用户名: 密码: 验证码:
跨座式单轨交通应急轨道梁选型及受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:在跨座式单轨交通系统中,作为车辆导向和承载结构的PC轨道梁(预应力钢筋混凝土轨道梁),在运营过程中可能遭遇突发状况而损坏,导致单轨交通线路中断运营。因此,非常有必要开发出一套应急轨道梁系统,来实现对受损PC轨道梁的快速替换,从而降低单轨交通中断运营所带来的经济损失和社会影响。
     单轨交通轨道梁既是承重结构又是车辆运行的导向轨,其导向功能是通过轨道梁自身的线形来实现的。在实际的单轨交通线路中,轨道梁的线形复杂多变,种类繁多,应急轨道梁不可能针对所有的PC轨道梁进行一对一设计。因此,应急轨道梁除了要具备足够的承载力及刚度外,如何实现对所有具有不同线形特征的PC轨道梁的快速替换,也是影响其选型的关键性因素。本文在对跨座式单轨交通PC轨道梁线形及受力特点进行分析的基础上,结合单轨交通轨道梁应急抢修工作的特点,对跨座式单轨交通应急轨道梁进行了选型研究。主要的研究内容和成果体现在以下几个方面:
     (1)提出了单轨交通应急轨道梁的线形及力学控制指标
     如何对具有不同线形特征的PC轨道梁进行替换以及是否具备足够的承载力和刚度是控制应急轨道梁选型的关键性因素。本文首先对影响PC轨道梁线形的各种因素进行分析,并在对既有单轨交通线路上PC轨道梁线形进行统计和分析的基础上,提出了应急轨道梁所应替换PC轨道梁的线形要素的类型及分布范围;其次,通过对国内外单轨交通相关设计规范的研究,结合应急轨道梁的特殊情况,分析了应急轨道梁的设计荷载类型,提出了应急轨道梁的刚度控制指标及限值,为跨座式单轨交通应急轨道梁的选型提供了重要依据。
     (2)单轨交通应急轨道梁线形替换方法研究
     在轨道梁所有的线形构成要素中,应急轨道梁如何实现对PC轨道梁平面线形及梁长的替换最为关键。本文提出了节段拼装应急轨道梁的线形替换理念,在此基础上,对应急轨道梁平面线形及梁长的替换方法进行了研究。主要完成了以下三个方面的工作:①参考单轨交通道岔梁的技术参数以及PC轨道梁的架设精度要求,确定了应急轨道梁平面曲线线形和梁长的替换精度目标;②针对轨道梁平面线形的特点,提出了3种不同的替换方案,建立了轨道梁在各种平面曲线线形下的数学模型,并编制了应急轨道梁平面线形替换误差计算程序。通过3种方案替换误差的比选,最终提出了采用具有4种不同圆曲线半径的应急轨道梁来实现对所有PC轨道梁平面线形进行替换的方案;③在对单轨线路上PC轨道梁梁长的分布范围及分布特点进行分析的基础上,依据应急轨道梁梁长的替换精度目标,提出了应急轨道梁梁长的实现方案,即选取具有不同长度的应急梁预制节段拼装出具有合适跨度的应急轨道梁,并基于轨道梁应急抢修工作快速性及经济性方面的考虑,对应急轨道梁节段长度的类型进行了合理的划分。
     (3)进行了单轨交通应急轨道梁结构选型研究
     基于应急轨道梁轮轨接触面线形调整以及应急轨道梁承载力及刚度等方面的考虑,对应急轨道梁结构方案进行了选型。通过对比各种结构方案的优缺点,最终提出了应急轨道梁采用预应力节段拼装钢箱.混凝土组合梁的结构型式,并结合轨道梁应急抢修工作的特点,对组合式应急轨道梁的构造细节进行了研究,主要包括以下几个方面:①基于薄板的弹性屈曲基本理论,并结合组合梁腹板的受力特点及相关试验研究,对组合式应急轨道梁钢箱梁腹板加劲肋的合理布置形式进行了研究;②基于组合梁的抗扭分析理论,结合相关的扭转试验,分析了组合式应急轨道梁普通钢筋配置的计算方法;③对组合式应急轨道梁预应力筋的布置形式、预应力筋的张拉顺序以及张拉控制值进行了分析和讨论。
     (4)组合式应急轨道梁数值模型的建立及优化设计
     通过大型有限元程序Abaqus建立了预应力节段拼装钢箱.混凝土组合式应急轨道梁的数值分析模型。在此基础上,建立了5个系列共17榀具有不同结构设计参数的组合式应急轨道梁有限元模型。研究了普通钢筋配筋率、混凝土的轴心抗压强度、钢材强度以及钢箱梁板件厚度等结构设计参数对组合式应急轨道梁受弯性能的影响。根据受弯性能影响参数的分析结果,对组合式应急轨道梁的结构设计参数进行了优化。
     (5)应急轨道梁承载力评估及正常使用性能的分析与评价
     基于预应力钢.混凝土组合箱梁的相关计算理论,结合预应力节段拼装钢箱.混凝土组合式应急轨道梁具体的结构特征,通过理论分析加有限元计算的方法对组合式应急轨道梁的抗弯及抗剪承载力进行了分析和研究;利用所建立的有限元数值模型,对车辆荷载作用下组合式应急轨道梁的变形进行了分析。研究结果表明,组合式应急轨道梁的承载能力及刚度完全能够满足正常使用的要求。
As the vehicle guiding and load bearing structure in monorail transit system, PC track beams (prestressed concrete track beam) may get damaged in the case of emergency situations during operation, resulting to interrupted operation of the monorail transit system. Therefore, it is very necessary to develop an emergency track beam system to facilitate rapid replacement of the damaged PC track beam, thereby reducing the economic losses and social impacts due to the interrupted operation of the monorail transit system.
     Track beams on the monorail transit serve as both load bearing structure and the guiding track for the vehicle, with the latter realized by the alignment of the track beams. However, in existing monorail transit systems, track beam alignments are very complex, so it is impossible to design emergency track beams individually for all PC track beams. Therefore, in addition to meeting the basic load bearing capacity and stiffness requirements, how to achieve rapid replacement of PC track beams with different alignment characteristics has become a key factor that affects the lectotype of emergency track beams. In this paper, based on the analysis of alignment and load bearing characteristics for PC track beams on the monorail transit, and also considering the characteristics of emergency repair work for PC track beams, the lectotype of emergency track beam for monorail transit is properly selected. The main research contents and contributions are in the following aspects:
     1) Proposed the alignments and mechanical indicators for emergency track beam for monorail transit
     There are two key factors in emergency track beam design, namely how to replace PC track beams with different alignment characteristics and at the same time making sure they have enough load bearing capacity and stiffness. In this paper, firstly, based on analysis of the various factors that influence the design of PC track beams; and statistical analysis of alignments for PC track beams on the existing monorail transit, the types and ranges for the alignment characteristics are summarized for those PC track beams to be replaced by emergency track beams. Secondly, according to domestic and international design standards for monorail transit and considering the special circumstances for emergency track beams, the types of design loads for emergency track beam were analyzed and the limit for the stiffness of emergency track beam was proposed, providing important basis for the lectotype of emergency track beam for monorail transit.
     2) Study on the alignment replacement methods for emergency track beam
     Out of all consisting elements of track beam alignment, the most critical ones are the replacements of the plane alignment and beam length of PC track beams by emergency track beams. The alignment replacement concept using segmentally assembled emergency track beam was proposed in this paper, on the basis of which the replacement methods for plane alignment and beam length of emergency track beams are studied. Work has been completed mainly in the following three aspects:①Referencing to the technical parameters of turnout track beam for monorail transit as well as the erection accuracy requirements for track beams, the target replacement precisions for plane curve alignment and beam length are determined;②According to the plane alignment characteristics of track beams, three different replacement plans are proposed, the parameter equations for track beams under various plane curve alignments are established, and computer programs are created to calculate the plane alignment replacement error. By comparing the errors of the three plans, ultimately a replacement plan using emergency track beams with four different circular curve radii is proposed to realize replacement for all PC track beam plane alignments;③Based on analysis of the distribution range and distribution characteristics of the length of PC track beams on monorail line, and according to the target adjustment precision for track beam length, a beam length realization scheme for emergency track beam is proposed, that is, select prefabricated emergency beam segments with different lengths and assemble them to achieve an emergency track beam with the proper span. Also, considering the rapidity and economical aspects of the emergency repair work, the types of segment length for emergency track beams are reasonably classified.
     3) Conducted a research on structural form lectotype for emergency track beams on monorail transit
     Based on alignment adjustment for wheel-rail contact surfaces of emergency track beams, and also considering the load bearing capacity and stiffness of emergency track beams, the structure of the emergency track beam is designed. By comparing the advantages and disadvantages of various structure forms, ultimately the emergency track beam with assembled segments of prestressed steel box-concrete composite beam is proposed. According to the characteristics of the emergency repair work for track beam, its structural details are studied, mainly including the following aspects:① Based on the basic theory of the elastic buckling of thin plates, along with the mechanical characteristics for the web of composite beams and related experimental studies, the optimal placement of stiffening rib for the web of the steel box for the composite emergency track beam is investigated.②Based on the torsional resistance theory and combined with related torsional experiments for composite beams, the calculation method for regular tendon reinforcement configuration is analyzed for the composite emergency track beam.③The configuration, tensioning sequence as well as the tension control values of the prestressed tendons in the composite emergency track beams are analyzed and discussed.
     4) Built numerical models for composite emergency track beams
     Using the large scale finite element software Abaqus, numerical analysis models are built for the segmentally assembled prestressed steel box-concrete composite emergency track beam. Based on this,5sets of finite element models are built with a total of17composite emergency track beams with different structural design parameters. The influences of structural design parameters, such as reinforcement ratio, axial compressive strength of the concrete, the strength of steel and the plate thickness of the steel box beam, on the bending performance of the composite emergency track beams are investigated. Based on the analysis results with respect to these parameters influencing the bending performance, the structural design parameters for emergency composite track beams are optimized.
     5) Analysis and evaluation of the load bearing capacity of emergency track beams and their performance under normal use
     Based on associated computational theory for steel box-concrete composite beams, and along with their specific characteristics, the bending and shear capacities of composite emergency track beams are analyzed and investigated through both theoretical analysis and finite element analysis. Using the established finite element numerical model, the deformation of composite emergency track beams under vehicle load is analyzed. The results show that the load bearing capacity and stiffness of the composite emergency track beam fully meet the operation requirements.
引文
[1]张娟娟.城市交通拥堵的成因及治理问题研究[D].西安:长安大学,2008.
    [2]王梦恕.我国城市交通的发展方向[J].铁道工程学报,2003(1):43-47
    [3]孔令洋.城市轨道交通系统型式选择研究[D].北京:北京交通大学,2005.
    [4]吕清泉.试谈我国城市轨道交通的发展[J].铁道学报,2004,22(5):93-98.
    [5]毛保华,刘迁,姜帆.城市轨道交通[M].北京:科学出版社,2001.
    [6]王省茜.跨座式单轨铁路的特点及其应用前景[J].中国铁道科学,2004,25(1):131-135.
    [7]李海川.城市单轨交通系统的选用探讨[J].铁道机车车辆,2003:40-42.
    [8]蔡蔚,鲁强,李慕君.单轨列车城市新形象[J].交通与运输,2000(02):9-11.
    [9]张振森.城市轨道交通车辆[M].北京:中国铁道出版社,1998.
    [l0]刘磊.单轨交通应急梁支座与超高研究以及轨道梁生产用模板误差分析[D].北京:北京交通大学,2009.
    [11]金正彪.日本城市交通考察报告[J].城市公共交通,2004(3):37-38.
    [12]Werner Brand, Felix Wallochny. Karlsrude dual-mode Light Rail System-Innovative Technology Sets the Place in Town and Country[J]. Rail Engng. Intern.1992(4):P17-18.
    [13]赵永波.墩梁并举工序管理在跨座式单轨工程中的应用[D].重庆:重庆大学,2006.
    [14]仲建华.重庆跨座式单轨交通[J].都市快轨交通,2004,17(5):17-22.
    [15]边晓春,陶明鹤.单轨线路在重庆轨道交通网中的功能定位[J].现代城市轨道交通,2006(05):25-27.
    [16]铁道第二勘察设计院.创造·创建·创新一重庆跨座式单轨设计论文专辑[M].北京:人民交通出版社,2005.12.
    [17]雷慧锋,刘永锋.跨座式单轨交通建设中的关键技术[J].铁道标准设计,2001(01):1-4.
    [18]日本道路协会.单轨构造设计指南(中译本)
    [19]大阪跨座式单轨设计总结[M].铁道部第二勘测设计院科情室译.成都,1996.
    [20]重庆市轨道交通二号线工程跨座式单轨系统车辆、机电设备国产化研究报告[R].铁道部第二勘测设计院,1998.
    [21]俞照晖.跨座式单轨交通交通系统车辆-轨道梁空间耦合动力学特性的研究[D].北京:北京交通大学,2006.
    [22]徐瑞龙.PC轨道梁制作工法理论及软件系统[D].北京交通大学,2003.
    [23]王省茜.跨座式单轨道岔技术分析[J].中国铁路,2007,30(1):67-69.
    [24]中华人民共和国建设部.GB50458-2008.跨座式单轨交通设计规范[S].北京,中国建筑工业出版社,2008.
    [25]贺国兰.铁路既有线提速中曲线超高参数的设置[J].甘肃科技,2007,23(11):142-143.
    [26]李光明.欠超高、过超高问题雏议[J].铁道建筑,1991(5):1-5.
    [27]重庆市轨道交通总公司.重庆市单轨交通应急预案(送审稿).2006.
    [28]于志国,王树栋.我国应急钢桥的研究应用与展望[J].石家庄铁道学院学报,2000,13(3):1.3.
    [29]于志国.我国国防交通应急工程研究[J].工程力学,1998(增刊):577-583.
    [30]黄植初,王梅生.平战结合话桥梁[J].铁道知识,2000(1):30-31.
    [31]黄耀怡.我国新型铁路快速应急钢桥研制的若干问题[J].铁道标准设计,1998(12):9-11.
    [32]王树栋,鲍存坤,李云峰,等.公路应急分载梁的研究试验[J].工程力学(增刊):1998.556-560.
    [33]张彩然.跨座式单轨交通PC轨道梁应急抢修系统的研究[D].北京:北京交通大学,2007.
    [34]Zhang cairan, Zhu eryu, Cheng jingfu. Defects and monitoring of PC track beams used in monorail. Proceedings of the 3rd international conference on the concrete future,2008, 489-494.
    [35]Zhang cai ran, Zhu eryu, Cheng jing fu. Finite Element Analysis of Emergency Beams in Monorail. The first international symposium on innovation & sustainability of modern railway, 2008,132-136.
    [36]Zhang cai ran, Zhu eryu. Research on evaluation methods and reinforcement measures of PC track beams used in monorail traffic. Proceedings of the second international conference on structural condition assessment, monitoring and improvement(SCAMI-2).2007,607-611.
    [37]张彩然,朱尔玉.单轨交通应急梁结构有限元分析.2007中国交通高层论坛论文集.203-208.
    [38]鲁洋.应急梁制作控制软件系统的开发[D].北京交通大学,2008.
    [39]王浩.重庆轻轨应急轨道梁结构分析与研究[D].北京交通大学,2008.
    [40]Huang yun kun, Zhu eryu, Wang hao. The study on structure design and dynamic behaviour of emergency track beam. The first international symposium on innovation & sustainability of modern railway,2008,94-99.
    [41]Huang yun kun, Zhu eryu, Lu yang. The Study on Structural Design and Accuracy Control of Emergency Track Beam for Straddle Monorail Transit. The Tenth International Symposium on Structural Engineering for Young Experts,2008.1713-1716.
    [42]张红伟.应急轨道梁的结构设计与计算[D].北京:北京交通大学,2008.
    [43]郭子煜.应急轨道梁支座与超高设计研究[D].北京:北京交通大学,2008.
    [44]张彩然.单轨应急梁稳定性能研究[D].北京:北京交通大学,2012.
    [45]董阁.跨座式单轨交通应急梁拼装控制系统和支撑垫石定位分析系统开发[D].北京:北京交通大学,2009.
    [46]李圣强.应急梁支座的结构设计[D].北京:北京交通大学,2011.
    [47]张红艳.应急梁拼装台的设计与研究[D].北京:北京交通大学,2010.
    [48]王宇.应急轨道梁拼装台和支座的结构设计[D].北京:北京交通大学,2010.
    [49]重庆轻轨较新线一期工程跨座式单轨轨道梁桥工程质量检验评定办法.重庆市轨道交通总公司,2002,重庆.
    [50]中华人民共和国铁道部.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范.TB10002.3.2005[S].北京,中国铁道出版社,2005.
    [51]中华人民共和国铁道部.铁路桥涵设计基本规范.TB10002.3-2005.北京,中国铁道出版社,2005.
    [52]周庆瑞.重庆跨座式单轨交通的建设与技术创新[J].城市轨道交通研究,2005(4).
    [53]周庆瑞,金峰.新型城市轨道交通[M].北京:中国铁道出版社,2005.
    [54]吴爽.大阪单轨铁路系统[J].地铁与轻轨,1993(]):44-47. 摩北部建设事务所.
    [56]郭峰,朱尔玉,仲建华.跨座式单轨交通应急梁超高设置及限速研究[J].北京交通大学学报(自然科学版).2009(2):73-76.
    [57]边伟.线路纵断面设计中竖曲线设置的探讨[J].上海铁道科技,2003(3):16-18.
    [58]廖绍贤.高速铁路最大纵坡的论证[J].铁道建筑,1993(9):14-16.
    [59]李西明.高速铁路线路平纵断面设计标准的探讨[J].山西建筑,2003,29(10):139-142.
    [60]石红.浅谈《线规》中有关相邻坡段最大坡度代数差的限制[J].科学技术通讯,1992(3):18-22.
    [61]雷晓峰.跨座式轨道交通梁部结构形式比较[J].铁道标准设计.2005(1):72-76.
    [62]杨佑发,王立福.跨座式单轨交通箱形钢轨道梁动力特性研究[J].桥梁建设,2004(2):12-15.
    [63]Feng GUO, Eryu ZHU, Ziyu GUO. Superelevation study of monorail transit emergency track beam[A]. In:F.CHEN, L.GAO&Y.BAI. Key technologies of Railway Engineering[C]. The 1st international conference on railway engineering, Beijing:China Railway Publishing House,2010:904-908.
    [64]刘浪,余沛.单轨交通平曲线超高变化对行车的影响[J].重庆交通大学学报(自然科学版),2009,28(3):588-590.
    [65]吴波,王春萱,李木子.单轨交通平曲线超高变化对行车的影响分析[J].城市交通,2010,9(76):5-7.
    [66]王仕春.跨座式单轨交通超高率及限速研究[J].交通运输,2008(17):278-279.
    [67]李媛.体外预应力钢·混凝土组合梁抗弯承载力及性能研究[C].上海,2009:200-213.
    [68]罗应章.钢-混凝土组合梁栓钉剪力连接件的研究[D].长沙:中南大学,2008.
    [69]徐博文.钢与轻骨料混凝土组合梁栓钉剪力连接件能研究及优化设计[D].长春:吉林大学,2006.
    [70]林宗凡.钢-混凝土组合结构[M].上海:同济大学出版社,2004.
    [71]蒋丽忠,余志武,李佳.均布荷载作用下钢·混凝土组合梁滑移及变形的理论计算[J].工程力学,2003,20(2):133-137.
    [72]段树金,段艳菊,张志国.钢-混凝土双面结合梁界面在集中荷载作用下的滑移表达[J].石家庄铁道学院学报(自然科学版),2007,20(2):1-4.
    [73]刘玉擎.组合结构桥梁[M].北京,人民交通出版社,2005.
    [74]周伟翔.连续组合梁桥钢与混凝土连接试验研究[D].上海,同济大学,2007.
    [75]Slutter R G, Driscoll G C. Flexural strength of steel-concrete composite bemas [J]. Journal of the Structural Division, ASCE,1965,91(2):71-99.
    [76]Sllgaard H G, Slutter R G, Fisher J D. Shear strength of stud connectors in light weight and normal-weight concrete[J]. Journal of American Institute of Steel Consturction,1971, 8(2):55-64.
    [77]Joint Committee IABSE/CEB/FIP/ECCS Composite Structures (Model Code). London: Construetion Press,1981.
    [78]Oehlers D J.Johnson R R The stregth of stud shear connections in composite beams[J]. The Structural Engineering.1987,65B(2):44-48.
    [79]胡夏闽.欧洲规范4钢-混凝土组合粱设计方法-剪力连接件[J].工业建筑,1996,26(2):50-55.
    [80]GBJ17-88,钢结构设计规范[S].北京:中国工业出版社,1989.
    [81]付果.考虑界面滑移及掀起影响的钢-混凝土组合梁试验与理论研究[D].西安:西安建筑科技大学,2008.
    [82]GB50017-2003,《钢结构设计规范》[S].北京:中国建筑工业出版社,2003.
    [83]陈骥编著.钢结构稳定理论与设计[M].北京:科学出版社,2011.
    [84]邵长宇.大跨度钢-混凝土连续组合箱梁桥关键技术研究[D].上海:同济大学,2007.
    [85]EUROCODE N0.4 Composite Steel and Concrete Structural, Part2:Bridges[S].1996.
    [86]BSS400钢桥、混凝土桥及结合桥.西南交通大学出版社,1991.
    [87]AASHTO美国公路桥梁设计规范,1994.
    [88]日本道路协会,道路桥示方书,1996.
    [89]刘玉擎.组合结构桥梁[M].北京:人民交通出版社,2005.01.
    [90]胡少伟,聂建国.钢-混凝土受扭性能全过程分析[J].计算力学学报,2004,21(4):435-439.
    [91]胡少伟编著.组合梁抗扭分析与设计[M].北京:人民交通出版社,2005.
    [92]M.B.Ray, S.K.mallick. Interaction of flexure And torsion in steel-concrete composite beams.India Concrete Jflurnal,1980(3).
    [93]B.Ghosh, S.K.Mallick. Strength of steel-concrete composit beams under combined flexure and torsion.India Coincrete Journal,1979(2).
    [94]Pandit.G S. Combined bending and torsion of concrete beams. India Concrete Journal, 1978(3).
    [95]R.K.Singh. S.K.Mallick. Experiments on steel-concrete beams subjected to torsion and combined flexure and torsion. India Concrete Journal,1977(1).
    [96]JOHNSON R P. Composite structures of steel and concrete [M].London:Granade Publishing, LTD.,1975(1).
    [97]聂建国,朱红超,等.开口截面钢.混凝土组合梁受扭的试验分析[J].建筑结构学报,2002,23(2):48-54.
    [98]胡少伟,聂建国,罗玲.钢-混凝土组合梁抗扭特性研究[J].建筑结构,1994(4):38-40
    [99]聂建国,唐亮.钢.混凝土组合梁的抗扭特点[J].建筑钢结构进展,2006,8(5):30-34.
    [100]聂建国,唐亮,胡少伟,朱红超.钢-混凝土组合箱梁的抗扭强度[J].土木工程学报,2008,41(1):1-10.
    [101]中华人民共和国建设部.混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社,2010.
    [102]邹超英,王振东.钢筋混凝土板式受扭构件截面限制条件的试验研究.第二届混凝土结构基本理论及应用学术讨论会论文集.北京:清华大学,1990.
    [103]胡少伟.抗扭钢-混凝土组合梁的构造要求和设计过程[J].建筑结构,2006,36(1):49-52.
    [104]胡少伟,聂建国,熊辉.钢·混凝土组合梁的受扭试验与分析[J].建筑结构学报,2006,27(4):103-109
    [105]K Baskar, N E Shanmugam, V Thevendran.Finite-element analysis of steel-concrete composite plalte girder[J]. Journal of Structural Engineering, ASCE,2002,128(9):1158-1168.
    [106]Enrico spacne, Sheriff Ei-tawil.Nonlinear analysis of steel-concrete composite structures:State of the Art[J]. Journal of Structural Engineering, ASCE,2004,130(2):159-168.
    [107]Daniels B J, Crisinel M. Composite slab behavior and strength analysis. Part I:Calculation procedure[J]. Journal of Structural Engineering, ASCE,1993,119(1):16-35.
    [108]Ayoub A, Filippou F C. Mixed formulation of nonlinear steel-concrete composite beam element[J]. Journal of Structural Engineering, ASCE,2000,126(3):371-381.
    [109]CEN. Eurocode 4:Design of composite steel and concrete structures. Part I, General rules and mles for buildings[S]. Brussels, Belgium:1994.
    [110]M Fraglacomo, C Amadio, L Macodni. Finite element model for collapse and longterm analysis of steel-concrete composite beams[J]. Journal of Structural Engineering, ASCE 2002. 130(3):489-497.
    [111]Andrea Dall'Asta, Luigmo Dezi. Nonlinear behavior ofexternally prestressed composite beams analystical model[J]. Journal of Structural Engineering, ASCE,1998.124(5):588-168.
    [112]Dezi L, Leoni G, Tarantmo A M. Time-dependent analysis of prestressed composite beams[J]. Journal of Structural Engineering, ASCE,1995,121(4):621-633.
    [113]陶慕轩,聂建国.预应力钢-混凝土连续组合梁的非线性有限元分析[J].土木工程学报,2011,44(2):8-19.
    [114]贾远林,陈世鸣,王新娣.体外预应力钢混凝土连续组合梁非线性数值分析[J].同济大学学报(自然科学版),2011,39(9):1258-1265.
    [115]张耀春,毛小勇,曹宝珠.轻钢-混凝土组合梁的试验研究及非线性有限元分析[J].建筑结构学报,2003,24(1):26-33.
    [116]邱文亮,张哲,姜萌.钢-混凝土组合梁非线性有限元分析[J].计算力学学报,2003,20(5):627-630.
    [117]周凌宇,余志武,蒋丽忠.钢-混凝土连续组合梁非线性有限元分析[J].长沙铁道学院学报,2003,21(2):9-13.
    [118]宗周红,车惠民,房贞政.预应力钢-混凝土组合梁有限元非线性分析[J].中国公路学报,2000,13(2):48-51.
    [119]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [120]方秦,还毅,张亚栋,陈力..Abaqus混凝土损伤塑性模型的静力性能分析[J].解放军理工大学学报(自然科学版),2008,8(2):254-259.
    [121]中华人民共和国住房和城乡建设部.GB50010-2010.混凝土结构设计规范[S].北京,中国建筑工业出版社出版,2011.
    [122]方恺,陈世鸣.考虑剪力连接件刚度的钢-混凝土组合梁有限元分析[J].工业建筑,2003,33(9):75-77.
    [123]刘齐茂,李徽.基于有限元法的钢-混凝土连续组合梁截面优化设计[J].西安建筑科技大学学报(自然科学版),2005,27(5):68-72.
    [124]韦芳芳,吕志涛,孙文彬.部分剪力连接钢-混凝土组合梁的非线性有限元分析[J].工业建筑,2003,33(9):78-79.
    [125]张琪,胡夏闽,王干.钢-混凝土组合梁纵向抗剪非线性分析[J].南京工业大学学报,2005,27(5):37-41.
    [126]郑则群,房贞政.体外预应力钢-混凝土组合梁非线性有限元分析[J].福州大学学报(自然科学版),2009,37(6):879-888.
    [127]郑则群,房贞政,宗周红.预应力钢-混凝土组合梁非线性有限元解法[J].哈尔滨工业大学学报,2004,36(2):218-222.
    [128]ASTA.A.D, DEZI L. Nonlinear behavior of externally prestressed composite beams; analytical model[J]. Journal of Structural Engineering, ASCE,1998,24(5):588-597.
    [129]楼铁炯.无粘结预应力的有限元建模与性能分析研究[D].杭州:浙江大学,2005.
    [130]胡汉林.预应力组合箱梁结构抗弯性能试验研究与理论分析[D].南京:南京水利科学研究院,2010.
    [131]宗周红.预应力钢-混凝士组合梁静动载行为研究[D].成都:西南交通大学,1997.
    [132]贾艳敏,盖秉政,张印阁,倪元增.预应力钢箱梁的非线性分析[J].哈尔滨工业大学学报,2002,34(3):352-355.
    [133]宋一凡.体外预应力钢箱梁桥变形分析[J].长安大学学报(自然科学版),2002,22(3):34-36.
    [134]刘文会.预应力钢-混凝土组合梁桥结构行为研究[D].长春:吉林大学,2005.
    [135]王连广,刘莉,郑宇.钢与高强混凝土预应力组合梁承载力计算[J].东北大学学报(自然科学版),2005,26(2):164-166.
    [136]洪英维.体外预应力钢箱.混凝土组合梁试验研究[D].南京:南京工业大学,2005.
    [137]Wang Y C. Deflection of steel-concrete composite beams with partial interaciton[J]. Journal Engineering, ASCE,1998,124(10):1159-1165.
    [138]Slutter R G, Driscoll G C. Flexural strength of steel-concrete composite beams[J]. Journal of Structure Division, ASCE,1965,91(ST2):71-99.
    [139]聂建国,李勇,等.钢-混凝土组合梁刚度的研究[J].清华大学学报(自然科学版),1998(10):38-41.
    [140]聂建国.袁彦声.钢-混凝土简支组合梁变形计算的一般公式[J].工程力学,1994,11(1):21-27.
    [141]Nie Jianguo, Cai C.S. Steel-concrete composite beams considering Shear slip effects[J].Structural Engineering, ASCE,2003:495-506.
    [142]聂建国,沈聚敏.滑移效应对钢-混凝土组合梁弯曲强度的影响及其计算[J].土木工程学报,1997,30(1):31-36.
    [143]聂建国,沈聚敏,袁彦声.钢-混凝土简支组合梁变形计算的一般公式[J].工程力学,1994,l1(]):21-27.
    [144]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995(6):11-17.
    [145]杜拱辰,陶学康.部分预应力混凝土粱无粘结筋极限应力的研究[J].建筑结构学报,1985,6(6):2-13.
    [146]M Harajli, N Khalrallah, H Nassif. External prestressed members:evaluation of second-order effects[J]. Journal of Structure Engineering, ASCE,1999,125(10):1151-1161.
    [147]A E Naaman, F M Alkhairi. Stress at ultimate in unbonded post-tensioning tendons: part2-proposed methodology[J]. ACI Stucture Journal,1991,88(6):683-692.
    [148]N Ariyardena, A Ghali. Prestressing with unbonded internal or external tendons:Analysis and Computer Model[J]. Journal of Structural Engineering, ASCE,2002,128(12):1493-1501.
    [149]M A Pisani.Geometrical nonlinearity and length of external tendons[J], Journal of Bridge Engineering, ASCE,2005,10(3):302-311.
    [150]P G Hoadley. Behavior of prestressed composite steel bcam[J].Journal of Structure Division, ASCE,1963,89(ST3):21-34.
    [151]A E Naaman, F M Alkhalri. Stress at ultimate in unbonded post-tensioning tendons: part1-Evaluation of the state-of-the-art [J].ACI Structure Journal,1991,88(5):641-651.
    [152]A Miyamoto, K Tci, H Nakaraura, J W Bull. Behavior of prestressed beam strengthened with external tendons[J]. Journal of Structure Engineering, ASCE2000,126(9):1033-1044.
    [153]王景全.组合梁桥及体外预应力组合梁桥基本性能研究[D].南京:东南大学,2006.
    [154]陈忠汉.钢管混凝土柱的承载力与变形性能[J].苏州城建环保学院学报,1995(2):13-22.
    [155]莫时旭.钢箱-混凝土组合梁结构行为试验研究与分析[D].成都,西南交通大学,2007.
    [156]聂建国.钢-混凝土组合梁结构[M].北京:科学出版社,2005.
    [157]Ansourianp. Experiments on continuous composite beams[J]. Project of Civil Engineering, 1982,73(3):25-51.
    [158]Johnson R P, Willmington R T. Vertical shear in continuous composite beams[J]. Project of Civil Eng,1972,53:89-205.
    [159]回国臣,吴献.钢-混凝土组合抗剪承载力计算[J].有色矿冶,2001,Vol17(4):36-37.
    [160]聂建国,陈林,肖岩.钢-混凝土组合梁抗剪研究中的塑性分析方法[J].工程力学,2002,19(5):48-51.
    [161]王庆利,康清梁,曹平周.钢筋混凝土组合梁竖向抗剪承载力的试验研究[J].江苏建筑,2000(1):2-4.
    [162]Nie Jianguo, XiaoYan, Chen Lin. Experimental Studies on shear strength of steel-conerete composite beams[J]. Struct Engrg,2004,130(8):1206-1213.
    [163]杨恒利.高性能钢-混凝土组合梁抗剪性能研究[D].北京:北京交通大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700