用户名: 密码: 验证码:
超临界压力流体在圆管内对流换热及热裂解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体火箭发动机推力室和高超声速飞行器超燃冲压发动机的主动冷却技术中,超临界压力流体流经冷却通道,通过对流换热或热裂解吸收热量,冷却高温壁面。本文针对超临界压力流体在液体火箭发动机层板发汗冷却和超燃发动机再生冷却技术中的应用,通过实验研究、理论分析及数值模拟方法对超临界压力流体在竖直管内对流换热和热裂解进行了研究。
     从液体火箭发动机层板发汗冷却技术应用出发,对din=99.2μm的微圆管内超临界压力CO_2对流换热开展了实验和数值模拟研究,结果表明,流体流动加速由流体热膨胀和压降共同引起,低雷诺数(Rein≤2600)时,流动加速会抑制管内湍动能生成,使换热发生恶化;基于实验数据,提出了考虑流动加速的对流换热经验关联式;数值模拟结果表明,低Re数湍流模型能定性地模拟出流动加速引起的换热恶化,但是过高估计了流动加速的恶化作用。
     从超燃冲压发动机再生冷却技术的应用出发,研究了超临界压力下正癸烷在竖直圆管内的对流换热和热裂解。对流换热结果显示,圆管内径为0.95mm时,对流换热主要受热物性的影响,浮升力和流动加速对换热的影响均很微弱;圆管内径为2mm时,进口雷诺数Rein≤4000时,浮升力对换热影响显著,向上流动时浮升力引起换热恶化,向上流动时则增强了换热;根据实验数据,分布提出了变物性和浮升力影响的换热经验关联式;数值模拟结果显示,浮升力抑制了壁面附近流体湍动能生成,使向上流动时的换热发生恶化。超临界压力正癸烷在竖直圆管内的热裂解实验结果表明,正癸烷的热裂解主要受温度和停留时间影响,温度升高或停留时间增加,正癸烷转化率提高,而压力增大,正癸烷在反应管内的停留时间延长,热裂解率亦提高;温度越高,正癸烷化学热沉越大,延长停留时间,有利于提高化学热沉;低热裂解率(小于15%)时,热裂解产物成比例分布;根据实验数据,采用产物成比例化学反应机理,提出了超临界压力正癸烷热裂解一步总体反应模型,并利用实验数据修正该模型,使模型裂解率的适用范围扩展至25%。
     建立了超临界压力正癸烷对流换热和热裂解耦合作用的数值计算模型,并利用热裂解实验数据验证了模型可靠性。模拟结果显示,流量减小或反应压力增大,都延长了流体在反应管内的平均停留时间,从而提高裂解转化率。
The supercritical pressure fluids are used as coolant to protect the high temperaturewall by oonvective heat transfer or thermal cracking in transpiration cooling technologyfor liquid rocked truster and regenerative cooling technology for scramjet engine ofhypersonic vehicle. The purpose of this dissertation is to study convection heat transferand thermal cracking of supercritical pressure fluids in vertical small tubes byexperimental mesurements, theoretical analyses and numerical simulations.
     For the convection heat transfer of supercritical pressure CO_2in a vertical microtube with inner diameter of99.2μm, the experimental results show that flowacceleration due to pressure drop are comparable to that induced by heating. The heattransfer is impaired when the flow acceleration is strong for the low inlet Renoldsnumber (Rein≤2600) and high heat fluxes. An empirical heat transfer correlation isdeveloped based on the measured results. Numerical simulations of convection heattransfer using various Reynolds number models show that the low Renolds numbersAKN and LB models can predict the heat impairment due to flow acceleration butover-respond to the effect of flow acceleraton.
     The experimental results for convection heat transfer of supercritical pressuren-decane in a vertical small tube with inner diameter of0.95mm show that convectionheat transfer mainly is influenced due to the thermal properties variations and the effectsof buoyancy and flow acceleration are insignificant. The experimental results for the2mm inner diameter tube show that for low inlet Reynolds numbers (Rein≤4000) and highheat fluxes, the heat transfer is impaired for upward flow and improved for downwardflow due to buoyancy effect. An empirical correlation is developed to predict heattransfer of supercritical pressure n-decane based on the measured data. The numericalresults show that heat transfer is impaired because of the turbulence productionreduction due to the strong influences of buoyance. The experimental results for thermalcracking of supercritical pressure n-decane in a small tube show that the reaction ismainly affected by the reaction temperature and the residence time. The conversion ofn-decane is increased with the increase of the reaction temperature and the residencetime. For higher reaction pressure, the conversions are increased due to the increase of the residence time. A global chemical kinetics model for mildly thermal cracking(conversion of n-decane is less than15%) of supercritical pressure n-decane isdeveloped based on the experimental data. An improved reaction model is developed topredict thermal cracking of n-decane with higher conversion (conversion of n-decane isless than25%).
     The numerical model incorporating convective heat transfer and thermal crackingfor supercritical pressure n-decane is developed and validated by the experimental data.
引文
[1] Haeseler D, Maeding C, Rubinskiy V, et al. Experimental investigation of transpiration cooledhydrogen-oxygen subscale chambers,1998
    [2]张峰,刘伟强.层板发汗冷却在液体火箭发动机中的应用与发展综述.火箭推进,2007(6):43-48.
    [3] Mueggenburg H H, Hidahl J W, Kessler E L, et al. Platelet actively cooled thermal managementdevices. AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit,28Th,Nashville, Tn; United States;6-8July1992,1992:23.
    [4] Robbers B A, Anderson B J, Hayes W A, et al. Platelet devices-limited only by one'simagination: American Institute of Aeronautics and Astronautics,1801Alexander Bell Drive,Suite500, Reston, VA,20191-4344, USA,2006
    [5] Steelant J. Atllas: aero-thermal loaded material investigations for high-speed vehicles:15thAIAA International Space Planes and Hypersonic Systems and Technologies Conference.Dayton, OH, United states:2008.
    [6]王英杰.超临界压力RP-3流动换热及解焦实验研究[博士学位论文].北京:北京航空航天大学,2009.
    [7] Besnard M, Tassaing T, Danten Y, et al. Bringing together fundamental and applied science: thesupercritical fluids route. Journal of Molecular Liquids,2006,125(2-3):88-99.
    [8]韩布兴.超临界流体科学与技术.[M],北京:中国石化出版社,2005.
    [9]罗庶.地质封存下超临界CO2在多孔介质中的运移规律研究[博士学位论文].北京:清华大学,2012.
    [10] Schmidt E. W rmetransport durch natürliche konvektion in stoffen bei kritischem zustand.International Journal of Heat and Mass Transfer,1960,1(1):92-101.
    [11] G D. Heat transfer to water in pipes in the critical/supercritical region (in german). B.W.K.,1963,11(15):527-532.
    [12] S P V. One-dimensional flow of single-phase and two-phase fluids in tubes under heat transferconditions[M], Moscow: Moscow Power Institute Press,1982.
    [13] S P V. Generalized correlations for the local heat transfer coefficient in turbulent flow of waterand carbon dioxide at supercritical pressures in uniformly heated tubes. Teplofizika Vysok.Temp,1977,4(15):815-821.
    [14] S P B. Heat transfer and friction in turbulent pipe flow with variable physical properties.Advances in Heat Transfer,1970(6):503-564.
    [15] Petukhov B S K V A A. Experimental investigation of drag and heat transfer in a turbulent flowof fluid at supercritical pressure. High Temp.,1980,1(18):90-99.
    [16] F P A. Heat transfer under supercritical pressures. Advances in Heat Transfer,1991(21):1-53.
    [17] Wood R D, Smith J M. Heat transfer in the critical region-emperature and velocity profiles inturbulent flow. Aiche Journal,1964,10(2):180-186.
    [18] Bringer R P, Smith J M. Heat transfer in the critical region. Aiche Journal,1957,3(1):49-55.
    [19] Kirillov P L Y E Y S. Handbook of thermal-hydraulics calculations (in russian)[M], Moscow,Russia: Energoatomizdat Publ. House,1990.66-67,130-132.
    [20] E S M. Impairment of the heat transmission at supercritical pressures,(in russian). TeplofizikaVysokikh Temperatur,1963,2(1):267-275.
    [21] E S M. Heat transfer to water, oxygen and carbon dioxide in near critical region (in russian).Thermal Eng.,1959(1):68-72.
    [22] Schnurr N M. Heat transfer to carbon dioxide in the immediate vicinity of the critical point.:Los Alamos Scientific Lab., N. Mex. Vanderbilt Univ., Nashville,1969
    [23] Bourke P J, Pulling D J, Gill L E, et al. Forced convective heat transfer to turbulent co2insupercritical region. International Journal of Heat and Mass Transfer,1970,13(8):1339.
    [24] Bourke P J P D J. Experimental explanation of deterioration in heat transfer to supercriticalcarbon dioxide,1997
    [25] B H W. Heat transfer near the critical point. Advances in Heat Transfer,1971(7):1-86.
    [26] He S, Kim W S, Jackson J D. A computational study of convective heat transfer to carbondioxide at a pressure just above the critical value. Applied Thermal Engineering,2008,28(13):1662-1675.
    [27] Hall W B, Jackson J D, Watson A. A review of forced convection heat transfer to fluids atsupercritical pressures. Proceedings of the Institution of Mechanical Engineers,1967,182:10-2222.
    [28] Jackson J D. Progress in developing an improved empirical heat transfer equation for use inconnection with advanced nuclear reactors cooled by water at supercritical pressure. Icone17:Proceedings of the17Th International Conference On Nuclear Engineering, Vol3,2009:807-819.
    [29] Jackson J D. A semi-empirical model of turbulent convective heat transfer to fluids atsupercritical pressure. Icone16: Proceeding of the16Th International Conference On NuclearEngineering-2008, Vol3,2008:911-921.
    [30] Jackson J D, Hall W B. Forced convection heat transfer to fluids at supercritical pressure.Turbulent Forced Convection in Channels and Bundles,1979,2:563-611.
    [31] J F. Mixed forced and free convective heat transfer to supercritical pressure fluids flowing invertical pipes:[博士学位论文]: University of Manchester,UK,1976.
    [32] Hiroaki T, Niichi N, Masaru H, et al. Forced convection heat transfer to fluid near critical pointflowing in circular tube. International Journal of Heat and Mass Transfer,1971,14(6):739-750.
    [33] Bourke P J, Pulling D J, Gill L E, et al. Forced convective heat transfer to turbulent co2in thesupercritical region. International Journal of Heat and Mass Transfer,1970,13(8):1339-1348.
    [34] Shitsman M E. Paper6: natural convection effect on heat transfer to a turbulent water flow inintensively heated tubes at supercritical pressures: SAGE Publications,1967.36-41
    [35] Fewster J J J D. Experiments on supercritical pressure convective heat transfer having relevanceto scwr: Proceedings of the International Congress on Advances in Nuclear Power Plants(ICAPP’04). Pittsburgh, USA:2004.
    [36] Hall W B J J D. Laminarisation of a turbulent pipe flow by buoyancy forces:11th National HeatTransfer Conf., Special Session on Laminarization of Turbulent Flows. Mimmeapolis:1969.
    [37] Shiralkar B S, Griffith P. The deterioration in heat transfer to fluids at supercritical pressure andhigh heat fluxes: Cambridge, Mass.: MIT Engineering Projects Laboratory,[1968],1968
    [38] Shiralkar B, Griffith P. The effect of swirl, inlet conditions, flow direction, and tube diameteron the heat transfer to fluids at supercritical pressure. Journal of Heat Transfer,1970,92:465.
    [39] Mceligot D M, Jackson J D.“deterioration” criteria for convective heat transfer in gas flowthrough non-circular ducts. Nuclear Engineering and Design,2004,232(3):327-333.
    [40] Kurganov V A A V B K. Experimental study of velocity and temperature fields in an ascendingflow of carbon dioxide at supercritical pressure in a heated vertical tube. High Temp,1986,6(24):811-818.
    [41] Mceligot D M, Coon C. relaminarization in tubes. J. Heat&Mass Transf,1970,13(2):431-433.
    [42] Jiang P X, Zhao C R, Liu B. Flow and heat transfer characteristics of R22and ethanol atsupercritical pressures. Journal of Supercritical Fluids,2012,70:75-89.
    [43] Jiang P, Liu B, Zhao C, et al. Convection heat transfer of supercritical pressure carbon dioxidein a vertical micro tube from transition to turbulent flow regime. International Journal of Heatand Mass Transfer,2013,56(1–2):741-749.
    [44]赵陈儒.超临界压力流体在圆管内流动与对流换热研究[博士学位论文].北京:清华大学,2011.
    [45] Liao S M, Zhao T S. Measurements of heat transfer coefficients from supercritical carbondioxide flowing in horizontal mini/micro channels. Transactions of the Asme. Journal of HeatTransfer,2002,124(3):413-420420.
    [46] Li Z, Jiang P, Zhao C, et al. Experimental investigation of convection heat transfer of CO2atsupercritical pressures in a vertical circular tube. Experimental Thermal and Fluid Science,2010,34(8):1162-1171.
    [47] Jiang P, Zhang Y, Zhao C, et al. Convection heat transfer of CO2at supercritical pressures in avertical mini tube at relatively low reynolds numbers. Experimental Thermal and Fluid Science,2008,32(8):1628-1637.
    [48] Jiang P, Shi R, Zhao C, et al. Experimental and numerical study of convection heat transfer ofCO2at supercritical pressures in vertical porous tubes. International Journal of Heat and MassTransfer,2008,51(25–26):6283-6293.
    [49] Zhang Y, Jiang P, Shi R, et al. Experimental investigation for convection heat transfer tosupercritical pressure CO2in vertical tubes. Journal of Engineering Thermophysics,2006,27(2):280-282.
    [50] Jiang P, Shi R, Xu Y, et al. Experimental investigation of flow resistance and convection heattransfer of CO2at supercritical pressures in a vertical porous tube. The Journal of SupercriticalFluids,2006,38(3):339-346.
    [51] Jiang P, Xu Y, Lv J, et al. Experimental investigation of convection heat transfer of CO2atsuper-critical pressures in vertical mini-tubes and in porous media. Applied ThermalEngineering,2004,24(8–9):1255-1270.
    [52] Linne D L, Meyer M L, Edwards T, et al. Evaluation of heat transfer and thermal stability ofsupercritical jp-7fuel[M], National Aeronautics and Space Administration,1997.
    [53] Stiegemeier B, Meyer M L, Taghavi R. A thermal stability and heat transfer investigation offive hydrocarbon fuels: jp-7, jp-8, jp-8+100, jp-10, and rp-1: University of Kansas, AerospaceEngineering,2002.
    [54] Hitch B, Karpuk M. Experimental investigation of heat transfer and flow instabilities insupercritical fuels. Aiaa Paper,1997,3043.
    [55]王英杰,徐国强,邓宏武,等.超临界RP-3管内换热特性实验.推进技术,2009(6):656-660.
    [56]张斌,张春本,邓宏武,等.超临界压力下碳氢燃料在竖直圆管内换热特性.航空动力学报,2012(3):595-603.
    [57]张春本,邓宏武,徐国强,等.超临界压力下航空煤油RP-3焓值的测量及换热研究.航空动力学报,2010(2):331-335.
    [58]胡志宏,陈听宽,罗毓珊,等.高热流条件下超临界压力煤油流过小直径管的传热特性.化工学报,2002(2):134-138.
    [59]罗毓珊,陈听宽,胡志宏,等.高参数小管径内煤油的传热特性研究.工程热物理学报,2005(4):609-612.
    [60]李勋锋,仲峰泉,范学军,等.超临界压力下航空煤油水平管内对流换热特性数值研究.航空动力学报,2010(8):1690-1697.
    [61]江晨曦,仲峰泉,范学军,等.超临界压力下航空煤油流动与传热特性试验.推进技术,2010(2):230-234.
    [62] Ackerman J W. Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbedtubes.: Babcock and Wilcox Co., Alliance, Ohio,1970
    [63] Lee R A, Haller K H. Supercritical water heat transfer developments and applications,1974.335-339
    [64] Bae Y, Kim H. Convective heat transfer to CO2at a supercritical pressure flowing verticallyupward in tubes and an annular channel. Experimental Thermal and Fluid Science,2009,33(2):329-339.
    [65] Kim H, Kim H Y, Song J H, et al. Heat transfer to supercritical pressure carbon dioxide flowingupward through tubes and a narrow annulus passage. Progress in Nuclear Energy,2008,50(2):518-525.
    [66] Bae Y Y. Mixed convection heat transfer to carbon dioxide flowing upward and downward in avertical tube and an annular channel. Nuclear Engineering and Design,2011,241(8):3164-3177.
    [67] Sabersky R H, Hauptmann E G. Forced convection heat transfer to carbon dioxide near thecritical point. International Journal of Heat and Mass Transfer,1967,10(11):1499-1508.
    [68] Dyadyakin B V, Popov A S. Heat transfer and thermal resistance of tight seven-rod bundle,cooled with water flow at supercritical pressures. Transactions of Vti,1977,11:244-253.
    [69] Grabezhnaya V A, Kirillov P L. Heat transfer in pipes and rod bundles during flow ofsupercritical-pressure water. Atomic Energy,2004,96(5):358-364.
    [70] Petukhov B S, Krasnoshchekov E A, Protopopov V S. An investigation of heat transfer to fluidsflowing in pipes under supercritical conditions. Asme International Developments in HeatTransfer Part,1961,3:569-578.
    [71] Bishop A A, Sandberg R O, Tong L S. Forced-convection heat transfer to water at near-criticaltemperatures and supercritical pressures: Westinghouse Electric Corp., Pittsburgh, Pa. AtomicPower Div.,1964
    [72] Griem H. A new procedure for the prediction of forced convection heat transfer at near-andsupercritical pressure. Heat and Mass Transfer,1996,31(5):301-305.
    [73] Jackson J D. Consideration of the heat transfer properties of supercritical pressure water inconnection with the cooling of advanced nuclear reactors,2002.21-25
    [74] Komita H, Morooka S, Yoshida S, et al. Study on the heat transfer to the supercritical pressurefluid for supercritical water cooled power reactor development. Proc. Nureth-10, Seoul, Korea,2003:1-11.
    [75] Kim J K, Jeon H K, Lee J S. Wall temperature measurement and heat transfer correlation ofturbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes. NuclearEngineering and Design,2007,237(15):1795-1802.
    [76] Bae Y, Kim H. Convective heat transfer to CO2at a supercritical pressure flowing verticallyupward in tubes and an annular channel. Experimental Thermal and Fluid Science,2009,33(2):329-339.
    [77] Li Z, Jiang P. Correlations of co2at supercritical pressures in a vertical circular tube. NuclearPower Engineering,2010,31(5):72-75.
    [78]李志辉.超临界压力CO2在微细圆管中流动与对流换热研究[博士学位论文].北京:清华大学,2008.
    [79] Jackson J D. Fluid flow and convective heat transfer to fluids at supercritical pressure. NuclearEngineering and Design,2013.
    [80] He S, Jiang P X, Xu Y J, et al. A computational study of convection heat transfer to CO2atsupercritical pressures in a vertical mini tube. International Journal of Thermal Sciences,2005,44(6):521-530.
    [81] Pioro I L, Khartabil H F, Duffey R B. Heat transfer to supercritical fluids flowing in channels-empirical correlations (survey). Nuclear Engineering and Design,2004,230(1-3):69-91.
    [82] Hauptmann E G, Malhotra A. Axial development of unusual velocity profiles due to heattransfer in variable density fluids. Journal of Heat Transfer,1980,102:71.
    [83] Bellmore C P, Reid R L. Numerical prediction of wall temperatures for near-criticalpara-hydrogen in turbulent upflow inside vertical tubes. Journal of Heat Transfer,1983,105(3):536-541.
    [84] Lee S H, Howell J R. Turbulent developing convective heat transfer in a tube for fluids near thecritical point. International Journal of Heat and Mass Transfer,1998,41(10):1205-1218.
    [85] Mikielewicz D P. Comparative studies of turbulence models under conditions of mixedconvection with variable properties in heated vertical tubes.: The University of Manchester,1994.
    [86] Koshizuka S, Takano N, Oka Y. Numerical analysis of deterioration phenomena in heat transferto supercritical water. International Journal of Heat and Mass Transfer,1995,38(16):3077-3084.
    [87] Jones W P, Launder B E. The calculation of low-reynolds-number phenomena with atwo-equation model of turbulence. International Journal of Heat and Mass Transfer,1973,16(6):1119-1130.
    [88] Launder B E, Sharma B I. Application of the energy-dissipation model of turbulence to thecalculation of flow near a spinning disc. Letters Heat Mass Transfer,1974,1:131-137.
    [89] Lam C, Bremhorst K. A modified form of the k-epsilon model for predicting wall turbulence.Asme Transactions Journal of Fluids Engineering,1981,103:456-460.
    [90] Myong H K, Kasagi N. A new approach to the improvement of k-e turbulence model forwall-bounded shear flows. Jsme International Journal. Ser.2, Fluids Engineering, Heat Transfer,Power, Combustion, Thermophysical Properties,1990,33(1):63-72.
    [91] Yang Z, Shih T. New time scale based k-epsilon model for near-wall turbulence. Aiaa Journal,1993,31(7):1191-1198.
    [92] Abe K, Kondoh T, Nagano Y. A new turbulence model for predicting fluid flow and heattransfer in separating and reattaching flows-i. Flow field calculations. International Journal ofHeat and Mass Transfer,1994,37(1):139-151.
    [93] Durbin P A. Near-wall turbulence closure modeling without“damping functions”. Theoreticaland Computational Fluid Dynamics,1991,3(1):1-13.
    [94] Behnia M, Parneix S, Durbin P A. Prediction of heat transfer in an axisymmetric turbulent jetimpinging on a flat plate. International Journal of Heat and Mass Transfer,1998,41(12):1845-1855.
    [95] He S, Kim W S, Jiang P X, et al. Simulation of mixed convection heat transfer to carbondioxide at supercritical pressure. Proceedings of the Institution of Mechanical Engineers PartC-Journal of Mechanical Engineering Science,2004,218(11):1281-1296.
    [96] He S, Kim W S, Bae J H. Assessment of performance of turbulence models in predictingsupercritical pressure heat transfer in a vertical tube. International Journal of Heat and MassTransfer,2008,51(19-20):4659-4675.
    [97] Bae J H, Yoo J Y, Choi H. Direct numerical simulation of turbulent supercritical flows withheat transfer. Physics of Fluids,2005,17:105104.
    [98] Seong Hoon K, Young In K, Yoon Yeong B, et al. Numerical simulation of the vertical upwardflow of water in a heated tube at supercritical pressure: American Nuclear Society,555NorthKensington Avenue, La Grange Park, IL60526(United States),2004
    [99]石润富.烧结多孔介质与细圆管中超临界压力CO2流动换热研究[博士学位论文].北京:清华大学,2006.
    [100]张宇.超临界CO2在微细圆管内对流换热研究[硕士学位论文].北京:清华大学,2006.
    [101] Craft T J, Gerasimov A V, Iacovides H, et al. Progress in the generalization of wall-functiontreatments. International Journal of Heat and Fluid Flow,2002,23(2):148-160.
    [102] Craft T J, Gant S E, Iacovides H, et al. A new wall function strategy for complex turbulentflows. Numerical Heat Transfer, Part B: Fundamentals,2004,45(4):301-318.
    [103] Suga K, Craft T J, Iacovides H. An analytical wall-function for turbulent flows and heattransfer over rough walls. International Journal of Heat and Fluid Flow,2006,27(5):852-866.
    [104] Cheng X, Kuang B, Yang Y H. Numerical analysis of heat transfer in supercritical watercooled flow channels. Nuclear Engineering and Design,2007,237(3):240-252.
    [105] Yang J, Oka Y, Ishiwatari Y, et al. Numerical investigation of heat transfer in upward flows ofsupercritical water in circular tubes and tight fuel rod bundles. Nuclear Engineering andDesign,2007,237(4):420-430.
    [106] Sharabi M, Ambrosini W, He S, et al. Prediction of turbulent convective heat transfer to a fluidat supercritical pressure in square and triangular channels. Annals of Nuclear Energy,2008,35(6):993-1005.
    [107] Sharabi M B, Ambrosini W, He S. Prediction of unstable behaviour in a heated channel withwater at supercritical pressure by cfd models. Annals of Nuclear Energy,2008,35(5):767-782.
    [108] Sharabi M, Ambrosini W, He S, et al. Transient3d stability analysis of scwr rod bundlesubchannels by a cfd code: ASME,2008
    [109] Shehata A M, Mceligot D M. Mean structure in the viscous layer of strongly-heated internalgas flows. Measurements. International Journal of Heat and Mass Transfer,1998,41(24):4297-4313.
    [110] Austin J M, Shepherd J E. Detonations in hydrocarbon fuel blends. Combustion and Flame,2003,132(1):73-90.
    [111] Van Devener B, Anderson S L. Breakdown and combustion of jp-10fuel catalyzed bynanoparticulate ceo2and fe2o3. Energy&Fuels,2006,20(5):1886-1894.
    [112]邹仁钧.石油化工裂解原理与技术[M],化学工业出版社,1981.
    [113] Gates B C, Katzer J R, Schuit G C. Chemistry of catalytic processes[M], McGraw-Hill NewYork,1979.
    [114] Depeyre D, Flicoteaux C, Chardaire C. Pure n-hexadecane thermal steam cracking. Industrial&Engineering Chemistry Process Design and Development,1985,24(4):1251-1258.
    [115] Fabuss B M, Smith J O, Satterfield C N. Thermal cracking of pure saturated hydrocarbons.Advances in Petroleum Chemistry and Refining,1964,9:157-201.
    [116] Ranzi E, Faravelli T, Gaffuri P, et al. Low-temperature combustion: automatic generation ofprimary oxidation reactions and lumping procedures. Combustion and Flame,1995,102(1):179-192.
    [117] Yu J, Eser S. Thermal decomposition of c10-c14normal alkanes in near-critical andsupercritical regions: product distributions and reaction mechanisms. Industrial&EngineeringChemistry Research,1997,36(3):574-584.
    [118] Miller D B. Higher alpha, omega-dienes in paraffin and olefin pyrolyzates. Industrial&Engineering Chemistry Product Research and Development,1963,2(3):220-223.
    [119] Shustorovich E, Sellers H. The UBI-QEP method: a practical theoretical approach tounderstanding chemistry on transition metal surfaces. Surface Science Reports,1998,31(1):1-119.
    [120]邢燕,方文军,谢文杰,等.吸热型碳氢燃料模型化合物在超临界条件下的裂解及热沉测定.化学学报,2008(20):2243-2247.
    [121]王静,张香文,郭伟,等.供氢剂和结焦抑制剂对正十二烷超临界热裂解沉积的影响.石油学报(石油加工),2006(5):39-43.
    [122]朱玉红,余彩香,李子木,等.航空燃料超临界热裂解过程中焦炭的形成.石油化工,2006(12):1151-1155.
    [123]羡小超,张香文,米镇涛.超临界状态下正十二烷/异辛烷双元模型燃料的催化裂解反应.石油化工,2009(4):356-360.
    [124]郝伟华,张香文,王占卫,等.超临界状态下吸热碳氢燃料正十二烷的催化裂解研究.石油与天然气化工,2006(3):175-178.
    [125] Meng F, Liu G, Wang L, et al. Effect of hzsm-5coating thickness upon catalytic cracking ofn-dodecane under supercritical condition. Energy&Fuels,2010,24(5):2848-2856.
    [126]焦毅,李军,王静波,等.正癸烷热裂解实验和动力学模拟.物理化学学报,2011(5):1061-1067.
    [127]李军,邵菊香,刘存喜,等.碳氢燃料热裂解机理及化学动力学模拟.化学学报,2010(3):239-245.
    [128] Zhong F, Fan X, Yu G, et al. Thermal cracking of aviation kerosene for scramjet applications.Science in China Series E: Technological Sciences,2009,52(9):2644-2652.
    [129] Ward T, Ervin J S, Striebich R C, et al. Simulations of flowing mildly-cracked normal alkanesincorporating proportional product distributions. Journal of Propulsion and Power,2004,20(3):394-402.
    [130] Ward T A, Ervin J S, Zabarnick S, et al. Pressure effects on flowing mildly-cracked n-decane.Journal of Propulsion and Power,2005,21(2):344-355.
    [131] Jackson J D F J. Forced convection data for supercritical pressure fluids.见: HTFS21540.1975.
    [132] Jackson J D. Fluid flow and convective heat transfer to fluids at supercritical pressure. NuclearEngineering and Design,2013.
    [133] Abe K, Kondoh T, Nagano Y. A new turbulence model for predicting fluid-flow andheat-transfer in separating and reattaching flow--1. Flow-field calculations. InternationalJournal of Heat and Mass Transfer,1994,37(1):139-151.
    [134] Lam C, Bremhorst K. A modified form of the k-epsilon model for predicting wall turbulence.Journal of Fluids Engineering-Transactions of the ASME,1981,103(3):456-460.
    [135] Krasnoshchekov E A, Protopopov V S, Parkhovnik I A, et al. Some results of an experimentalinvestigation of heat transfer to carbon dioxide at supercritical pressure and temperature headsof up to850c. High Temperature,1971,9(5):992-995.
    [136] Huang H, Sobel D R, Spadaccini L J. Endothermic heat-sink of hydrocarbon fuels for scramjetcooling. AIAA Paper,2002,3871:1985.
    [137] Huang H, Spadaccini L J, Sobel D R. Fuel-cooled thermal management for advancedaeroengines. Journal of Engineering for Gas Turbines and Power,2004,126(2):284-293.
    [138] Wickham D T, Engel J R, Rooney S, et al. Additives to increase fuel heat sink capacity in afuel/air heat exchanger. Aiaa,2005,3:916.
    [139]李祖光,高涵,厉刚,等.吸热型碳氢燃料热沉的测定.推进技术,1998,19(2):96-99.
    [140]蒋武,郭永胜,雷群芳,等.吸热型碳氢燃料热沉的测定研究.燃料化学学报,2002,30(1):27-32.
    [141]朱权,王建礼,李象远.化学推进剂裂解热沉的测定新方法及其应用,2011
    [142] De Witt M J, Broadbelt L J. Binary interactions between tetradecane and4-(1-naphthylmethyl)bibenzyl during low-and high-pressure pyrolysis. Energy&Fuels,1999,13(5):969-983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700