用户名: 密码: 验证码:
考虑残余强度和损伤的岩体应力场—渗流场耦合理论研究及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要依托拟建的京张城际铁路八达岭地下车站工程,以详尽的岩体结构调查统计为基础,以大量的岩石单轴、三轴全应力-应变曲线为支撑,对考虑残余强度和损伤的岩体应力场-渗流场耦合理论作了深入研究,并将理论研究成果应用于八达岭地下车站设计的结构方案优化和环境影响评估以及武广高铁尖峰顶隧道下穿地表高压输电线塔施工控制方案优化。论文的主要创新性的研究方法、手段和研究成果摘要如下:
     1、岩体残余强度特征研究
     在隧道及地下工程中,研究岩体残余强度及峰后力学性质对工程设计有着非常重要的意义。本文通过以下四个方面对岩体残余强度特征展开研究:(1)岩石在单轴压缩条件下的变形及损伤特征分析;(2)常规三轴压缩试验下岩石的残余强度特征分析;(3)进行单层节理岩体力学特性数值试验研究,重点分析单轴和三轴压缩条件不同结构面倾角的单层节理岩体的强度特征。
     2、基于残余强度修正的岩石损伤本构模型
     岩石随着围压的增大,残余强度的增加幅度比峰值强度大,残余强度逐渐成为影响岩石全应力-应变曲线峰后段的主要因素,因此,在建立岩石损伤软化统计本构模型时考虑残余强度进行修正是非常有必要的。基于岩石应变强度理论以及岩石微元强度服从Weibull随机分布的假设,本文考虑岩石峰后残余强度对损伤变量进行了修正,在微元破坏符合Hoek-Brown屈服准则条件下,建立了能够反映岩石峰后软化特征的三维损伤统计本构模型;然后,依据岩石试验全应力-应变曲线的几何特征,推导出本构模型参数的数学表达式,并基于花岗岩室内试验数据对模型参数进行探讨,研究了Weibull分布参数与本构模型的关系,探讨了损伤修正系数的取值和岩石累积损伤的扩展过程;最后,将本文建立的本构模型理论曲线与四种岩石(斑状二长花岗岩、细晶大理岩、砂岩和粉砂质泥岩)在不同围压下的常规三轴压缩试验曲线进行对比分析,结果证实该模型能很好的描述岩石破裂过程的全应力-应变关系和表征岩石残余强度特征。这对于岩石损伤软化问题以及岩石加固处理措施的研究均具有重要的意义。
     3、岩石损伤本构模型参数取值研究
     岩石损伤本构模型的参数是根据岩体地质强度指标(GSI)计算取得。评价岩体地质强度指标时,因其基本要素取值过程存在较大的随机性和模糊性,这就很难用静态模式去准确地衡量每个影响因素。岩体特征参量的模糊性反映了其内在的不确定性,模糊数学理论能为更客观的刻画这种特性提供有力的数学手段。本文首先引入岩体节理组数Jn、节理间距l和岩体完整性系数Kv描述岩体结构特征,再引入大比例尺波形系数Jw、小比例尺光滑系数Js和节理蚀变系数Ja描述结构面状态,然后把多因素模糊综合评判理论应用到GSI系统的评价中去,并利用层次分析法确定模糊评判因素的权重,建立了GSI系统的模糊综合评判模型。工程应用表明,这种方法针对性较强、准确度较高,能够将地质调查勘探结果、试验结果、统计数据以及专家意见有机结合起来,从而减小了研究者决策时主观性。GSI系统的模糊综合评判法为GSI系统量化提供了新的途径。
     4、考虑损伤的岩体流固耦合模型研究
     应用连续性方程、线动量平衡方程、岩石损伤等效弹性模量方程及相应的物性方程,在合理的基本假设基础上,对饱和状态下渗流场和应力场控制方程分别进行了推导,建立了考虑损伤效应的渗流应力耦合模型。在耦合方程组推导过程中,针对岩体损伤效应,考虑了岩体渗流状态的变化及岩石孔隙率、渗透率变化。结合隧道围岩的初始条件及边界条件,研究了考虑损伤效应的渗流应力耦合模型有限差分求解方法,对求解过程进行了程序设计,以FLAC3D有限差分软件为平台,进行了软件二次开发,程序计算过程简洁、便于实现。
     5、工程应用研究
     以京张城际铁路八达岭超大规模地下车站修建为例,依据工程区水文地质特征、水压致裂原位应力测量结果,利用有限差分软件FLAC3D建立三维渗流-应力耦合模型,并采用四种方案进行数值模拟:全封堵、全排水、非耦合、注浆限排。并结合理论分析,着重研究在饱水状况下八达岭车站修建前后渗流场变化、涌水量、围岩变形和地表沉降等环境影响负效应因子,对因地下车站修建环境影响效应的显著性、空间分布特征和长期效应进行评价。模拟计算结果对于裂隙发育、富水地层地下工程尤其修建于自然风景区大型地下洞室防排水设计和施工具有指导意义。
     偏压富水软岩大断面隧道施工引起的地层变形是多方面影响因素叠加的结果。结合武广高铁尖峰顶隧道下穿地表高压输电线塔的工程实践,首先对隧道施工前后地层变形监测和分析提出控制大变形的工程措施,然后采用综合统计和理论分析,研究地形条件、地层产状、隧道和通道施工、地面荷载、地表坍塌造成的地层变形与建筑物位移的关系,最后以流固耦合数值分析为手段对影响地层变形的关键因素作了量化分析。
This paper relies on the proposed Badaling Underground Project of Jingzhang inter-city railway. The content of the paper,which does a thorough research of the rock mass stress field-seepage field coupling theory which considering residual strength and damage, is based on detail rock mass structure survey statistics and large amount of single and triaxial stress-strain curve of rock. The achievement of the theory is applied to structure optimization and environmental impact assessment of Badaling Underground Project, and this article considers the Jianfengding tunnel on the Wuhan-Guangzhou high-speed railway when electricity pylons are present on the ground surface. The abstract of new research methods and research results are as follows:
     Characteristics of the residual strength of rock mass
     The residual strength of rock mass and the mechanical response of rock mass after peak strength are undoubtedly significant in tunnel and underground construction. This paper, from the following3aspects, conducts a study of residual strengthof rock mass:(1) the deformation and damage features of rock mass under uniaxial condition,(2) the residual strength of rock mass under tri-axial condition and (3) the numerical simulation of layered rock mass strength especially the influence of dip angle to the rock mass strength under uniaxial and tri-axial condition.
     Study on modified damage statistical constitutive model considering residual strength
     The increase amplitude of residual strength of rock is larger than the rock peak intensity of rock with the increase of confining pressure. Gradually, residual strength becomes the main factor of complete stress-strain curve of rock at the stage after peak intensity. Therefore, it's necessary to consider the residual strength to modify the damage statistical constitutive model for Rock. Based on the strain strength theory and hypothesis of rock particles intensity obeying Weibull random distribution, a damage statistical constitutive model for rock under triaxial compression, which can describe the characteristics of rock post-peak softening, is established by adopting Hoek-Brown criterion and considering the residual strength to modify the damage parameter in this thesis. Then, all these model parameters analytic solutions are deduced according to the geometric features of rock complete stress-strain curve. On the basis of experimental results of granite specimens, the influences of Weibull distribution parameters on the rock damage constitutive model are studied. At the same time, the value of modified coefficient and the damage process of rock are discussed. Finally, the achieved theoretical curves by the damage model of rock under different confining pressure are comparatively analyzed with the conventional triaxial compression test results of four kinds of rock:porphyaceous adamellite, fine-particle marble, sandstone and silty mudstone.
     Fuzzy-synthetical evaluation on the system of geological strength index
     When evaluating geologic intensity index, there are great randomness and fuzziness to confirm the value of its basic elements. As a consequence, it is difficult to accurately measure the impact of each influential factor. The fuzziness of the parameters of rock mass characteristics reflects its inherent uncertainty and the fuzzy mathematics theory provides strong measures to depict these characteristics. This article introduces the number of joint sets(Jn), joint spacing(l) and the integrity coefficient of rock mass(Kr) to describe the structure features of rock mass and introduces large-scale waviness(Jw), small-scale smoothness(Js) and Joint altered coefficient(Ja) to describe the conditions of structural planes. Then multifactor fuzzy-synthetical evaluation is applied to the system of geological strength index, meanwhile, analytic hierarchy process is adopted in determining the weight of each factor. As a result, the model of fuzzy-synthetical evaluation on the system of geological strength index is established. Practical project applications prove that this evaluation method has strong pertinence and high accuracy and it can organically combine geological surveys, experiment datum, statistics and expert opinions, so this evaluation method can decrease the subjectivity of researchers' decisions. The method of fuzzy-synthetical evaluation on the system of geological strength index does provide a new approach to quantizing GSI system.
     Study on the seepage-stress coupling damage behavior of rock
     Based on some reasonable assumption, the seepage field and stress field equations have been derived through continuity equation, momentum conservation equation, rock statistical damage amending equation and some substantial equations. Then the seepage stress coupling damage behavior model is established in saturation state. According to some initial and boundary conditions of tunnel surrounding rock, the finite difference method is explored in seepage-stress coupling damage behavior model.
     Engineering applications
     In order to access the environmental effects of the Badaling underground station project, numerical analysis for the stability of surrounding rock was done with fast Lagrangian analysis of continua in three-dimension(FLAC3D). Multiple factors were considered including surrounding rock classes, tunnel depths, groundwater tables, construction methods and initial supporting systems. The models are divided into four classes:the exclusion of underground water model, model with underground water seepage flow, model without underground water seepage flow, and a coupling analysis model with grouting reinforcement. According to the results of the displacement of rock mass, the pore pressure distribution and water gushing capacity, the significance, spatial distribution and long-term effects of environmental effects were discussed and the degree of influence were studied as well. The achieved results are successfully applied to the guidance of the tunnel construction for waterproofing of underground station. Furthermore, the study results can provide a theoretical basis for the design of tunnel and underground works in aquifer strata.
     The strata deformation of large section water-abundant soft rock shallow-buried tunnel under unsymmetrical pressure passing through existing structures would be effected by several factors. This article considers the Jianfengding tunnel on the Wuhan-Guangzhou high-speed railway when electricity pylons are present on the ground surface. First, the article describes the engineering measures needed as in-situ measured data to control large strata deformation. Second, statistical and theoretical analyses comprehensively studies the relationship between strata deformation and the impact of the existing building as affected by terrain condition, attitude of stratum, tunnelling construction, tunnel cross-hole construction, ground load, and ground collapse. Third, quantitative analysis is performed on strata deformation brought about by several critical factors and based on coupled fluid-mechanical numerical computation.
引文
[1]贺少辉.地下工程[M].北京交通大学出版社,清华大学出版社,2006.
    [2]关宝树.地下工程[M].高等教育出版社,2007.
    [3]文建华.隧道结构稳定性及其流固耦合损伤研究[博士学位论文][D].武汉:武汉理工大学,2009.
    [4]江涛.基于细观力学的脆性岩石损伤-渗流耦合本构模型研究[博士学位论文][D].南京:河海大学,2006.
    [5]徐小敏.裂隙岩体损伤本构模型研究及应用[硕士学位论文][D].重庆:重庆大学,2007.
    [6]李灏.损伤力学基础[M].济南:山东科学技术出版社,1992.
    [7]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995.
    [8]Dougill J W, Lau J C, Burt N J. Mechanies in engineering[M]. [s.l.]:American Socity of Civil Engineers CASCE Press,1976.
    [9]Dragon A, Mron Z. A continuum model for plastic brittle behavior of rock and concrete[J]. Eng. Sci.,1976,17:121-137.
    [10]Gurson A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction[D]. Rhode Island:Brown University,1975.
    [11]Gurson A L. Continuum theory of ductile repture by void nucleation and growth:part I-yield criteria and flow rules for porous ductile media[J]. Eng. Mater Tech.,1977,99(1):2-15.
    [12]Costin L S. A microcrack model for the deformation and failure of brittle rock[J]. Geophys. Res.,1983,88(B11):9485-9492.
    [13]Hull J. Effect of voids on creep rate and strength[J]. Damage Mechanics and Continuum Modeling, ASCE, New York,1985:13-24.
    [14]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [15]谢和平.分形-岩石力学导论[M].北京:科学出版社,1997.
    [16]Schlangen E, Garboczi E J. Fracture simulations of concrete using lattice models:computational aspects[J]. Eng. Frac. Mech.,1997,57(2):319-332.
    [17]Schlangen E, Van Mier. Experimental and numerical analysis of micromechanisms of fracture of cement-based composites[J]. Cement and Concrete Comaosites,1992,14(2):105-118.
    [18]谢强,姜崇喜,凌建明.岩石细观力学实验与分析[M].成都:西南交通大学出版社,1997.
    [19]朱万成,唐春安等.混凝土试样在静态载荷作用下断裂过程的数值模拟研究[J].工程力学,2002,19(6):148-153.
    [20]唐春安,朱万成.混凝土损伤与断裂一数值试验[M].北京:科学出版社,2003.
    [21]周维垣,剡公瑞.岩石、混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计,1997,13(1):1-9.
    [22]刘齐建,杨林德,曹文贵.岩石统计损伤本构模型及其参数反演[J].岩石力学与工程学报,2005,24(4):616-621.
    [23]刘仲秋,章青.岩体中饱和渗流应力耦合模型研究进展.力学进展,2008,38(5):585-600.
    [24]文建华.隧道结构稳定性及其流同耦合损伤研究[博十学位论文][D].武汉:武汉理工大学,2009.
    [25]Noorishad J, Ayatollahi M S, Witherspoon P A et al. A finite-element method for coupled stress and fluid flow analysis in fractures rock masses[J]. Int J Rock Mech Sci Geomech Abstrs,1982, 19(4):185-193.
    [26]Oda M. An equivalent model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resour,1986,22(13):155-164.
    [27]沈振中,徐志英.三峡大坝坝基黏弹性应力场与渗流场祸合分析[J]. 工程力学,2000,17(1):105-113.
    [28]王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,2000,19(2):17-181.
    [29]Mahnken R, Kohlmeier M. Finite Element Simulation for Rock Salt with Dilatancy Boundary Coupled to Fluid Permaction[J]. Computer Methods APPI Engrg,2001,190:4259-4278.
    [30]Indraratna B, Hydro-mechanical aspects of jointed rock media[J]. Proceedings of the 8th International congress on Rock Mechanics, Tokyo,1995.759-762.
    [31]Young Kim, Anadei B, Pan E. Modeling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis[J]. Int J Rock Mech Min Sci,1999,36(7): 949-970.
    [32]肖裕行,王思敬,王泳嘉.离敞单元法中接触变化诱导的水头变化[J].岩土力学,1999,20(2):5-9.
    [33]王洪涛.裂隙网络渗流与离敞元耦合分析充水岩质高边坡的稳定性[J].水文工程地质,2000,27(2):30-33.
    [34]仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,16(1):1-5.
    [35]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2001.
    [36]Jing L R, Ma Y, Fang Z L. Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis(DDA) method[J]. Int J Rock Mech Min Sci,2001,38(3): 343-355.
    [37]张国新,武晓峰.裂隙渗流对岩石边坡稳定性的影响-渗流、变形耦合作用的DDA法[J].岩石力学与工程学报,2003,22(5):1269-1275.
    [38]Ivars D M. Water inflow into excavations in fractured rock-a three-dimensional hydro-mechanical numerical study[J]. Int j Roek Mech Min Sci,2006,43(5):705-725.
    [39]Cappa F, Guglielmi Y, Fenart P, et al. Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements[J]. Int j Rock Mech Min Sei,2005. 42(7-8):949-970.
    [40]Guglielmi Y, Cappa F, Rutqvist J, et al. Mesoscale characterization of coupled hydromechanical behavior of a fractured-Porous slopein response to free water-surface movement[J]. Int J Rock Mech Min Sci,2007.
    [41]Cammatata G, Fidelibus C, Cravero M, et al. The hydromechanically coupled response of roek fractures[J]. Rock Mech Rock Eng.,2007,40(1):41-46.
    [42]贺少辉.裂隙渗流对岩体工程稳定性影响的理论及工程应用研究[博十学位论文][D].北京:北京科技大学,1995.
    [43]Warren T E, Root P J. The behavior of naturally fractured reservoirs[J]. Soe Pet Eng. J.1963, (3):234-255.
    [44]Ohnishi Y, Kabayashi A. Thermal-hydraulic-mechanical coupling analysis of rock mass Comprehensive Rock Engineering[J], Pergamon Press,1993(2):191-208.
    [45]Aifantis E C, Urbana, Illinois. On the Problem of diffusion in solids [J], Acta Mech,1980(37): 265-296.
    [46]仵彦卿,张悼元.岩体系统渗流场与应力场耦合的广义双重介质模型的应用研究[J].工程地质学报,1996,4(3):40-46.
    [47]赵瑜,李晓红,卢义玉.块裂结构岩质边坡水力学模型及数值模拟[J].岩土力学,2005,26(6):996-999.
    [48]Yuan S C, Harrison J P. A review of the state of the art in modeling progressive mechanical breakdown and associated fluid flow in intact heterogeneous rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(7):1001-1022.
    [49]Bruno M S, Nakagawa F M. Pore pressure influence on tensile fracture propagation in sedimentary rock [J]. International Journal of Rock Mechanics and Mining Sciences,1991,28(4): 261-273.
    [50]Vandamme M, roegiers J C. Poroelasticity in hydraulic fracturing simulators[R]. Journal of Petroleum technology,1990(11):1199-1203.
    [51]Keivan N. Discrete versus smeared versus element-embedded crack models on ring problem [J]. Journal of engineering mechanics,1999,125(6):307-314.
    [52]崔中兴,仵彦卿,党发宁,等.石砭峪岩体裂隙非连续介质渗流对岩体强度的影响[J].西安理工大学学报,2001,17(4):366-369.
    [53]谢兴华.岩体水力劈裂机理试验及数值模拟研究[博士学位论文][D].南京:河海大学,2004.
    [54]唐红伙.水力劈裂条件下裂隙介质水力特性研究[博士学位论文][D].南京:河海大学,2005.
    [55]连志龙.岩体水力劈裂机理试验及数值模拟研究[博士位论文][D].合肥:中国科学技术大学,2007.
    [56]Simpson G, Gueguen Y, Schneider F. Permeability enchancement due to microcrack dilatancy in the damage regime [J]. J. Geophys. Res.,2001(106):3999-4016.
    [57]Valko P, Economides M J. Propagation of hydraulically induced fractures-a continuum damage mechanics approach [J]. International Journal of Rock Mechanics and Mining Sciences,1991, 31(3):221-229.
    [58]杨延毅,周维恒.裂隙岩体的渗流-损伤场耦合分析模型及其工程应用[J].水力学报,1991(5):19-27.
    [59]郑少河,朱维中.裂隙岩体渗流-损伤场耦合模型的理论分析[J].岩石力学与l:程学报,2001,20(2):156-159.
    [60]朱珍德,徐卫亚.裂隙岩体渗流场与损伤场耦合模型研究[J].河海大学学报,2003,31(2):156-160.
    [61]Souley M, Homand F, Pepa S, etc. Damage-induced Permeability changes in grantite:a ease example at the URL in Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2001,38(2):297-310.
    [62]Shao J F, Hoxha D, Bart M, etc. Continuous modeling of induced anisotropic damage in granite [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(8):1001-1012.
    [63]Shao J F, Zhou H, Chan K T. Coupling between anisotropic damage and Permeability variation in brittle rocks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005,29(12):1231-1247.
    [64]周建军,周辉,邵建富.脆性岩石各向异性损伤和渗流耦合细观模型研究[J].岩石力学与工程学报,2007,26(2):368-373.
    [65]Seholz C H. Microfracturing and the inelastic deformation of rock in compression [J]. J. Geophys Res.,1968,73(4):1417-1432.
    [66]Yuan S C, Harrison J P. Development of a hydromechanical local degradation approach and its application to modeling fluid flow during Progressive fracturing of heterogeneous rocks [J]. Int. J. Rock Meeh. Min. Sci,2005,42(7-8):961-984.
    [67]杨天鸿,唐春安,梁正召,等.脆性岩石破裂过程损伤与渗流耦合数值模型研究[J].力学学报,2003,35(5):533-540.
    [68]Bruno M S, Micromeehanics of stress-induced Permeability anisotropy and damage in sedimentary rock[J]. Mech Mater,1994(18):31-48.
    [69]Li L, Holt R M. Simulation of flow in sandstone with fluid coupled particle model[C]. Rock Mechanics in the National Interest. [S.l.]:Swets Zeitinger Lisse,2001,165-172.
    [70]Boutt D F, Cook B K, MePherson B, etc. Application of a directly coupled numerical model of fluid-solid mechanics[J]. In:Culligan PJ, Einstein H H, Whittle A J, eds. Soil and Rock America 2003 Proeeedings,2003,977-983.
    [71]Seeburger D A, Nur A, A Pore space model for rock Permeability and bulk modulus[J], J. Geophys Res,1984,89(B1):527-536.
    [72]靖洪文.峰后岩石剪胀性能试验研究[J].岩石力学,2003,24(1):93-96,102.
    [73]郭富利,张顶立,苏洁,等.围压和地下水对软岩残余强度及峰后体积变化影响的试验研究[J].岩石力学与工程学报,2009,28(增1):2644-2650.
    [74]鄢建华,黄宝德,汤雷.岩石类材料峰后本构关系研究进展[J].地质灾害与环境保护,2003,14(4):59-62.
    [75]钟时猷,徐纪成.破裂岩石力学性态的模拟研究[J].中南大学学报(自然科学版),1986,(6):14-20.
    [76]徐松林,吴文,王广印,等.大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程实验[J].岩石力学与工程学报,2001,20(6):763-767.
    [77]汀新红,王明洋.岩爆与峰后岩石力学特性[J].岩十力学,2006,27(6):913-919.
    [78]张黎明,王在泉.考虑岩体峰后非线性软化的衬砌压力隧洞应力解[J].岩土力学,2008,29(增1):283-287.
    [79]张帆,盛谦,朱泽奇,等.三峡花岗岩峰后力学特性及应变软化模型研究[J].岩石力学与工程学报,2008,27(增1):2651-2655.
    [80]陆银龙,王连国,杨峰,等.软弱岩石峰后应变软化力学特性研究[J].岩石力学与工程学报,2010,29(3):640-648.
    [81]Pouya A, Ghoreychi M. Determination of rock mass strength properties by homogenization [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(13): 1285-1303.
    [82]Steiner W. Swelling rock in tunnels:rock characterization, effect of horizontal stresses and construction procedures[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1993,30(4):361-380.
    [83]吴刚,张磊.单轴压缩下岩石破坏后区的扰动状态概念分析[J].岩石力学与工程学报, 2004,23(10):1628-1634.
    [84]郑宏,葛修润,李焯芬.脆塑性岩体的分析原理及其应用[J].岩石力学与工程学报,1997,16(1):8-21.
    [85]Cai M, Kaiser P K, Tasaka Y, et al. Determination of residual strength parameters of jointed rock masses using the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(2):247-265.
    [86]Hashiba K, Okubo S, Fukui K. A new testing method for investigating the loading rate dependency of peak and residual rock strength[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(6):894-904.
    [87]尤明庆.两种晶粒大理岩的力学性质研究[J].岩土力学,2005,26(1):91-96.
    [88]李林峰,杨相如.岩石峰后应力应变特性的加卸载试验研究[J].公路,2011,5:131-136.
    [89]宋卫东,明世祥,王欣,等.岩石压缩损伤破坏全过程试验研究[J].岩石力学与工程学报,2010,29(增2):4180-4187.
    [90]Hoek Evert, Carlos Carranza-Torres, Brent Corkum. Hoek-Brown failure criterion-2002 edition[A]. In:Proc.5th North American Rock Mechanics Symposium and 17th Tunneling Association of Canada conference[C]. Rotterdam:A. A. Balkema,2002,267-271.
    [91]金济山,石泽全,方华,等.在三轴压缩下大理岩循环加载试验的初步研究[J].地球物理学报,1991,34(4):488-494.
    [92]Byerlee J D. Friction of rock[J]. Pure and Applied Geophysics,1978,116(4-5):615-626.
    [93]鲜学福.单层节理岩体破坏机理[M].重庆:重庆大学出版社,1989.
    [94]Wang C D, Liao J J. Stress influence charts for transversely isotropic rocks[J]. Int J Rock Mech Min Sci,1998,35(6):771-785.
    [95]Tien Y M, Kuo M C. A failure criterion for transversely isotropic rocks[J]. Int J Rock Mech Min Sci,2001,38:399-412.
    [96]Tien Y M, Tsao P F. Preparation and mechanical properties of artificial transversely isotropic rock[J]. Int J Rock Mech Min Sci,2000,37(6):1001-1012.
    [97]Tien Y M, Kuo M C, Juang C H. An experimental investigation of thefailure mechanism of simulated transversely isotropic rocks[J]. Int J Rock Mech Min Sci,2006,43(8):1163-1181.
    [98]梁止召,唐春安,李厚祥,等.单轴压缩下横观各向同性岩石破裂过程的数值模拟[J].岩土力学,2005,26(1):57-62.
    [99]曾祥国,王清远,姚杰,等.含裂纹岩石巴西圆盘试件在冲击载荷下断裂参数的有限元计算[J].岩石力学与工程学报,2007,26(增1):2779-2785.
    [100]陈沙,岳中琦,谭国焕.基于真实细观结构的岩土工程材料三维数值分析方法[J].岩石力学与工程学报,2006,25(10):1951-1959.
    [101]朱万成,唐春安,黄志平,等.静态和动态载荷作用下岩石劈裂破坏模式的数值模拟[J].岩石力学与工程学报,2005:24(1):1-7.
    [102]Bian HB,Jia Y, Armand G,et al.3D numerical modelling thermo-hydromechanical behaviour of underground storages in clay rock[J]. Tunnelling and Underground Space Technology,2012: 30(7):93-109.
    [103]林杭,曹平,李江腾,等.基于SURPAC的FLAC3D三维模型自动构建[J].中国矿业大学学报,2008,37(3):339-342.
    [104]杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007, 24(1):136-142.
    [105]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [106]周维垣,剡公瑞,杨若琼.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报,1998,20(5):54-57.
    [107]刘成学,杨林德.一种新的岩石损伤软化本构模型[J].水利水运工程学报,2006,2006(3):25-28.
    [108]张凯.脆性岩石力学模型与流固耦合机理研究[博十学位论文][D].武汉:中国科学院武汉岩十力学研究所,2010.
    [109]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
    [110]杨圣奇,徐卫亚,苏承东.考虑尺寸效应的岩石损伤统计本构模型研究[J].岩石力学与工程学报,2005,24(24):4484-4490.
    [111]刘树新,刘长武,韩小刚,等.基于损伤多重分形特征的岩石强度Weibull参数研究[J].岩土工程学报,2011,33(11):1786-1791.
    [112]游强,游猛.岩石统计损伤本构模型及对比分析[J].兰州理工大学学报,2011,37(3):119-123.
    [113]王军保,刘新荣,李鹏.岩石损伤软化统计本构模型[J].兰州大学学报(自然科学版),2011,47(3):24-28.
    [114]Hoek E, Carranza C T, Corkum B. Hoek-Brown Failure Criterion 2002 Edition[C]//Proceedings of the North American Rock Mechanics Society Meeting. Toronto:[s. n.]. 2002:267-273.
    [115]Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology,1985,107(1):83-89.
    [116]杨圣奇,徐卫亚,韦立德,等.单轴压缩下岩石损伤统计本构模型与试验研究[J].河海大学学报(自然科学版),2004,32(2):200-203.
    [117]柴文革.围岩卸载条件下花岗岩损伤演化与破坏试验研究[博士学位论文][D].北京:中国矿业大学,2009.
    [118]曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究[J].湖南大学学报(自然科学版),2005,32(1):43-47.
    [119]郑颖人.岩土塑性力学[M].北京:中国建筑工业出版社,2002.
    [120]Hoek E, Brown E T. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165-1186.
    [121]尤明庆.两种晶粒大理岩的力学性质研究[J].岩土力学,2005,26(1):91-96.
    [122]许江,李树春,刘延保,等.基于Drucker-Prager准则的岩石损伤本构模刑[J].西南交通大学学报,2007,42(3):278-282.
    [123]于怀昌,李亚丽.粉砂质泥岩常规三轴压缩试验与本构方程研究[J].人民长江,2011,42(13):56-106.
    [124]Hoek E.实用岩石工程技术[M].郑州:黄河水利出版社,2002,143-146.
    [125]Hoek E, Diederichs M S. Empirical estimation of rack mass modulus[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(2):203-215.
    [126]Sonmez H, Ulusay R. Modifications to the geological strength index (GSI) and their applicability to stability of slops[J]. International Journal of Rock Mechanics and Mining Sciences, 1999(6),36:743-760.
    [127]Cai M, Kaiser P K, UNO H, et al. Estimation of rockmass deformation modulus and strength of jointed hard rock masses using the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(1):3-19.
    [128]Russo G. A new rational method for calculating the GSI[J]. Tunnelling and Underground Space Technology 2009,24(1):103-111.
    [129]胡盛明,胡修文.基于量化的GSI系统和Hoek-Brown准则的岩体力学参数的估计[J].岩土力学,2011,32(3):861-866.
    [130]苏永华,封立志,李志勇,等Hoek-Brown准则中确定地质强度指标因素的量化[J].岩石力学与工程学报,2009,28(4):679-686.
    [131]许传华,任青文.地下工程围岩稳定性的模糊综合评判法[J].岩石力学与工程学报,2004,23(11):1852-1855.
    [132]苏永华,赵明华,刘晓明.岩体分类的二元相对模糊评判法[J].岩石力学与工程学报,2006,25(5):1049-1055.
    [133]汪明武,李丽,金菊良.围岩稳定性集对分析-可变模糊集综合评价模型[J].岩土工程学报,2008,30(6):941-944.
    [134]Zadeh L A. Fuzzy sets[J]. Journal of Information and Control,1965,8(3):338-353.
    [135]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2002,32-49.
    [136]Sonmez H, Gokceoglu C, Ulusay R. Indirect determination of the modulus of deformation of rock masses based on the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5):849-857.
    [137]卢书强,许模.基于GSI系统的岩体变形模量取值及应用[J].岩石力学与工程学报,2009,28(增1):2736-2742.
    [138]李芬,孟刚.模糊综合评判法在围岩稳定性分类中的应用[J].武汉大学学报(工学版),2011,44(6):744-747.
    [139]刘士雨.地下工程围岩稳定性模糊综合评价及其应用研究[硕士学位论文][D].南吕:华东交通大学,2009.
    [140]Saaty TL. The analytic hierarchy process:Planning, priority setting[M]. New York:McGraw Hill,1980,41-59.
    [141]Fuzhong K, Shaohui H, Jiaxuan Y. The excavation simulation of underground railway station engineering with ABAQUS[C]//Proceeding of Third International Conference on Modelling and Simulation. England Liverpool:World Academic Press,2010,163-167.
    [142]李明.超大规模地下铁路车站围岩强度研究[硕士学位论文][D].北京:北京交通大学,2012.
    [143]Bian K, Liu J, Xiao M. Research on Disaster Mechanism of Hydraulic Fracturing for Hydraulic Tunnel[J]. Disaster Advances,2012.5(4),1327-1332.
    [144]姜振泉,季梁军,左如松,等.岩石在伺服条件下的渗透性与应变、应力的关联性特征[J].岩石力学与工程学报2002,21(10):1442-1446.
    [145]Paleiauskas V V, Domenico P A. Characterization of Drained and Undrained Response of Thermally Loaded Repository Rocks[J]. Water Resources Researeh.1982,18(2):281-290.
    [146]陈额,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001.
    [147]张渊,赵阳升,万志军,等.不同温度条件下孔隙压力对长石细砂岩渗透率影响试验研 究[J].岩石力学与工程学报,2008,27(1):53-58.
    [148]贺玉龙.三场耦合作用相关试验及耦合强度量化研究[博士学位论文][D].成都:西南交通大学,2003.
    [149]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发.1997,24(3):61-65.
    [150]周涌沂,张晓波.一种自适应渗流模型的推导与建立[J].特种汕气藏,2001,8(3):36-38.
    [151]Dullie F A,范玉平,赵东伟.现代渗流物理学[M].北京:石油工业出版社,2001.
    [152]王振华.流体力学的基本理论[M].上海大学出版社,2002.
    [153]孔样言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [154]Hart R D, John C. Formulation of a Fully- coupled Thermal-Mechanieal-Fluid Model for Non-linear Geologie Systems[J]. International Journal of Rock Mechanics and Mining Sciences and Geornech. Abstr.1986,23(3):213-224.
    [155]Noorishad J, Tsang C F. Witherspoon P A. Coupled Thermal-Hydraulie Mechanical Phenomena in Saturated Fractured Porous Rocks:Numerieal Approaeh[J]. J. Geophysical Res.1984,89(B12):10365-10373.
    [156]朱伯芳.有限单元法原理与应用[M].北京:水力水电出版社,1998.
    [157]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2006.
    [158]陈育民,徐鼎平.FLAC3D基础与工程实例[M].北京:水力水电出版社,2008.
    [159]杨春和,王贵宾,王驹,等.甘肃北山预选区岩体力学与渗流特性研究[J].岩石力学与工程学报,2006,25(4):825-832.
    [160]Paul Bosasart, Peter M Meier, Andreas Moeri, et al. Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory[J]. Engineering Geology,2002,66:19-38.
    [161]吴波,高波,索晓明.地铁隧道开挖与失水引起地表沉降的数值分析[J].中国铁道科学,2004,25(4):59-63.
    [162]Shin J H, Addenbrooke T I, Potts D M. A numerical study of the effect of groundwater movement on long-term tunnel behaviour[J]. Geotechnique,2002,52(6):391-403.
    [163]康富中.深埋超大规模地下铁路车站结构方案及关键支护参数优化研究[博士学位论文][D].北京:北京交通大学,2011.
    [164]李地元.高速公路连拱隧道围岩应力场和渗流场的耦合作用分析[博士学位论文][D].长沙:中南大学,2006.
    [165]王克忠,李仲奎.深埋长大引水隧洞三维物理模型渗透性试验研究[J].岩石力学与工程学报,2009,28(4):725-731.
    [166]蒋忠信.隧道工程与水环境的相互作用[J].岩石力学与工程学报,2005,24(1):308-317.
    [167]张成平,张顶立,王梦恕.大断面隧道施工引起的上覆地铁隧道结构变形分析[J].岩土l:程学报,2009,31(5):805-810.
    [168]Sharma J S, Heeny A M, Zhao J, et al. Effect of large excavation on deformation of adjacent MRT tunnels[J]. Tunnelling and Underground Space Technology,2001,16(2):93-98.
    [169]张顶立,李鹏飞,侯艳娟,等.城市隧道开挖对地表建筑群的影响分析及其对策[J].岩土工程学报,2010,32(2):296-302.
    [170]Attewell P B, Yeates J, Selby A R. Soil movements induced by tunneling and their effects on pipelines and structures[M]. New York:Chapman and Hall,1986:151-179.
    [171]Shin H S, Kim C Y, Kim K Y, et al. A new strategy for monitoring of adjacent structures to tunnel construction in urban area[J]. Tunnelling and Underground Space Technology,2006,5(21): 461-462.
    [172]Richard J, Finno, Frank T, et al. Evaluating damage potential in building affected by excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(10): 1199-1210.
    [173]俞凯.城市地铁隧道施工沉降对邻近建筑的影响研究[硕士学位论文][D].成都:西南交通大学,2008.
    [174]李围,何川.盾构隧道近接下穿地下大型结构施工影响研究[J].岩土工程学报,2006,28(10):1277-1282.
    [175]张顶立,李鹏飞,侯艳娟,等.浅埋大断面软岩隧道施工影响下建筑物安全性控制的试验研究[J].岩石力学与工程学报,2009,28(1):95-102.
    [176]张虎.地表注浆在隧道工程中的应用[J].公路,2006,2006(3):204-209.
    [177]马海君,郝行舟.浅谈地表注浆加固在不良地质隧道中的应用[J].交通科技,2005,(6):67-69.
    [178]Kolymbas D, Wagner P. Groundwater ingress to tunnels-the exact analytical solution [J]. Tunnelling and Underground Space Technology,2007,22(1):23-27.
    [179]李地元.高速公路连拱隧道围岩应力场和渗流场的耦合作用分析[硕士学位论文][D].长沙:中南大学,2006.
    [180]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004:748-759.
    [181]覃卫民,赵荣生,王浩,等.浅埋大跨隧道下穿建筑物的安全影响研究[J].岩石力学与工程学报,2010,29(增2):3762-3768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700