用户名: 密码: 验证码:
基于超声导波的无缝线路钢轨应力在线监测技术应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国高速铁路及主要干线均大量采用全区间、跨区间超长无缝线路这种新型轨道结构,当钢轨温度变化幅度较大时,无缝线路长钢轨内部承受着巨大的温度应力,直接影响轨道交通的运行安全。实时在线监测高速铁路无缝线路的内部应力状态,在应力超限时及时预警,对于保障高速铁路安全运营和提高我国无缝线路基础设施检测水平具有重要的理论和现实意义。
     无缝线路内部温度应力检测是一项世界性难题,针对现有不同检测方法的各种问题,本文提出了基于超声导波的无缝线路温度应力的检测方法。超声导波可以在波导介质中传播很长的距离,并能够覆盖整个被检测物体的横截面,检测效率更高。超声导波检测无缝线路钢轨内部温度应力是基于声弹性原理,原理简单,但由于超声导波的传播特性很复杂,如频散特性、多模态等,这种方法应用于无缝线路应力检测,仍有许多问题需要深入研究。首先要求解得到我国无缝线路钢轨内部超声导波的频散曲线,这是深入研究各模态振动规律的前提;其次,要在众多的导波模态中选取适于应力检测的导波模态;最后,要研究导波模态的激励方法,激励出选取的导波模态。
     针对以上问题,论文以我国无缝线路中的CHN60钢轨为研究对象,对钢轨内不同模态的超声导波进行了深入的理论分析和仿真实验研究,主要创新工作包括:
     1.自主开发实现了半解析有限元算法,求解得到了CHN60钢轨中超声导波的频散曲线
     通过传统的有限元模态分析方法,无法求解得到钢轨中超声导波完整的频散曲线。半解析有限元方法是国际上普遍采用的求解任意横截面波导介质中超声导波频散曲线的一种有效方法,国内还只能通过购买国外的半解析有限元软件来进行相关的科研工作。通过查阅大量国际文献,运用Matlab软件工具,论文自主开发实现了半解析有限元算法。
     通过半解析有限元方法,论文求解得到了我国CHN60钢轨中超声导波的频散曲线,结合振型分析、激励响应分析和应力敏感度分析等多种方法,对超声导波的各个模态进行了特性分析,掌握了我国无缝线路中超声导波各模态的振动特性和传播规律,为运用超声导波技术实现我国无缝线路断轨和应力的相关基础设施服役状态检测提供了理论参考依据。
     2.提出了选取最优导波模态的指标模型
     基于频率、应力敏感度、振型、激励位置偏离度和模态辨识度这五个因子,论文首次提出了选取最优导波模态的指标模型。通过该模型,可快速选取最适于我国高速铁路无缝线路应力检测的超声导波模态,实现了理论分析到工程应用的技术转化。
     3.设计了最优激励位置定位算法
     根据各个超声导波模态的振型特点,结合激励响应分析结果,论文设计了最优激励位置定位算法。通过绘制导波模态的三自由度位移变化曲线,基于统计规律滤除了较小的极值点,得到了各个导波模态的激励位置特征点。通过该算法可快速定位特定导波模态的激励点和激励方向,大大节省了反复试验的环节,提高了工程化应用的效率。
     针对论文最终选取的超声导波模态和确定的激励位置,在西宝铁路客运专线进行了实际线路测试,试验结果表明,任意导波模态激励位置定位算法,可以快速准确定位激励位置和方向;根据指标模型所选取的模态,激励方式简单,易于控制,便于现场安装使用,其对应力敏感,传播距离远,适用于无缝线路温度应力在线监测系统。
A large number of continuous welded rails (CWR) this new type of track structure are used on high-speed railway and the main line in China. Stress in CWR is tremendous when the rail temperature variation is very large, this will directly affect the safety of rail traffic. On-line monitoring stress of high-speed CWR in real time and warning when stress exceeds the limit are of great theoretical and practical significance for the safe of high-speed rail and enhancing the infrastructure detecting level of existing line.
     Monitoring internal temperature stress in CWR is a worldwide hard problem. For existing problems, a new method based on ultrasonic guided waves is proposed. Compared to ultrasonic bulk waves, guided waves provide larger monitoring ranges and the complete coverage of the waveguide cross-section. The principle of detection welded rails' internal temperature stress is based on acousto-elasticity. It is very simple. But there are still a lot of problems need to study because of the complexities of guided wave. These complexities include the existence of multiple modes and the frequency dependent velocities. First and foremost, guided wave dispersion curves in our country's CWR are needed to be acquired, it is the premise to study guided waves' vibration characteristics. Second, we need to select the optimal mode used to detect stress in CWR. Finally, we need to find the method to excite the optimal mode in CWR.
     To solve above problems, the characteristics of different modes of ultrasonic guided waves in CHN60CWR are studied in-depth through theoretical analysis and simulation.
     The main innovations include:
     1. A semi-analytical finite element method is developed and the ultrasonic guided wave dispersion curves in CHN60rail are acquired
     By traditional finite element modal analysis method, complete dispersion curves of ultrasonic guided wave can't be obtained. Semi-analytical finite element method is an effective method which is used internationally, to solve frequency dispersion curves of any cross section of the waveguide medium. However, Chinese related research can only be conducted through the purchase of semi-analytical finite element software abroad. After reading a lot of related papers, the semi-analytical finite element method has been designed by Matlab software in this paper.
     This dissertation first obtains the dispersion curves of CHN60continuous welded rail by semi-analytical finite element method. Combined with mode analysis, exciting and response analysis, stress sensitivity analysis and other methods, the vibration and propagation characteristics of each guided wave mode in CWR have been obtained, which provides a theoretical reference basis for the detection service of Chinese CWR broken rail infrastructure and rail stress.
     2. An indicator model to select the optimal guided wave mode is proposed
     Based on frequency, stress sensitivity, mode of vibration, exciting position and the mode identification those five factors, the dissertation first proposed the indicator model to select the optimal guided-wave mode. With this model, the most suitable ultrasonic guided-wave mode can be quickly selected for CWR stress testing system, which achieves a transfer from theoretical analysis to engineering application.
     3. A location algorithm of the optimal exciting position is designed
     According to vibration characteristics of each ultrasonic guided-wave mode, combined with the analysis results of stimulation and response, the dissertation designs the location algorithm of the optimal exciting position. Through drawing three degrees of displacement curve of guided wave mode, filtering out smaller extreme point based on statistical regularities, the algorithm gets the exciting position of the feature points of each guided wave mode. It does not require repeating experiments and promotes the efficiency in engineering application.
     The field experiment has been performed in Xi'an-Baoji high-speed railway, using selected ultrasonic guided wave mode and exciting position in the dissertation. Experimental results show that the location algorithm can give the exciting position and direction fast and correctly. The selected mode by indicator model is easy to excite and used in field line. This mode is sensitive to stress and has long propagation distance, it is very suitable for stress monitoring in continuous welded rails.
引文
[1]卢耀荣.无缝线路研究与应用[M].北京:中国铁道出版社,2004.10.
    [2]范俊杰.现代铁路轨道[M].北京:中国铁道出版社,2004.
    [3]马学宁,梁波,高峰.高速铁路板式无砟轨道一路基结构动力特性研究[J].铁道学报,2011,33(2):72-78.
    [4]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2003.
    [5]广钟岩,高慧安.铁路无缝线路(第四版)[M].北京:中国铁道出版社,2005.2.
    [6]李贞伟.浅谈我国高速铁路超长无缝线路应力放散[J].西安铁路职业技术学院学报,2012,49(1):14-17.
    [7]王炎孝,刘振武.一个貌似简单的世界难题:钢轨纵向应力检测[J].铁道知识,1992(1):42-43.
    [8]祁欣.无缝线路钢轨纵向应力在线检测研究[J].机械工程学报,1998(2).
    [9]刘兴汉.钢轨温度和温度应力[J].西铁科技,2002,52(3):30-32.
    [10]闫进学.测标测量无缝线路锁定轨温方法在新线的应用[J].铁道勘查,2007(6):81-83.
    [11]刘兴汉.介绍用“标定轨长”理论测定锁定轨温的方法[J].铁道工程学报,2005,(6):14-26.
    [12]高宏伟.无缝钢轨温度应力检测技术研究[D].北京交通大学硕士学位论文,2012.
    [13]徐建明,吴宏兵,叶茂.光纤光栅传感器应力检测温度效应分析[J].低温建筑技术,2006,111(3):120-121.
    [14]张兆亭,闫连山,王平,等.基于光纤光栅的钢轨应变测量关键技术研究[J].铁道学报,2012,34(5):65-69.
    [15]王骁,刘辉,祁欣,董炳义,邸锦玉.巴克豪森噪讯无缝线路应力检测仪的研制及应用[J].北京化工大学学报:自然科学版,2010,37(3):123-126.
    [16]田浩,于石生,赵小莹.利用巴克豪森效应测定钢轨纵向应力[J].材料科学与工艺,2004,12(2):196-198.
    [17]张家栋,李强,王灵芝.利用巴克豪森效应测量转向架焊接构架残余应力[J].机车车辆工艺,2009(2).
    [18]许承东,刘学文,李强.磁弹性方法无损测试钢轨残余应力分布的实验研究[J].北方交通大学学报,2004,28(4):76-79.
    [19]陈玉安,周上祺.残余应力X射线测定方法的研究现状[J].无损检测,2001,23(1):19-22.
    [20]刘金艳.X射线残余应力的测量技术与应用研究[D].北京工业大学硕士学位论文.
    [21]王庆明,孙渊.残余应力测试技术的进展与动向[J].机电工程,2011(1).
    [22]孔朝志,丁杰雄,戴仙金,等.基于LFMCW的LCR波切向正应力检测方法的研究[J].电子测量与仪器学报,2009,23(11):72-78.
    [23]刘镇清.超声波应力测试技术[J].实用测试技术,1996,3:31-33.
    [24]贺玲凤,刘军编.声弹性技术[M].北京:科学出版社,2002.
    [25]蒋危平,方京等.超声检测学[M].武汉:武汉科技大学出版社,1991.
    [26]D.S.Hughes and J.L.Kelly. Second-order elastic deformation of solids [J], Physical Review.1953, Vol.92.5.
    [27]Ivan Bartoli, Salvatore Salamone, Robert Phillips, et al. Use of Interwire Ultrasonic Leakage to Quantify Loss of Prestress in Multiwire Tendons[J]. Journal of Engineering Mechanics.2011: 324-333.
    [28]Z.H. Zhu, M.A. Post, P.C. Xu. Stress Evaluation Using Ultrasonic Interference Spectrum of Leaky Lamb Waves[J]. Experimental Mechanics,2011,51:971-980.
    [29]D. Kleitsa, K.Kawai, T.Shiotani, D.G.Aggelis. Assessment of metal strand wire pre-stress in anchor head by ultrasonics[J]. NDT&EInternational.2010,43:547-554.
    [30]胡鹤呜,王池,孟涛.多声路超声流量计积分方法及其准确度分析[J].仪器仪表学报,2010,31(6):1218-1223.
    [31]卢超,魏运飞,徐薇.钢轨踏面斜裂纹超声表面波B扫成像检测研究[J].仪器仪表学报,2010,31(10):2272-2278.
    [32]张荣标,冉莉,张薇,等.基于DSP的骨质疏松症定量超声检测技术研究[J].仪器仪表学报,2010,31(3):709-714.
    [33]徐修萍,杨明.基于超声多普勒人工心脏血栓检测系统的研究[J].电子测量与仪器学报,2010,24(4):396-401.
    [34]马立玲,郭坤,王军政.液体超声流量测量中的传播时间精度分析[J].仪器仪表学报,2012,33(5):1028-1034.
    [35]M. Sgalla and D. Vangi. A Device for Measuring the Velocity of Ultrasonic Waves:An Application to Stress Analysis[J]. Experimental Mechanics,2004,1(44),85-90.
    [36]朱士明,肖明正,卢杰,王寅观,等.超声波高温螺栓应力监测仪的研制[J].同济大学学报,1991,19(4):433-439.
    [37]李黔,冯少波.轴向载荷对套管螺纹连接应力的影响分析[J].西南石油学院学报,2002,24(1):81-83.
    [38]朱士明,江泽涛.声时差法测定螺栓的预紧应力[J].应用声学,2005,(7):181-186.
    [39]林韶峰,张宏建.计入构件形变影响的超声波测量应力方法[J].浙江大学学报,2004,(9):1132-1135.
    [40]Adam Bartosiewicz超声波应力检测在铁路工业中的应用[J].国外铁道车辆,1999(6):32-36.
    [41]江泽涛,张少饮,胡景春,朱士明.微机化的纵横波螺栓轴向应力检测仪研制[J].固体力学学报,2001,22(4):415-420.
    [42]Ivan Bartoli, Alessandro Marzani, et al. Modeling wave propagation in damped waveguides of arbitrary cross-section[J]. Journal of Sound and Vibration,2006,295:685-707.
    [43]Alessandro Marzani. Time-transient response for ultrasonic guided waves propagating in damped cylinders[J]. International Journal of Solids and Structures.2008,45:6347-6368.
    [44]M. Mazzotti, A. Marzani, I. Bartoli, E. Viola. Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method[J]. International Journal of Solids and Structures.2012,49:2359-2372.
    [45]Philip W. Loveday. Modeling and Measurement of Piezoelectric Ultrasonic Transducers for Transmitting Guided Waves in Rails[C]. IEEE International Ultrasonics Symposium Proceedings,2008:410-413.
    [46]史宏章,任远,张友鹏,田铭兴.国内外断轨检测技术发展的现状与研究[J].铁道运营技术,2010,16(4):1-7.
    [47]田铭兴,陈云峰,赵斌,闵永智.实时断轨检测方法综述[J].兰州交通大学学报,2011, 30(1):122-126.
    [48]罗雄彪,陈铁群.超声无损检测的发展趋势[J].无损检测,2005,27(3):148-151.
    [49]任远.基于超声导波的实时断轨检测方法研究[D].兰州交通大学硕士学位论文.
    [50]宋志东.超声导波技术在管道缺陷检测中的研究[D].天津:天津大学,2006.
    [51]李一博,靳世久,孙立.超声导波在管道中的传播特性的研究[J].电子测量与仪器学报,2005,19(5):63-66.
    [52]Chong myoung lee, Joseph L. Rose, YounhoCho. A guided wave approach to defect detection under shelling in rail[J]. NDT&E International,2009,42:174-180.
    [53]卢超,李诚,常俊杰.钢轨轨底垂直振动模式导波检测技术的实验研究[J].实验力学,2012,27(5):593-600.
    [54]Joseph L. Rose. A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential[J]. Journal of Pressure Vessel Technology,2002,124:273-282.
    [55]Institute for Maritime Technology. Ultrasonic Broken Rail Detector Technical background. http://www.railsonic.com
    [56]艾春安,李剑.兰姆波频率方程的数值解法[J].无损检测,2005,27(6):294-296.
    [57]崔寒茵,师芳芳,籍顺心,张碧星.沿均匀无限介质中固体杆传播的导波特性研究[J].声学学报,2010;35(4);446-454.
    [58]刘胜兴,汤立国,许肖梅.无限液体介质内管道轴对称纵向导波激发与传播特性研究.声学学报,2009;34(4);334-341
    [59]邓明晰,裴俊峰.无损评价固体板材疲劳损伤的非线性超声兰姆波方法[J].声学学报,2008;33(4);360-369
    [60]张海燕,周全,吕东辉,刘镇清.各向同性薄板中横穿孔缺陷的超声兰姆波层析成像.声学学报,2007;32(1);83-90
    [61]林玮,王佳麒.兰姆波各模式声速与板材疲劳关系研究[J].声学学报,2011,36(2):156-159.
    [62]焦敬品,刘文华,曾宪超,等.周向一致兰姆波电磁超声换能器设计与实现[J].仪器仪表学报,2010,31(6):1387-1393.
    [63]何存富,周进节,吴斌,等.管道导波时反聚焦检测系统的设计与实现[J].仪器仪表学报,2012,33(2):342-347.
    [64]宋小军,他得安,王威琪.利用Golay码测量长骨中传播的超声导波[J].仪器仪表学报.
    [65]杨理践,李春华,高文凭,高松巍.铝板材电磁超声检测中波的产生与传播过程分析[J].仪器仪表学报,2012,33(6):1218-1223.
    [66]马世伟,秦廷镐,邵勇.利用底面反射波的时频分布分析热劣化钢材的超声特性[J].电子测量与仪器学报,2006,20(5):39-43.
    [67]刘增华,吴斌,何存富,王秀彦.超声导波扭转模态在粘弹性包覆层管道中传播特性研究[J].应用基础与工程科学学报,2005;13(3);291-299.
    [68]刘增华,张易农,吴斌等.钢绞线用磁致伸缩传感器偏置磁场的有限元分析[J].应用基础与工程科学学报,2009;17(2);281-289.
    [69]杨凯文.基于参考信号去除的板结构兰姆波缺陷成像方法研究[D].北京工业大学硕士学位论文,2009.
    [70]王杜.金属薄板的超声兰姆波无损检测[D].武汉科技大学硕士学位论文,2007.
    [71]F. Chen, P.D. Wilcox. The effect of load on guided wave propagation[J]. Ultrasonics,2007(47): 111-122.
    [72]P.W. Loveday. Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2007,54(10):2045-2051.
    [73]P. Wilcox, M. Evans, B. Pavlakovic, et al. Guided wave testing of rail[J]. Insight,2003(45): 413-420.
    [74]邱雷,袁慎芳,王强.基于Lamb波主动结构健康监测系统的研制[J].压电与声光2009,31(5):763-766.
    [75]Philip W. Loveday, Paul D. Wilcox. Guided Wave Propagation as a Measure of Axial Loads in Rails[C]. Health Monitoring of Structural and Biological Systems,2010,7650.
    [76]P. W. Loveday. Development of piezoelectric transducers for a railway integrity monitoring system[C]. Smart Structures and Materials 2000:Smart Systems for Bridges, Structures, and Highways.2000,3988:330-338.
    [77]Joseph L. Rose, Michael J. Avioli, Peter Mudge, et al. Guided wave inspection potential of defects in rail[J]. NDT&E International,2004(37):153-161.
    [78]丁辉.计算超声学—声场分析及应用[M].北京:科学出版社,2010.
    [79]J.L. Rose固体中的超声波[M].何存富,吴斌,王秀彦译.科学出版社,2004:294-296.
    [80]Takahiro Hayashi, Won-Joon Song, Joseph L. Rose. Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example[J]. Ultrasonics,2003,41:175-183.
    [81]Tribikram Kundu, Dominique Placko. Ultrasonic Field Modeling:A Comparison of Analytical, Semi-Analytical, and Numerical Techniques[C]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2010,57(12):2795-2807.
    [82]Igor Shufrin, OdedRabinovitch, MosheEisenberger. A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates[J]. International Journal of Mechanical Sciences.2010,52:1588-1596.
    [83]Jose Otero, Nekane Galarza, Benjamin Rubio, Eduardo Moreno. Semi-analytical finite elements methods for dispersion curves using higher order elements for long range ultrasonic testing[C]. IEEE International Ultrasonics Symposium Proceedings.2009:1966-1999.
    [84]L. Gavric. computation of propagative waves in free rail using a finite element technique[J]. Journal of Sound and Vibration.1995,185(3):531-543.
    [85]Philip W. Loveday. Semi-analytical finite element analysis of elastic waveguides subjected to axial loads[J]. Ultrasonics.2009,49:298-300.
    [86]Philip W. Loveday. Simulation of Piezoelectric Excitation of Guided Waves Using Waveguide Finite Elements[C]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2008,55(9):2038-2045.
    [87]Michele Sale, Piervincenzo Rizzo, Alessandro Marzani. Semi-analytical formulation for the guided waves based reconstruction of elastic moduli[J]. Mechanical Systems and Signal Processing,2011,25:2241-2256.
    [88]Ivan Bartoli, Stefano Coccia, Robert Phillips, et al. Stress dependence of guided waves in rails[C]. Health Monitoring of Structural and Biological Systems 2010.2010,7650.
    [89]A.Marzani, E.Viola,1.Bartoli, et al. A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped wave guides[J]. Journal of Sound and Vibration,2008(318):488-505.
    [90]Wilcox P, Evans M, et al. Guided wave testing of rail[J]. Insight,2003,45(6):413-20.
    [91]Moser, F., Jacobs, L. J., Qu, J. Application of Finite Element Methods to Study Wave Propagation in Wave Guides[J]. NDT & E International,1999,32:225-234.
    [92]Cho, Y., Hongerholt, D. D., Rose, J. L. Lamb Wave Scattering Analysis for Reflector Characterization[J]. Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1997(44):44-52.
    [93]Fei, D., Chimenti, D. E. Single-Scan Elastic Property Estimation in Plates[J]. Acoustic Research Letters Online,2001(2):49-55.
    [94]Guo, D., Kundu, T. A New Sensor for Pipe Inspection by Lamb Waves[J]. Materials Evaluation, 2000,58(8):991-994.
    [95]许西宁,余祖俊,朱力强.图解法求LAMB波频散方程[J].电子测量与仪器学报.2012,26(11):966-971.
    [96]严刚,周丽.基于Lamb波的复合材料结构损伤成像研究[J].仪器仪表学报,2007,28(4):583-589.
    [97]郑祥明,赵玉珍,史耀武.兰姆波频散曲线的计算无损检测,2003,25(2):66-68.
    [98]袁清峰,路辉.二分法在罗盘灵敏度自动测试中的应用[J].电子测量与仪器学报,2007,21(4):117-120.
    [99]李晖,孙伯尧,应根裕.彩色显像管色纯自动测量系统[J].仪器仪表学报,2000,21(1):35-37.
    [100]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001:518-521.
    [101]许西宁,余祖俊,朱力强,史红梅.半解析有限元法分析兰姆波频散特性[J].仪器仪表学报,2013,34(2):248-252.
    [102]钱伟长.变分法及有限元[M].北京:科学出版社,1980:28-29.
    [103]张虎重,康志伟.融合模糊聚类的变分水平集图像分割模型[J].电子测量与仪器学报,
    [104]Seed Moaveni.有限元分析:ANSYS理论与应用[M].王菘,刘丽娟,董春敏等译.第3版.北京:电子工业出版社,2009:187-191.
    [105]武琳.超声导波在钢轨中传播特性的仿真方法研究[D].北京交通大学硕士学位论文,2013.
    [106]Li, J, Rose, J. L. Implementing Guided Wave Mode Control by Use of a Phased Transducer Array[J]. Transactions on Ultrasonics Ferroelectrics and Frequency Control,2001(48): 761-768.
    [107]Thompson, R. B. Physical Principles of Measurements With EMAT Transducers[J]. Physical Acoustics,1990,19:157-199.
    [108]张云电.夹心式压电换能器及其应用[M].北京:科学出版社,2006.
    [109]许西宁,余祖俊.基于FPGA和USB接口的超声波信号高速采集卡[J].北京交通大学学报,2011,35(6):89-92.
    [110]ANALOG DEVICES. AD9433 Device Handbook. Rev. A,2009;
    [111]ALTERA. Cyclone Device Handbook. Volume 1,2005;
    [112]CYPRESS.EZ-USB FX2 Technical Reference Manual. Version 2.1,20011。
    [113]林莉,李喜孟.超声波频谱分析技术及其应用[M].北京:机械工业出版社,2009.
    [114]黄正谨,徐坚,章小丽,熊明珍.CPLD系统设计技术入门与应用[M].北京:电子工业出版社,2002.
    [115]王成儒,李英伟.USB2.0原理与工程开发[M].北京:国防工业出版社,2004.
    [116]武安河,邰铭,于洪涛.WDM设备驱动程序开发[M].北京:电子工业出版社,2004.
    [117]冯若.超声手册[M].南京大学出版社,1999.
    [118]P.Rizzo, F.LanzadiScalea, Wave propagation in multi-wire strands by wavelet-based laser ultrasound[J]. Experimental Mechanics,2004,44(4):407-415.
    [119]I. Bartoli, F. LanzadiScalea, M. Fateh, et al. Modeling guided wave propagation with application to the long-range defect detection in railroad tracks[J]. NDT&E International, 2005(38):325-334.
    [120]McNamara J. Health monitoring of railroad tracks by elastic-wave based non-destructive testing[D]. San Diego:University of California,2003.
    [121]D. J. Thompson. Experimental analysis of wave propagation in railway tracks[J]. Journal of Sound and Vibration,1997,203(5):867-888.
    [122]P.W. Loveday. Measurement of Modal Amplitudes of Guided Waves in Rails[C]. Smart Structures and Materials 2008:Health Monitoring of Structural and Biological Systems, Proceedings of SPIE Vol.6935, San Diego, March 2008.
    [123]Kundu, T., Potel, C., deBelleval, J. F. Importance of the Near Lamb Mode Imaging of Multilayered Composite Plates[J]. Ultrasonics,2001(39):283-290.
    [124]Li, J., Rose, J. L. Excitation and Propagation of Nonaxisymmetric Guided Waves in a Hollow Cylinder[J]. Acoustical Society of America,2001,109:457-464.
    [125]Wooh, S. C., Shi, Y. Synthetic Phase Tuning of Guided Waves[J]. Transactions on Ultrasonics Ferroelectrics and Frequency Control,2001,48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700