[J].土木工程学报.2007,40(9):53~58.
    [110]韩万水,马麟,汪炳,院素静,等.随机车流-桥梁系统耦合振动精细化分析与动态可视化[J].中国公路学报.2013,26(4):78~87.
    [111]袁向荣.考虑约束扭转效应时桥梁的振动分析[D].成都:西南交通大学,1992,45-65.
    [112]何发礼.高速铁路中小跨度曲线梁桥耦合振动研究[D].成都:西南交通大学,1999,78-83.
    [113]单德山.高速铁路曲线桥梁耦合振动分析及大跨度曲线梁桥设计研究[D].成都:西南交通大学,1999,100-110.
    [114] Wang T L, Huang D Z, Shahawy M. Dynamic response of multi-girder bridges [J].Journal of Structural Engineering,1993,118(8):2222–2238.
    [115] Chang D, Lee H. Impact factors for simple-span highway girder bridges [J]. Journal ofStructural Engineering,1994,120(3):704-715.
    [116] Pesterev A V, Bergman L A, Tan CA. A novel approach to the calculation ofpothole-induced contact forces in MDOF vehicle models [J]. Journal of Sound andVibration,2004,275(2):127-149.
    [117] Bergman. W. Theoretical prediction of the effect of traction on cornering force [J]. SAETransactions,1961,69(3):567-578.
    [118] Zhu X Q, Law S S. Identification of vehicle axle loads from bridge dynamic responses[J]. Journal of Sound and Vibration,2000,236(4):705-724.
    [119] Zhu X Q, Law S S. Practical aspects in moving load identification [J]. Journal of Soundand Vibration,2002,258(1):123–146.
    [120] Zhu X Q, Law S S. Moving loads identification through regularization. Journal ofEngineering Mechanics,2002,128(9):989-1000.
    [121] Zhu X Q, Law S S. Dynamic axle and wheel loads identification: Laboratory studies [J].Journal of Sound and Vibration,2003,268(9):855–879.
    [122] Shahawy M, Huang D, Wang T L. Dynamic responses of multigirder concrete bridges.Journal of Structural Engineering[J],1995,117(9):2480-2498.
    [123] Huang D Z, Wang T L. Impact analysis of cable-stayed bridges [J]. Computers andStructures,1992,43(5):897-908.
    [124] Wang T L, Huang D Z, Shahawy M. Dynamic response of multi-girder bridges [D].Journal of Structural Engineering,1993;118(8):2222–2238.
    [125] Wang TL. Impact and fatigue in open-deck steel truss and ballasted prestressed concreterailway bridges [D]. Chicago: Illinois Institute of Technology,1984,99-110.
    [126] Wang T L, Chu K H. Railway bridge vehicle interaction studies with new vehicle modelof structural engineering [J]. Journal of Structural Engineering,1991,117(7):2099-2116
    [127] Wang T L. Bridge interface in railway prestressed concrete bridge[J]. Journal ofStructural Engineering,1990,116(6):1648-1659.
    [128] Wang T L, Huang D Z. Impact studies in a railway bridge [J]. Computer&Structures,1997,149(5):1545-1554.
    [129] Wang T L, Shahawy M. Dynamic response of highway trucks due to road surfaceroughness[J]. Computer&Structures,1993,49(6):1055-1067.
    [130] Wang T L, Cheli F.Dynamic Interaction of Railway Systems with Large Bridges[J].Vehicle System Dynamics,1989,18(1):71-106.
    [131] Wang T L.Finite element model coordinate analysis of structures subjected to movingloads[J].Journal of Sound&Vibration,1985,99(1):112-120.
    [132] Wang T L. On the foundational moving load problems[J]. Journal of Sound&Vibration,1991,145(2):299-307.
    [133] Chen S R, Cai C S. Accident assessment of vehicles on long-span bridges in windyenvironments [J]. Journal of Wind Engineering and Industrial Aerodynamics,2004;92(2):991-1024.
    [134] Chen S R. Dynamic performance of bridges and vehicles under strong wind [D]. BatonRouge: Louisiana State University,2004,89-95.
    [135] Zhang Y, Cai C S, Shi X M. Vehicle induced dynamic performance of a FRP versusconcrete slab bridge[J]. ASCE Journal of Bridge Engineering,2006,11(4):410-419.
    [136] Cai C S, Shi X M, Araujo M. Effect of approach span condition on vehicle-induceddynamic response [J].ASCE Journal of Bridge Engineering,2007,14(4):440-449.
    [137] Shi X M. Structural performance of approach slab and its effect on vehicle inducedbridge dynamic response:[Dissertation]. Baton Rouge: Louisiana State University,2006,89-112.
    [138] Shi X M, Cai C S, Chen S R. Vehicle induced dynamic behavior of short span bridgesconsidering effect of approach span condition [J]. Journal of Bridge Engineering, ASCE,2008,13(1):83-92.
    [139] Deng L. System identification of bridge and vehicle based on their coupled vibration
    [D]. Baton Rouge: Louisiana State University,2009,89-91.
    [140]袁明.高墩大跨连续刚构桥的车桥系统耦合振动分析[D].长沙:长沙理工大学,2005,34-65
    [141]张钧博.公路桥梁的车桥耦合振动研究[D].成都:西南交通大学,2007,45-50.
    [142]张黎明.大跨度连续刚构桥车桥耦合振动研究[D].成都:西南交通大学,2007,40-53.
    [143]张洁.公路车辆与桥梁耦合振动分析研究[D].成都:西南交通大学,2007,35-45.
    [144]杨建荣.车-桥耦合作用下公路桥梁局部振动研究[D].上海:同济大学,2007,40-56
    [145]王达.基于有限元模型修正的大跨度悬索桥随机车流车-桥耦合振动分析[D].西安.长安大学,2008,40-50
    [146]孙韦.车辆荷载作用下连续梁桥的动态响应研究[D].西安.长安大学,2008,40-50
    [147]安忠海.车辆荷载作用下曲线钢-混凝土组合箱梁桥的动力性能研究[D].西安.长安大学,2009,45-56
    [148]马坤全,朱金龙.高速列车-连续刚架桥系统地震反应分析[J].上海铁道大学学报,1998,19(10):29-36
    [149] Yang Y.B., Wu Y.-S. Dynamic stability of trains moving over bridges shaken byearthquakes [J]. Journal of Sound and Vibration,2002,258(1):65-94.
    [150] Yau J.D. Dynamic response analysis of suspended beams subjected to moving vehiclesand multiple support excitations [J]. Journal of Sound and Vibration,2009,1-16.
    [151] Yau J.D. Vibration of arch bridges due to moving loads and vertical ground motions [J].Journal of Chinese Institute of Engineers,2006,29:1017-1027.
    [152] Yau J.D., Yang Y.B.. Vertical accelerations of simple beams due to successive loadstraveling at resonant speeds [J]. Journal of Sound and Vibration,2006,289:210-228.
    [153] Luo Xiu. An applicable assessment methodology for running safety of railway vehiclesduring earthquakes [J], Journal of JSCE,2001,197-206.
    [154] Chul-Woo Kim, Mitsuo Kawatani. Effect of train dynamics on seismic response of steelmonorail bridges under moderate ground motion [J], Earthquake Engineering andStructural Dynamics,2006;35,1225-1245.
    [155]李忠献,黄健,张媛,张国忱.地震作用对轻轨铁路车桥系统耦合振动的影响[J].地震工程与工程振动,2005,25(6):183-188.
    [156]林玉森.地震作用下高速铁路桥上列车行走性研究[D].西南交通大学博士学位论文,2007.
    [157]阎贵平,夏禾.列车与刚梁柔拱组合系桥系统的地震响应分析[J].北方交通大学学报,1994,18(1):10-16.
    [158]韩艳,夏禾.地震作用下列车过桥安全性分析[J].中国安全科学学报,2006,16(7):24-30.
    [159]韩艳,夏禾,郭薇薇.斜拉桥在地震与列车荷载同时作用下的动力影响分析[J].工程力学.2006,23(1):93-98,68.
    [160]韩艳,夏禾,张楠.考虑非一致地震输入的车-桥系统动力响应分析[J].中国铁道科学,2006,27(5):46-53.
    [161]韩艳.地震作用下高速铁路桥梁的动力响应及行车安全性研究[D].北京交通大学博士学位论文,2005.
    [162]张楠,夏禾, De Roeck Guido.多点激励作用下车-桥-地震耦合系统分析[J].哈尔滨工程大学学报.32(1):26-32.
    [163]谭长建,祝兵.地震作用下高速列车与桥梁耦合振动分析[J].振动与冲击,2009,28(1):4-8.
    [164]张志超.车桥系统耦合振动和地震响应的随机分析[D].大连理工大学博士学位论文,2010.
    [165] Zhang Z.C., J.H. Lin. Non-stationary random vibration analysis for train–bridgesystems subjected to horizontal earthquakes [J]. Engineering Structures.2010,32:3571-3582.
    [166]熊建珍,高芒芒,俞翰斌.天兴洲长江大桥斜拉桥在地震作用下的车-桥耦合振动分析[J].中国铁道科学,2006,27(5):54-59.
    [167]张国忠,闫维明,李洪泉.地震作用下磁悬浮车-桥垂向耦合动力学研究[J].世界地震工程,2006,22(3):148-155.
    [168]杜宪亭.强地震作用下大跨度桥梁空间动力效应及列车运行安全研究[D].北京:北京交通大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700