用户名: 密码: 验证码:
多飞行器协同轨迹优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着未来战场环境日趋复杂和防御体系的不断完善,未来战争将是系统与系统、体系与体系之间的对抗。在高度对抗的体系化作战环境中,单架飞行器已经难以甚至不能发挥预期的作战效果,只有通过飞行器之间的协同作战,才能获得最大的作战效果。因此,有必要开展多飞行器协同轨迹优化的研究工作。
     本学位论文结合航空某所课题合作项目--“多飞行器攻防对抗仿真演示系统”与江苏省普通高校研究生科研创新计划资助项目--“多弹协同对抗轨迹全局优化与控制”,针对多飞行器协同轨迹多约束、强耦合的复杂多目标优化与决策问题,对多飞行器协同轨迹优化进行了较为系统的研究,提出了一套在随机环境中多飞行器协同轨迹优化的数值算法,并进行了大量地飞行数值仿真。论文的主要研究内容如下:
     首先,对多飞行器协同轨迹优化进行了数学描述和对多飞行器航迹规划进行了数学建模。多飞行器协同轨迹优化的数学描述主要包括:多飞行器协同轨迹优化问题的一般数学描述、攻防双方拦截型飞行器协同轨迹优化与突防型飞行器协同轨迹优化的问题数学描述。多飞行器航迹规划的数学建模主要包括:静态/动态飞行任务、飞行环境(数字地图、随机风场模型、禁飞区、静态/动态威胁区)、飞行器运动方程等数学建模。
     然后,提出了多飞行器协同任务规划系统优化设计的数值算法。其主要包括多飞行器协同任务分配算法与飞行器航迹最优规划。多飞行器协同任务分配算法主要给出了一种基于目标剩余时间的多飞行器协同任务分配算法,就攻击型飞行器与目标飞行器的飞行速度与数量的不同组合,分别给出了算例。基于目标剩余时间的多飞行器协同任务分配算法可以实时在线地计算各攻击型飞行器相对各目标飞行器的剩余飞行时间,得出当时的目标分配矩阵,从而实时地调整分配目标,得到最优的分配方案系列。飞行器航迹最优规划主要研究了在随机环境(如风场)中威胁区回避轨迹的飞行器航迹最优规划。即在随机多变敌雷达监测、敌防空武器拦截系统(动态可攻击与拦截区)、复杂地形、复杂恶劣的天气现象(随机风场)等各种威胁区条件下,可以为飞行器寻找准确地命中目标、同时危险度最小、可靠度最大、路径或时间最小的最优飞行轨迹。飞行器最优航迹规划算法采用的是改进的动态规划法与共轭梯度法的组合算法。该多飞行器协同任务规划系统优化设计的数值算法,是基于敌-我双方的动态可攻击与拦截区而实时调整进行的,其中,敌-我双方的动态可攻击区与动态拦截区是多飞行器协同(轨迹优化)作战的关键技术之一。
     其次,研究了多飞行器协同作战动态攻防区。依据多飞行器协同作战中攻防双方需要及时动态获取可攻击空域的信息等特点,以空空导弹为例进行了动态可攻击区的研究;包括了空空导弹的射前可攻击区(包括前向攻击的可攻击区和全向攻击的可攻击区)、射后动态可攻击区。其中,全向攻击是对前向攻击的空空导弹不能攻击其后半球目标而进行的一项补充研究;为了获取多飞行器攻防对抗中空空导弹发射后动态可攻击空域的信息,提出了空空导弹射后动态可攻击区的概念并进行了数值仿真。同时,空空导弹的射前可攻击区是静态威胁区的一个组成部分,而空空导弹的射后动态可攻击区对于已方来说,是为了实时获取敌方目标是否在其攻击空域内,对于敌方来说,此射后动态可攻击区是动态的威胁区域。因此,在考虑敌方威胁区时,需要考虑敌方射前可攻击区所构成的静态威胁区以及敌方射后动态可攻击区所构成的动态威胁区。
     最后,基于以上的研究,对多飞行器协同轨迹优化进行了飞行数值仿真。根据对抗飞行器的飞行环境与飞行目的不同组合分为四种情况:目标作有规则(非对抗)机动的多飞行器协同轨迹优化、目标作无规则随机(非对抗)机动的多飞行器协同轨迹优化、考虑射前可攻击区的多飞行器协同突防威胁区的轨迹优化、考虑射后动态可攻击区与静态威胁区的攻防双方对抗飞行的多飞行器协同轨迹优化。
     值得指出的是:在研究多飞行器攻防协同对抗时,多飞行器攻防对抗的双方均应同时采用全局一体化优化。即当进攻方采用(轨迹与各子系统控制)全局一体化最优策略时,对抗方也应采用考虑全局的轨迹与控制的全局一体化优化;另外,在多飞行器协同作战中,攻防对抗双方均需考虑各种多维未知的随机干扰因素。
Because the future battlefield environments are complicating and the defense systems areupgraded and improved, the future war will be a confrontation in among systems. In the drasticcombat environment of fighting systems, a single flight vehicle has been difficult to achieve the flightmissions. Only through collaborative combat of the flight vehicles, can obtain the best fight effects.Therefore, it is necessary to do research on optimization design of cooperative trajectories andoptimal control for multiple flight vehicles.
     The paper is based on several research projects, those research projects are ‘multiple flightvehicles attack-defense simulation demonstration system’ which supported by a aeronautics researchinstitute cooperation,‘the global trajectory optimization and control of multiple missilesattack-defense system’ which supported by Jiangsu province ordinary college graduate student ofscientific research innovation plan funded projects. This doctoral dissertation deeply and systemicallystudies optimization design of cooperative trajectories for multiple flight vehicles which aim at acomplicated multi-objective optimization and decision-making of cooperative trajectories for multipleflight vehicles. An algorithm is presented for multiple flight vehicles in random environment tooptimization design cooperative trajectories; and a large number of flight numerical simulationsare carried out. The main research contents of the dissertation are as follows.
     Firstly, the problem is described as mathematical presetation regarding on the optimizationdesign of cooperative trajectories for multiple flight vehicles, and the mathematical models oftrajectory planning are presented for multiple flight vehicles in unknown environment. Themathematical description regarding on optimization design of cooperative trajectories for multipleflight vehicles mainly includes: a general mathematical description about optimization design ofcooperative trajectories for multiple flight vehicles, the mathematical description about theoptimization design of cooperative trajectories for interceptor-type flightvehicles and penetration about flight vehicles in attack and defense statuses. The detailedmathematical models of trajectory planning for multiple flight vehicles mainly include: themathematical description of dynamic/static flight missions, the flight environment (digitalmaps, stochastic wind model,the no-flight zone, and static/dynamic threat zone), the flightvehicle differential equations of motion, spacecraft orbit differential equations.
     Secondly, the numerical algorithm of collaborative mission planning system design for multipleflight vehicles have been proposed. This algorithm mainly includes cooperative targets distribution method for multiple flight vehicles and the trajectory optimal planning for flight vehicle. Based on theremaining time of the target, the cooperative targets distribution algorithm is presented. The exampleswere presented for some cases regarding on multiple targets distribution algorithm based on thedifferent flight velocity combinations between attacking flight vehicle and target vehicle.Theremaining time of the targets is computed from each attacking flight vehicle to the correspondingtarget; and matrix of the remaining time for the targets was obtained, this matrix is created from thecombination of multiple targets and multiple attacking vehicles. The remaining time of each targetflight vehicle for each attacking flight vehicle has been real-time online calculated. The cooperativetarget distribution is adjusted in real-time, the optimal program series of cooperativetarget distribution is obtained online. The avoiding trajectory about threatened zones in stochasticflight environment (stochastic wind) is researched for flight vehicles to plan the optimal trajectory.The avoiding trajectory is optimized considering all kinds of possible conditions of threat zones, suchas the random and complex monitoring from enemy radars, the enemy air defense weaponinterception systems (dynamical attack and interception zones), complex and various terrain,stochastic flight environment (stochastic wind) and so on. The performance indexes of optimaltrajectory for flight vehicle are minimize risk, the maximize reliability to accurately hit target.A combination algorithm of the trajectory planning for flight vehicle is consist of improved dynamicprogramming method and conjugate gradient algorithm. The numerical algorithm ofcollaborative mission planning system design for multiple flight vehicles can be adjusted in real timeonline based on the dynamic attacked and intercepted zones of both attack and defense sides. Thatis, the dynamic attacked and intercepted zone of both attack and defense sides is one of the keytechnologies in cooperative fighting for multiple flight vehicles.
     Furthermore, the key techniques of dynamic attack zones were researched for multiple flightvehicles of both offensive and defensive in cooperative combat. According to the characteristics ofcooperative fighting for multiple flight vehicles and dynamic attack zones of air-to-air missiles(AAMs), the dynamical attack zones at the time of being launched of AAMs (the forward-aspectattack zone and the all-aspect attack zone) and the dynamical attack zone after being launched ofAAM are researched. The all-aspect attacking is a new attacking method of the AAM to intercepttargets in the rear hemisphere. In order to obtain the information of how AAM can attack duringcooperative combat for multiple flight vehicles, a new concept, dynamic attack zone of AAMs afterbeing launched, was proposed, and was researched. At the same time, the attack zone at the time ofbeing launched of AAM is a component of of the static threat zone. For the offensive side, in order to real-time obtain information of the enemy target whether inside dynamic attack zoneof AAM, dynamic attack zone after being launched of AAM is calculated. For the enemy vehicles,however, the dynamic attack zones after being launched of the offensive side are dynamic threatzones of the intercept vehicles. Therefore, when considering the enemy threat zones, it is necessaryto calculate both the dynamic attack zones at the time of being launched and the dynamicattack zones after being launched of AAMs.
     At the last, based on the above algorithms, four typical different kinds of cases were numericalsimulated and analyzed, those cases include different combination of the flight environment, targetsand waypoints maneuver type, static and dynamic threat areas, as well as the flight purposes for bothattacking and intercepting flight vehicles. The detailed information of the cases are as follows.
     a) The cooperative trajectories optimization for flight vehicle when multiple targets fly bythe regularly maneuver law (Non-confrontational).
     b) The cooperative trajectories optimization for multiple flight vehicles when multiple targets fly bythe non-regularly maneuver law, the the target flight vehicles are random maneuvering.(Non-confrontational).
     c) Considering the attack zones before being launched of flight vehicles, the cooperative trajectorieswere optimized for multiple flight vehicles to penetrate threat zones with the minimum threat,passing all waypoints, and other environments, such as weather, terrain and so on.
     d) Considering the attack zones after being launched and static threat zones of flight vehicles, thecooperative trajectories were optimized for multiple penetrating flight vehicles to penetratestatic and dynamic threat zones, as well as passing the waypoints; at the same time, thecooperative trajectories were also optimized for multiple intercepting flight vehicles to interceptthe penetrating flight vehicles, avoiding static and dynamic threat zones.
     It is noticeable that, both of attack and defense flight vehicles are using the global integration ofoptimization algorithm at the same time. That means, when the offensive vehicles (trajectoriesand subsystem control) employ global integration of optimal algorithm strategy,intercept vehicles also employ the global trajectory and control of the global integration optimizationalgorithm. Both sides of attack and defense flight vehicles are considering a varietyof multi-dimensional random interference of all unknown possible factors.
引文
[1]陈聪,关成启,史宏亮.飞行器轨迹优化的直接数值解法综述[J].战术导弹控制技术,2009,31(2):33-40.
    [2]南英,陈士橹,严辉.航天器轨迹优化的通用数值方法[J].飞行力学,1996,14(3):20-26.
    [3]刘金星,伶明安.空空协同作战指挥控制系统[J].火力与指挥控制,2001,26(4):43-46.
    [4]李全良.新世纪的空空导弹[J].中国航天.2001,12:30-34.
    [5]欧方社.防区外发射武器的发展[J].中国航天.1997,4:26-30.
    [6]孙继银,付光远,车晓春等.战术数据链技术与系统[M].北京:国防工业出版社,2007.
    [7]林涛,刘永才,关成启等.飞航导弹协同作战使用方法探讨[J].战术导弹技术,2005(2)14-16.
    [8]肖增博,雷虎民,夏训辉.多导弹协同作战关键技术研究与展望[J].飞航导弹,2008,6:24-26.
    [9]Betts J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control and Dynamics,1998,21(2):193-206.
    [10]雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406.
    [11]Bryson. Applied Optimal Control:Optimization, Estimation,&Control[M]. New York: Hemisphere,1969.
    [12]Stryk B. Direct And Indirect Methods For Trajectory Optimization[C]. Scientific Publishing Company,1992.
    [13]王华,唐国金,雷勇军.有限推力轨迹优化问题的直接打靶法研究[J].中国空间科学技术,2005,(3):51-56.
    [14]David Hull. Conversion Of Optimal Control Problems Into Parameter Optimization Problems[R].1996.
    [15]屈香菊.直接多重打靶法在轨迹优化方面的应用[J].飞行力学,1992,10(1):16-21.
    [16]陈功,傅瑜,郭继峰.飞行器轨迹优化方法综述[J].行力学,2011,29(4):1-5.
    [17]Lu P. Inverse dynamics approach to trajectory optimiza-tion for an aerospace plane[J]. Journal of Guidance, Control and Dynamics,1993,16(4):726-732.
    [18]J Varin. Interior Point Algorithm For The Optimization Of A Space Shuttle Reentry Trajectory:7th French Latin American Congress on Applied Mathematics [C].2004.
    [19]J.Bonnans. Large Scale Direct Optimal Control Applied to Reentry Problem[R]. INRIA,1994.
    [20]康炳南,唐硕.基于非线性规划的高超声速滑翔轨迹优化[J].飞行力学,2008,26(3):49-52.
    [21]陈今求,李新国.混合遗传算法求解高超音速飞行器弹道优化[J].计算机仿真,2008,25(1):54-57.
    [22]万松.可重复使用运载器上升段轨道优化方法研究[D].西安:西北工业大学,2007.
    [23]张永军,夏智勋.跳跃式导弹弹道设计与优化[J].固体火箭技术,2006,29(5):313-316.
    [24]孙军伟,乔栋,崔平远.基于SQP方法的常推力月球软着陆轨道优化方法[J].宇航学报,2006,27(1):99-102.
    [25]Wei Kang, N Bedrossian. Pseudospectral Optimal Control Theory Makes Debut Flight, Saves NASA$1M in Under Three Hours[J]. SIAM News,2007,40(7).
    [26]Q. Gong, W Kang. Pseudospectral Optimal Control for Military and Industrial Applications [C].46th IEEE Conference on Decision and Control, New Orleans, LA,2007.
    [27]汤善同.飞行器轨道优化与制导规律研究综述[J].现代防御技术,2002,30(1):32-37.
    [28]王大轶,李铁寿,马兴瑞.月球最优软着路两点边值问题的数值解法[J].航天控制,2000(3):44-49.
    [29]周浩,周韬,陈万春等.高超声速滑翔飞行器引入段弹道优化[J].宇航学报,2006,27(5):970-973.
    [30]赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社,1997.
    [31]吴德隆,王小军.航天器气动力辅助变轨动力学与最优控制[M].北京:中国宇航出版社,2006.
    [32]袁方.最优过程理论在飞行轨迹优化计算中的应用[J].飞行力学,2000,18(3):50-53.
    [33]Bellman R E. Dynamic Programming[M].Princeton, USA:Princeton University Press,1957.
    [34]张之胚,李建德.动态规划及其应用[M].北京:国防工业出版社,1994.
    [35]Luus R. Iterative Dynamic programming:from curiosity to a practical optimization procedure[J]. Control and Intelligent Systems,1998,26:1-8.
    [36]Bousson K. Single Gridpoint Dynamic Programming for trajectory Optimization[C]. In.AIAA Atmospheric Flight Mechanics Conference and Exhibit,San Francisco,California,2005:1-8.
    [37]Lavalle S M. Rapidly-Exploring Random Trees:Anew Tool for Path Planning[R].1998:98-113.
    [38]朱金辉,梁明杰,梁颖驹.一种自适应加权快速探索随机树算法[J].计算机工程,2010,23(16):16-18.
    [39]Cheng P, Shen Z, Lavalle S M. RRT-based trajectory design for autonomous automobiles and spacecraft[J]. Archives of Control Sciences2001,11(3-4):51-78.
    [40]Frazzoli E, Dahleh M A, Feron E. Real-Time motion planning for agile autonomous vehicles[J].Journal of Guidance,Control and Dynamic,2002,25(1):116-129.
    [41]Mayne D, Rawling J, Rao C, el al. Constrained model predictive control:Stability and optimality[J]. Automa-tica,1987,36(6):789-814.
    [42]Bellingham J, Richards A, How J. Receding Horizon Control of Autonomous Aerial Vehicles[C]. In. American Control Conference,2002.
    [43]Mettler B, Bachelder E. Combining on and Offline Optimization Techniques for Efficient Autonomous Vehicle'Trajectory Planning[C]. In. AIAA Guidance, Navigation and Control Conference and Exhibit. San Francisco. CA:USA,2005:1-13.
    [44]Kuwata Y, Schouwenaars T, Richards A, et al. Robust Constrained Receding Horizon Control for Trajectory Planning Robust Constrained Receding Horizon Con-trol for Trajectory Planning[C]. In. AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, CA:USA,2005:1-12.
    [45]唐强,张新国,刘锡成.一种用于低空飞行的在线航迹重规划方法[J].西北工业大学学报,2005,23(4):271-275.
    [46]张胜祥,裴海龙,刘保罗.基于滚动时域优化的无人飞行器轨迹规划[J].计算机工程与应用,2008,44(35):237-239.
    [47]高颖.遗传算法综述[J].计算机光盘软件与应用,2010(4):90-91.
    [48]孙天英.遗传算法及在控制理论中的应用[D].哈尔滨工程大学,2008.
    [49]Garald A R, ConverstoneCrroll V. Near optimal low-thrust orbit transfers generated by a genetic algor-ithm[J]. Journal of Spacecraft and Rockets,1996,33(6):859-862.
    [50]CoverstoneCrroll V. Near optimal low-thrust trajectories via micro genetic algorithms [J]. Journal of Guidance, Control and Dynamics,1996,20(1):196-198.
    [51]Krishnakumar K, Goldberg D E. Control system optimization using genetic algorithm [J]. Journal of Guidance, Control and Dynamics,1992,15(3):735-740.
    [52]Larry D D, Menom K K. Low-thrust orbit transfer optimization using genetic search[R]. AIAA,99-4151,1999.
    [53]Jean A D, Sergey P, Sergey T. Application of genetic algorithm to space vehicle reentry trajectory optimiza-tion problem[R]. INRI,No.3843,1999.
    [54]Rajesh K A. Re-entry trajectory optimization:evolutionary approach[R]. AIAA,2002,2002-5466.
    [55]曾国强,郗晓宁,任萱.月球卫星最优小推力变轨研究[J].天文学报,2000,41(3):289-299.
    [56]吴美平,胡小平.遗传算法在载人飞船返回轨道一体化设计中的应用[J].宇航学报,2001,22(3):99-104.
    [57]王劫,李俊锋,崔乃刚,等.登月飞行器软着陆轨道的遗传算法研究[J].清华大学学报(自然科学版),2003,43(8):1056-1059.
    [58]罗亚中,唐国金,周黎妮.混合遗传算法及其在运载火箭最优上升轨道设计中的应用[J].国防科技大学学报,2004,26(2):5-8.
    [59]陈金明,耿丽娜,郑志强.基于遗传算法的制导炸弹最优滑翔弹道研究[J].弹箭与制导学报,2008,28(3):181-188.
    [60]马文臻.深空探测器的轨道设计与优化[D].中国科学院研究生院,2006.
    [61]吴迪,王峰,杨晟尧.基于混沌免疫遗传算法的飞行轨迹优化研究[J].武汉理工大学学报,2010,32(20):147-150.
    [62]Colorni A, Dorigo M, Maniezzo V, et al. Distributed Optimization by Ant Colonies[C]. Proceedings of the1st European Conference on Artificial Life,1991:134-142.
    [63]古明家.蚁群算法优化策略及其应用[D].广西民族大学,2009.
    [64]Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour[J]. Nature,2000,406(6):39-42.
    [65]Katja V, Ann N. Colonies of learning automata [J]. IEEE Trans on Systems, Man, and Cybernetics(Part B)2002,32(6):772-780.
    [66]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005.
    [67]段佳佳,徐世杰,朱建丰.基于蚁群算法的月球软着陆轨迹优化[J].宇航学报,2008,29(2):476-488.
    [68]王华,杨存富,刘恒军.改进的蚁群算法及其在弹道优化中的应用[J].计算机工程与应用,2008,44(28):217-219.
    [69]金飞虎,洪柄熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526-529.
    [70]Doerner K, Gronalt M, Hartl R F. Savings ants for the vehicle routing problem [J]. Applications of evolutionary computing (S1089-778X),2002,6(5):11-20.
    [71]叶文,范洪达.基于改进蚁群算法的飞机低空突防航路规划[J].飞行力学,2004,22(3):35-38.
    [72]段海滨,王道波,朱家强.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326.
    [73]Marcin L P, Tony W. Using genetic algorithms to optimize ACS-TSP[C]. Proc of3rd Workshop ANTS, Brussels,2002.282-287.
    [74]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245.
    [75]洪柄熔,金飞虎,高庆吉.基于蚁群算法的多层前馈神经网络[J].哈尔滨工业大学学报,2003,35(7):823-825.
    [76]Isaacs J, Watkins R, Foo S. Evolving ant colony systems in hardware for random number generation [C]. Proc of the2002Congress on Evolutionary Computation, Honolulu,2002.1450-1455.
    [77]Russell E, James K. A new optimizer using particle swarm theory[C]. The Sixth International Symposium on Micro machine and Human Science, Nagoya, Japan,1995.39-43.
    [78]James K, Russell E. Particle swarm optimization[C]. IEEE International Conference on Neural Networks, Perth, Australia,1995.1942-1948.
    [79]胡鹏.高超声速飞行器单周期冲越飞行轨迹优化研究[D].大连理工大学,2007.
    [80]梁军.粒子群算法在最优化问题中的研究[D].广西师范大学,2008.
    [81]吴迪,胡鹏,林笑旭.高超声速飞行器单周期飞行轨迹优化研究[J].石油化工高等学校学报,2007,20(3):37-40.
    [82]谢富强,吴浩,唐灵灵.基于粒子群算法的飞行器再入轨迹优化[J].计算机技术与自动化,2008,27(4):72-75.
    [83]杨希祥,江振宇,张为华.基于粒子群算法的固体运载火箭上升段弹道优化设计研究[J].宇航学报,2010,31(5):1304-1308.
    [84]马培蓓,纪军,范作娥.考虑战场环境约束的多导弹协同任务规划[J].电光与控制,2010,17(8):5-10.
    [85]潘哲.常值风作用下的反舰导弹多弹协同航路规划[J].海军航空工程学院学报,2011,26(2):219-222.
    [86]马向玲,高波,李国林.导弹集群协同作战任务规划协同[J].飞行力学,2009,27(1):1-5.
    [87]毛云云.多飞行器协同航迹规划算法研究[D].哈尔滨工业大学,2010.
    [88]李珂,王正平.多架无人机协同攻击航路规划[J].航空计算技术,2006,36(5):98-101.
    [89]张同法,于雷,鲁艺.多架无人机协同作战的路径规划[J].火力与指挥控制,2009,34(2):143-145.
    [90]张大巧,鲜勇,王明海.基于多路径算法的选飞航迹规划方法研究[J].弹箭与制导学报,2011,31(4):69-72.
    [91]肖支才,程春华.基于改进遗传算法的反舰导弹协同任务规划[J].计算机与数字工程,2010, 38(5):22-24.
    [92]钱杏芳、林瑞雄、赵亚男.导弹飞行力学[M].北京理工大学出版社,2000.
    [93]M.Hura,G.Mcleod.Route Planning Issues for Low Observable Aircraft and Cruise Missiles[J].Implications for the Intelligence Community,RAND,Santa Monica,CA,1993.
    [94]C.Bodenhorn,P.Galkowski,P.Stiles,et al.Personalizing onboard route re-planning for recon,attack,and special operations missions[C].The Proceedings of American Helicopter Society Conference(Avionic and Crew Systems Technical Specialists Conference),1997.
    [95]Y.Hwing and N.Ahujia.Gross motion planning-a survey[J].ACM Computing Survey,1992,Vol.24(3):219-291.
    [96]J.C.Latombe.Robot Motion Planning[C].Kluwer.Boston,MA,1991.
    [97]R.J.Szczerba.New Cell Decomposition Techniques for Planning Optimal Paths [D].University of Notre Dame,Notre Dame,1996.
    [98]C.W.Warren.A technique for autonomous underwater vehicle route planning [J]. IEEE Journal of Oceanic Engineering,1990,Vol.15(3):199-204.
    [99]Canny J F. The complexity of robot motion planning [M].Cambridge,MIT Press,1988.
    [100]Szczerba R J, Galkowski P, Glickstein I S, et al. Robust algorithm for real-time route planning[J]. IEEE Trans. on Aerospace and Electronic Systems,2000,36(3):869-878.
    [101]Gudaitis M S, Lamont G B, Terzuoli A J. Multicriteria vehicle route-planning using parallel A*search [C]. Proc. of the ACM Symposium on Applied Computing,1995:171-176.
    [102]李春华,郑昌文,周成平,等.一种三维航迹快速搜索方法[J].宇航学报,2002,23(3):13-17.
    [103]李春华,周成平,丁明跃,等.动态环境中的飞行器实时三维航迹规划方法研究[J].宇航学报,2003,24(1):38-42.
    [104]任波,周焘,于雷.基于改进A*算法的飞行器三维航迹规划算法[J].系统工程与电子技术,2008,30(2):324-326.
    [105]Meng Z J, Huang P F, Yan J. Trajectory planning f or hypersonic vehicle using improved sparse A*Algorithm [C].Proc. of the I EEE/ASME International Conference on Advanced Intelligent Mechatronics,2008:1152-1157.
    [106]Timothy W M, Phillip R C, Meir P. A decomposition strategy for optimal coordination of unmanned air vehicles [C]. Proc.of the American Control Conference,2000:369-373.
    [107]P.B.Sujit, R.Beard. Cooperative Path Planning for Multiple UAVs Exploring an Unknown Region. Proceeding of the2007American Control Conference,2007:347-352.
    [108]P.B.Sujit, J.M.George, R.W.Beard. Multiple UAV Coalition Formation. Americal Control Conference,2008:2010-2015.
    [109]P.B.Sujit, R.Beard. Multiple UAV Path Planning using Anytime Algorithm. American Control Conference,2009:2978-2983.
    [110]Pan F, H u X, Eberhart R, et al. A new UAV assignment model based on PSO[C].Proc. of the IEEE Swarm Intelligence Symposium,2008:1-7.
    [111]Huo X H, Shen L C, Long T.Particle swarm optimization for a multi-UCAV cooperative task scheduling[J]. Lecture Notes in Computer Science,2007,44(13):302-311.
    [112]Cruz J B, Chen J G, Li D, et al. Particle swarm optimization for resource allocation in UAV cooperative control[C]. Proc.of the A IA A Guidance,Navigation and Control Conference,2004:16-19.
    [113]Salman A, Ahmad I, Al Madani S.Particle swarm optimization for task assignment problem[J].Microprocessors and Microsystems,2002,26(8):363-371.
    [114]马培军,毛云云,张洪涛,等.基于3DSAS的多约束多航迹协同规划与搜索方法[J].系统工程与电子技术,2011,33(7):1527-1533.
    [115]D.Bauso, L.Giarre, R.Pesenti. Multiple UAV Cooperaive Path Plannin via Neuro-Dynamic Programming. IEEE Conference on Decision and Control,2004:1087-1092.
    [116]R.W.Beard, T.W.Mclain. Multiple UAV Cooperative Search under Collision Avoidance and Limited Range.Proceeding of IEEE Conference on Decision and Control,2003:25-30.
    [117]M.Alighanbair, Y.Kuwata, J.P.How. Coordination and Control of Multiple UAVs with Timing Constraints and Loitering. Proceeding of the American Control Conference,2003:5311-5316.
    [118]Daniel J P, Pedro D L, Gregory J T. Cooperative control of UAVs for localization of intermittently emitting mobile targets [J]. IEEE Trans.on Systems, Man, and Cybernetics-Part B:Cybernetics,2009,39(4):959-970.
    [119]C.Zheng,M.Ding and C Zhou.Real-time route planning for unmanned air vehicle with an evolutionary algorithm.International[J]. Journal of Pattern Recognition and Artificial Intelligence.2003,17(1):63-81.
    [120]S.A.Bortoff.Path planning for UAVs[C].The Proceedings of the American Control Conference, Chicago,USA,2000,364-368.
    [121]R.J.Szczerba,P.Galkowski and I.S.Glickstein.A mission adaptable route planner for intelligent guidance/navigation system[C].The Proceedings of36thAIAA Conference (Aerospace Sciences Meeting and Exhibit),1998.
    [122]T.Asano,L.Guibas,J.Hershberger,et al.Visibility-polygon search and Euclidean shortest path[C].The Proceedings of26th Symposium on Foundations of Computer Science, Berkeley,CA,1989,155-164.
    [123]F.Aurenhammer.Voronoi diagrams-A survey of fundamental geometric data structure.ACM Computing Survey.1991,Vol.23(3):345-405.
    [124]王琦.飞行器航迹规划与航迹评价算法研究[D].哈尔滨工业大学,2007.
    [125]Zhao Y Y. Optimal Control of an Aircraft Flying Through a Downburst[D]. USA:Stanford University,1989.
    [126]R.W.Beard,T.W.Mclain,M.A.Goodrich,et al.Coordinated Target Assignment and Intercept for Unmanned Air Vehicles[J].IEEE Transactions on Robotics and Automation.2002,18(6):911-922.
    [127]高晓光,蔡付东.一种新的全向攻击技术-越肩发射火控技术[J].西北工业大学学报,1999,17(4):509-514.
    [128]高劲松,孙隆和.双射程导弹擦肩发射对未来贴身空战的影响[J].航空兵器,2006,(5):3-6.
    [129]马登武,刘琰,田振华.空空导弹的越肩发射技术综述[J].海军航空工程学院学报,2007,22(3):377-381.
    [130]Cloutier J R, Stansbery D T. All-aspect Acceleration limited Homing Guidance [R].AIAA-99-4063,1999.
    [131]Taur D R, Chern J S. An Optimal Composite Guidance Strategy for Dogfight Air-to-Air Missiles [R].AIAA-99-4066,1999.
    [132]蔡付东,高晓光.用于越肩发射的方位校正导引[J].飞行力学,2000,18(1):10-13.
    [133]张华明,姜玉宪.基于数据链的越肩发射后向攻击技术[J].电光与控制,2003,10(4):5-9.
    [134]曾洪俊,高晓光.空空导弹越肩发射/后射的导引方法[J].火力与指挥控制,2004,29(5):18-20.
    [135]姜欢,刘彦,邢晓岚等.空空导弹越肩发射全向攻击区计算[J].飞行力学,2007,25(3):26-29.
    [136]高晓光,李波.空空导弹后射火控技术[J].火力与指挥控制,2004,29(6):16-19.
    [137]关世义.飞行力学研究的新进展——飞行器攻防对抗研究评述[J].中国科学,2009,39(3):568-574.
    [138]Nan Ying. Algorithm design for F-16air-to-air missile aiming system (Dynamic Launch Zone, DLZ)[J]. Avio-nics Dept, Singapore Technologies Aerospace,2000-2003.
    [139]萧保生.空空导弹的攻击区与截获区[J].航空学报,1992,13(2):60-64.
    [140]张安,刘岗.空空导弹不可逃逸区仿真研究[J].航空兵器,2000,(2):8-10.
    [141]李建勋,张安,佟明安.导弹非逃跑包络[J].西北工业大学学报,1995,13(3):427-431.
    [142]J.Shinar, R.Gazit. Optimal'no-escape'firing envelopes of guided missile[J]. Guidance, Navigation and Control Conference,1985:634-644.
    [143]李波,高晓光.空空导弹后射火控截获区仿真[J].计算机仿真,2010,27(3):81-84.
    [144]黄国强,南英,陆宇平.空空导弹擦肩发射全向三维可攻击区计算[J].弹道学报,2011,23(2):37-38.
    [145]Ron Marvin. A regression method for comparing launch zone ranges derived from different sources [C].AIAA-1992-4097.
    [146]王宏伦,张安,张海等.空-空导弹攻击区的高精度快速拟合[J].航空学报,1997,18(5):631-632.
    [147]王宏伦,佟明安.空空导弹攻击区处理的拟合—插值法[J].火力与指挥控制,1998,23(4):14-18.
    [148]刘代军,高晓光,李言俊等.中远程空空导弹允许攻击区的快速模拟算法[J].西北工业大学学报,1999,17(4):530-533.
    [149]杨晨.近距格斗空空导弹发射边界判定研究[J].飞行力学,1999,17(3):49-54.
    [150]王宏伦,吕庆风.基于模糊逻辑系统的空空导弹攻击区拟合[J].南京航空航天大学学报,2000,32,32(3):305-310.
    [151]杜昌平,周德云,江爱伟.一种空空导弹可攻击区快速算法[J].西北工业大学学报,2006,24(6):682-685.
    [152]张平,方洋旺,金冲等.空空导弹攻击区实时解算的新方法[J].弹道学报,2010,22(4):11-18.
    [153]王凯,李望西,轩永波.基于BP神经网络的空空导弹攻击区解算及其仿真[J].弹箭与制导学报,2010,30(1):75-77.
    [154]张安,王宏伦.空空导弹发射包线灵敏度分析研究[J].西北工业大学学报,1994,12(4):567-571.
    [155]王志刚,陈士橹,胡小君.飞机敏捷性与空空导弹攻击区综合研究[J].飞行力学,1998,16(4):1-6.
    [156]廖俊,滕鹏.某型推力矢量控制空空导弹攻击区仿真研究[J].弹箭与制导学报,2006,26(4):43-45.
    [157]鞠传文,史玮韦.半主动雷达寻的空空导弹作战技术运用研究[J].航空计算技 术,2009,39(1):71-74.
    [158]廖沫,陈宗基.基于多AGENT分布协同拍卖的动态目标分配算法[J].北京航空航天大学学报,2007,33(2):180-183.
    [159]廖沫,陈宗基.基于满意决策的多机协同目标分配算法[J].北京航空航天大学学报,2007,33(1):81-85.
    [160]叶媛媛,闵春平,沈林成.多UCAV任务分配的混合遗传算法与约束处理[J].控制与决策,2006,21(7):781-786.
    [161]何佩,屈香菊,武哲.航迹跟踪的优化方法研究[J].北京航空航天大学学报,2003,29(7):598-601.
    [162]BertuccelliL F, AlighanbariM. Robust planning for coupled cooperative UAV mission[C].43rd IEEE Conference on Decision and Control. Atlantics, Bahamas,IEEE Press,2004:2917-2922.
    [163]陈志全.巡航导弹航迹规划综述[J].战术导弹技术,1994,(3):29-32.
    [164]Asseo S J. Terrain following/terrain avoidance path optimization using the method of steepest descent[C].Proceedings of the1988, National Aerospace Electronics Conference.1988.1128-1133.
    [165]Waller M C. Consideration in the application of dy namic programming to optimal aircraft trajectory generation[C]. Proceedings of the1990, National Aerospace Electronics Conference.1990.574-579.
    [166]何佩,屈香菊,武哲.应用自适应遗传算法进行参考航迹规划[J].航空学报2003,11(6):499-502.
    [167]沈春林,徐克虎,贺也平.低空突防中的若干关键技术[J].南京航空航天大学学报,2000,32(3):335-342.
    [168]叶培建,彭兢.深空探测与我国深空探测展望[J].中国工程科学,2006,8(10):13-18
    [169]孟云鹤,罗宗富,连一君等.深空轨道优化竞赛与我校研究生培养[J].高等教育研究学报,2011,34(2):52-55.
    [170]李峻峰,蒋方华.连续小推力航天器的深空探测轨道优化方法综述[J].力学与实践,2011,33(3):1-6.
    [171]崔平远,乔栋,崔祜涛等.小行星探测目标选择与转移轨道方案设计[J].中国科学,2010,40(6):677-685.
    [172]Kechichian J A. Optimal low-thrust orbit geostationary earth orbit intermediate acceleration orbit transfer [J]. Journal of Guidance, Control and Dynamics,1997,20(4):803-811.
    [173]Chuang J C H, Goodson T D, Hanson J. Multiple-burn families of optimal low-and-medium-thrust orbit transfer[J]. J Spacecraft and Rocket,1999,36(6):866-874.
    [174]Kluever C A. Optimal low-thrust iterplanetary trajectories by direct method techniques [J]. T he Journal of the Astronautical Sciences,1997,45(3):247-262.
    [175]Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm formulti-objective optimization[C]//P roc1st IEEE Conf Evolutionary Computation. Piscataway, NJ:IEEE P ress,1994:82-87.
    [176]俞辉,李俊峰,宝音贺西.多颗小行星探测顺序确定及轨道优化[J].清华大学学报(自然科学版),2007,47(11):2052-2055.
    [177]Dario L. Lambert's Problem for Exponential Sinusoids[J]. Journal of Guidance, Control and Dynamics,2006,29(5):1242-1245.
    [178]Bradley J W, Bruce A C. Shape-based Approach to Low-Thrust Rendezvous Trajectory Design[J]. Journal of Guidance, Control and Dynamics,2009,32(1):95-101.
    [179]Battin R H. An Introduction to the Mathematics and Methods of Astrodynamics[M]. Reston:AIAA Inc,1999.
    [180]Petropoulos A E, Longuski J M. Shape-based Algorithm for Automated Design of Low-Thrust Gravity-assist Trajectories[J]. Journal of Guidance, Control and Dynamics,2004,41(5):787-796.
    [181]John T B. Survey of Numerical Methods for Trajectory Optimization [J]. Journal of Guidance, Control and Dynamics,1998,21(2):193-207.
    [182]David G Hull. Conversion of Optimal Control Problems into Parameter Optimization Problems[J]. Journal of Guidance, Control and Dynamics,1997,20(1):57-60.
    [183]Hargraves C R, Paris S R. Direct Trajectory Optimization Using Nonlinear Programming and Collocation[J]. Journal of Guidance, Control and Dynamics,1987,10(4):338-342.
    [184]Mantia M L, Casalino L. Indirect Optimization of Low-thrust Capture Trajectories[J]. Journal of Guidance, Control and Dynamics,2006,29(4):1011-1014.
    [185]Russell R P. Primer Vector Theory Applied to Global Low-Thrust Trade Studies[J]. Journal of Guidance, Control and Dynamics,2007,30(2):460-472.
    [186]Bertrand R, Epenoy R. New Smoothing Techniques for Solving Bang-bang Optimal Control Problems Numerical Results and Statistical Interpretation [J]. Optimal Control Applications and Methods,200223(23):171-197.
    [187]Haberkorn T, Martinon P, Gergaud J. Low-Thrust Minimum-Fuel Orbit Transfer:A homotopic approach[J]. Journal of Guidance, Control and Dynamics,2004,27(6):1046-1060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700