用户名: 密码: 验证码:
不确定容量条件下终端区流量管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
容量变化是导致航班延误的重要原因,对于运输任务繁忙、空管难度较大的机场终端区而言,天气等复杂因素导致的容量不确定性给终端区流量管理带来了不小的困难,使机场终端区成为我国乃至世界空管工作的瓶颈。研究能有效应对不确定容量条件的终端区流量管理关键技术,对于保障空中交通系统运行稳定性,提高流量管理效率,减少航班延误损失,具有重要的理论意义和应用价值。
     论文在对国内外相关研究成果综述的基础上,围绕不确定容量条件下终端区流量管理若干关键技术问题展开研究,主要研究内容及成果包括:
     (1)为解决机场概率容量时隙资源的协同分配问题,建立了随机型协同时隙分配模型。以各种概率容量情景下的总航班延误损失期望最小和各种概率容量情景下的旅客平均延误时间最小为目标,分别确立功效性和公平性原则,在满足有效性约束的基础上,为进场航班分配时隙;根据机场容量预报的更新模式,分别建立了相应的静态、动态模型;采用非支配排序遗传算法求解模型,并借鉴传统协同时隙分配算法——RBS算法思想,分别提出了静态、动态随机型RBS算法;以国内某机场航班时刻数据为例进行仿真验证,结果表明,与经典随机型地面等待模型和所提出的随机型RBS算法相比,本文建立的随机型协同时隙分配模型在功效性和公平性方面取得了较好的优化效果,且增强了时隙分配的整体灵活性,充实了决策空间。
     (2)为在机场不确定容量条件下实施有效的地面等待,建立了鲁棒型地面等待模型。分别以地面等待策略在各种情景下产生的最大总航班延误损失最小,在各种情景下产生的总航班延误损失与相应情景下最小总航班延误损失的差的绝对值的最大值最小,在各种情景下产生的总航班延误损失同相应情景下最小总航班延误损失的差与该情景下最小总航班延误损失比值的绝对值的最大值最小为目标,建立绝对、偏差、相对鲁棒优化模型;根据机场容量预报的更新模式,分别建立了相应的静态、动态模型;采用遗传算法求解模型,以国内某机场航班时刻数据为例进行仿真验证,并与等概率随机型地面等待模型进行比较,结果表明,本文建立的鲁棒型地面等待模型较好地实现了鲁棒性,为最大限度地规避风险、保障地面等待的稳定实施提供了决策依据。
     (3)为解决机场不确定容量条件下的协同时隙分配问题,建立了协同时隙分配鲁棒优化模型。以总航班延误损失为功效性评价依据,以平均旅客延误时间为公平性评价依据,按照绝对、偏差、相对鲁棒性准则建立多目标优化模型,在满足有效性约束的基础上,寻求鲁棒最优的协同时隙分配策略;根据机场容量预报的更新模式,分别建立了相应的静态、动态模型;采用多目标遗传算法求解模型,以国内某机场航班时刻数据为例进行仿真验证,并与等概率随机型协同时隙分配模型进行比较,结果表明,本文建立的协同时隙分配鲁棒优化模型能够按照不同决策偏好制定具有较强鲁棒性的时隙分配策略,有效应对最劣容量情景的发生,提高了不确定容量条件下时隙分配的整体协同性和适应性。
     (4)为解决机场概率容量条件下的航班进离场流量分配问题,建立了随机型终端区容流调配模型。设计航班延误风险控制策略,以一定延误风险水平下的总航班延误损失最小为目标,在优化利用容量的基础上,为每个航班安排合适的进离场时段,在控制延误风险的同时兼顾流量与容量的匹配;根据终端区类型,分别建立了相应的单机场终端区模型和多机场终端区模型;采用捕食搜索算法求解模型,以国内某终端区航班时刻数据为例进行仿真验证,并与经典终端区容流调配模型进行比较,结果表明,相同延误风险水平下,本文建立的机型终端区容流调配模型取得了较好的优化效果,有效减少了航班延误损失。
     (5)为解决机场不确定容量条件下的航班进离场流量分配问题,建立了终端区容流调配鲁棒优化模型。分别以容流调配策略在一定鲁棒性水平下的总延误损失最小,在各情景下的规划外延误损失或多余延误损失的均值与标准差之和最小,在各情景下的规划外延误损失或多余延误损失的最大值最小为目标,建立遗憾、差异、偏好鲁棒优化模型;根据终端区类型,分别建立了相应的单机场终端区模型和多机场终端区模型;采用捕食搜索算法求解模型,以国内某终端区航班时刻数据为例进行仿真验证,并与经典终端区容流调配模型进行比较,结果表明,相同鲁棒性水平下,本文建立的终端区容流调配遗憾鲁棒模型取得了较好的优化效果,差异和偏好鲁棒模型实现了相应的鲁棒性,有效地减少了不同情景下进离场航班延误扰动。
     论文研究丰富了终端区流量管理的理论方法,为不确定条件下的流量管理研究提供了新思路,也为流量管理决策提供了参考。
The change of capacity is a significant factor that may cause flight delay. Especially for airportterminal area with large number of flights and heavy workload of air traffic management. Theuncertainty of airport capacity resulted from weather brings much difficulty in terminal air traffic flowmanagement. Airport terminal area has been a bottleneck for domestic or world-wide air trafficmanagement. Studying the key technologies of terminal air traffic flow management which adapt touncertain capacity conditions is with important theoretical and practical significance for ensuring thestability of air traffic system, improving the efficiency of air traffic flow management and reducingflight delay.
     On the basis of literature review for domestic and foreign related research, the paper studied severalkey problems of terminal air traffic flow management with uncertain capacity conditions. The maincontents and achievements are listed below.
     First, to solve collaborative slot allocation with airport probability capacity, a set of stochasticcollaborative slot allocation models was proposed. With the aim to minimize the expected total flightdelay cost and the expected average delay time of passengers, the principles of efficiency and equitywere established. On the basis of the constraints of effectiveness, slots were allocated to arrival flights.According to the form of airport capacity being updated, both static model and dynamic model forwere proposed. Non-dominated sorting genetic algorithm was applied in solving the models, andstatic stochastic RBS and dynamic stochastic RBS were proposed based on tradditional RBS. Set theflight schedul of one of domestic airports as an example, a numerical test was performed. Test resultsshow that, compared with typical stochastic models and stochastic RBS algorithms, the modelsproposed win them and could efficiently, equitably and effectively allocate slot with airportprobability capacity. Test results also show that, the models improve the flexibility of slot allocationand enrich the decision space.
     Second, to effectively perform ground delay program with airport uncertain capacity, a set of robustground delay program models was proposed. With the aim to respectively minimize the total flightdelay cost in each capacity scenario, the maximum deviation between total flight delay cost and theoptimal total flight delay cost in each capacity scenario as well as the ratio, the principles ofrobustness were established. According to the form of airport capacity being updated, both staticmodel and dynamic model for were proposed. Genetic algorithm was applied in solving the models.Set the flight schedul of one of domestic airports as an example, a numerical test was performed. Test results show that, compared with stochastic models under equal probability scenarios, the modelsproposed are better than them in achieving the goals of robustness and provide available reference fordecision making.
     Third, to solve collaborative slot allocation with airport uncertain capacity, a set of robustcollaborative slot allocation models was proposed. Set the total flight delay cost and the average delaytime of passengers as the basis of the principles of efficiency and equity respectively, absolute robust,deviation robust, and relative robust models were established. On the basis of the constraints ofeffectiveness, robust optimal strategies for slot allocation were searched for. According to the form ofairport capacity being updated, both static model and dynamic model were proposed. Non-dominatedsorting genetic algorithm was applied in solving the models. Set the flight schedul of one of domesticairports as an example, a numerical test was performed. Test results show that, compared withstochastic collaborative models under equal probability scenarios, the models proposed couldefficiently, equitably and effectively allocate slot and improve the stability of slot allocation withuncertain capacity.
     Forth, to solve the arrival and departure flow allocation with airport probability capacity, a set ofstochastic flow allocation models for both single airport terminal area and multi-airport terminal areawas proposed. The strategy for maintaining the risk of flight delay was introduced in. With the aim tominimize the total flight delay cost under certain risk of flight delay, the models utilized the capacityand optimized the arrival and departure flow. A new intelligent algorithm named predatory searchalgorithm was applied in solving the models. Set the flight schedul of one of domestic terminals as anexample, a numerical test was performed. Test results show that, compared with typical models, themodels proposed gain a better effect than them and could effectively reduce flight delay cost with thesame delay risk.
     Fifth, to solve the arrival and departure flow allocation with airport uncertain capacity, a set of flowallocation robust optimization models for both single airport terminal area and multi-airport terminalarea was proposed. With the aim to respectively minimize the total delay cost with certain robustfactor, average value plus standard deviation of delay cost in each capacity scenario and the maximumloss of delay cost, regreat robust, differential robust and preference robust models were proposed.Predatory search algorithm was applied in solving the models. Set the flight schedul of one ofdomestic terminals as an example, a numerical test was performed. Test results show that, comparedwith typical models, regreat robust models proposed gain a better effect than them with the samerobust factor. Test results also show that, differential robust and preference robust models proposedcould effectively be with robustness on the basis of different decision preferences and reduce thedisturbances of flight delay in each capacity scenario.
     The paper enriched the theory and method of terminal air traffic flow management, and provided anew way to study air traffic flow management with uncertain capacity. Besides, the paper provided areference for air traffic flow management decision making in real world.
引文
[1]中国民用航空局发展计划司.2011年民航行业发展统计公报[R].2012.
    [2]王飞.地面等待策略中的时隙分配模型与算法研究[博士学位论文].南京:南京航空航天大学,2010.
    [3]胡明华.空中交通流量管理理论与方法[M].北京:科学出版社,2010.
    [4]杨元元.中国发展新一代民用航空运输系统的愿景[J].中国民用航空,2007,8:16~18.
    [5]吕小平.中国民航新一代空中交通管理系统发展总体框架[J].中国民用航空,2007,8:24~26.
    [6] John-Paul B. Clarke, Senay Solak, Yu-Heng Chang, et al. Air Traffic Flow Management in thePresence of Uncertainty[C].8thUSA/Europe Air Traffic Management Research and DevelopmentSeminar, Napa,2009:1~10.
    [7]国家科技部.国家中长期科学和技术发展规划纲要(2006-2020年)[R].中华人民共和国国务院,2006.
    [8] Odoni A R. The flow management problem in air traffic control[C]. Flow control of congestednetworks. Berlin: Springer-Verlag,1987:269~298.
    [9] Terrab M, Odoni A R, Deutsch O L. Ground-holding strategy for ATC flow control[C]. AIAAGuidance, Navigation and Control Conference. Boston, MA,1989,1635~1646.
    [10] Pulugurtha1S S, Nambisan S S. Using genetic algorithms to evaluate aircraft ground holdingpolicy under static conditions [J]. Journal of Transportation Engineering,2001,127(5):433~441.
    [11]胡明华,徐肖豪.空中交通流量控制的地面保持策略[J].南京航空航天大学学报,1994,26(增刊):26~30.
    [12]胡明华,陈爱民,徐肖豪等.空中交通流量管理中的多元受限的地面等待策略问题研究[J].航空学报,1998,19(1):78~82.
    [13]胡明华,李丹阳,李顺才.空中交通地面等待问题的网络流规划模型[J].东南大学学报(自然科学版),2000,30(3):104~108.
    [14]樊军,王莉莉.基于Hopfiled网络的单机场地面等待优化算法[J].中国民航学院学报,2004,22(3):11~13.
    [15]王飞,徐肖豪,张静.基于人工鱼群算法的单机场地面等待优化策略[J].南京航空航天大学学报,2009,41(1):116~120.
    [16] Andreatta G, Romanin-Jacur G. Airport flow management under congestion[J]. TransportationScience,1987,21(4):249~253.
    [17] Terrab M, Odoni A R, Deutsch O L. Ground-holding strategy for ATC flow control[C]. AIAAGuidance, Navigation and Control Conference, Boston,1989:1635~1646.
    [18] Richetta O, Odoni A R. Solving optimally the static ground holding policy problem in air trafficcontrol[J]. Transportation Science,1993,27(3):228~238.
    [19] Richetta, Odoni. Dynamic solution to the ground-holding problem in air traffic control[J].Transportation Research,1994,28(3):167~185.
    [20] Hoffman R L. Integer programming models for ground-holding in air traffic flowmanagement[Doctor Dissertation]. College Park: University of Maryland,1997.
    [21] Rikfin R M. The single airport static stochastic ground holding problem[Master Dissertation].Boston: Massachusetts Institute of Technology,1998.
    [22] T. Vossen, M. O. Ball, R. Hoffman. A general approach to equity in traffic flow management andits application to mitigating exemption bias in ground delay programs[C].5thUSA/Europe AirTraffic Management R&D Seminar, Budapest,2003:1~10.
    [23] B. Kotnyek, O. Richetta. Equitable models for the stochastic ground-holding problem undercollaborative decision making[J]. Transportation Science,2006,40:133~146.
    [24] R. Hoffman, M. Ball, A. Mukherjee. Ration-by-distance with equity guarantees: A new approachto ground delay program planning and control[C].7thUSA/Europe Air Traffic Management R&DSeminar, Barcelona,2007:1~10.
    [25] Mukherjee A, Hansen M. A dynamic stochastic model for the single airport ground holdingproblem [J]. Transportation Science,2007,41(4):444~456.
    [26] Robert Hoffman, Jimmy Krozel, Goli Davidson, et al. Probabilistic Scenario-Based EventPlanning for Traffic Flow Management[C]. AIAA Guidance, Navigation and Control Conferenceand Exhibit, Hilton Head,2007:1~11.
    [27] Pei-chen Barry Liu, Mark Hansen, Avijit Mukherjee. Scenario-based Air Traffic FlowManagement: From Theory to Practice[J]. Transportation Research Part B,2008,42:685~702.
    [28] Avijit Mukherjee, Mark Hansen, Shon Grabbe. Ground Delay Program Planning UnderUncertainty in Airport Capacity[C]. AIAA Guidance, Navigation and Control Conference andExhibit, Chicago,2009:1~13.
    [29] M. O. Ball, T. Vossen, R. Hoffman. Analysis of demand uncertainty effects in ground delayprograms[C].4thUSA/Europe Air Traffic Management R&D Seminar, Santa Fe,2001:1~10.
    [30] T. R. Willemain. Contingencies and cancellations in ground delay programs[J]. Air Traffic ControlQuarterly,2002,10(1):43~64.
    [31] Michael O. Ball, Robert Hoffman, Avijit Mukherjee. Ground Delay Program Planning UnderUncertainty Based on the Ration-by-Distance Principle[J]. Transportation Science,2010,44(1):1~14.
    [32] Gao Haijun, Chen Long, Chen Dewang. Air traffic fuzzy control of the single airportground-holding problem[C]. IEEE International Conference on Intelligent Transportation System,Shanghai,2003:703~707.
    [33]王来军,史忠科.需求随机型单机场地面等待问题的优化建模研究[J].计算机工程与应用,2004,34:34~35,63.
    [34]王来军,史忠科.单机场地面等待问题中的参数设置[J].空军工程大学学报,2005,6(2):18~21.
    [35]康瑞,彭莉娟,杨凯.基于分组排序的随机性地面等待模型[J].四川大学学报(工程科学版),2009,41(6):147~152.
    [36]王飞,徐肖豪.随机GHP模型中机场容量混合聚类算法[J].交通运输工程学报,2010,11(1):64~68.
    [37]王飞,王兴隆,徐肖豪.随机GHP模型中有效容量的判定方法[J].西南交通大学学报,2011,46(5):882~887.
    [38] Hoffman R., Hall W., Ball M., et al. Collaborative decision making in air traffic flowmanagement[Z]. Manuscript in preparation.1999.
    [39] Thomas W.M. Vossen. Fair allocation methods in air traffic management[Doctor Dissertation].Maryland: University of Maryland,2002.
    [40] Ball M.O. Collaborative mechanisms for managing airport capacity reductions in the U.S.[R].NEXTOR technical report. University of Maryland,2008.
    [41] Ball M.O., Hoffman R., Vossen T.. Optimization and mediated bartering models for ground delayprograms[R]. NEXTOR technical report. University of Maryland,2002.
    [42] Sankararaman R.. Impact assessment of dynamic slot exchange in air traffic management [MasterDissertation]. Maryland: University of Maryland,2004.
    [43] Vossen T., Ball M.. Optimization and mediated bartering models for ground delay programs [J].Naval Research Logistics,2006,53(1):75~90.
    [44] Thomas W.M. Vossen, Michael O. Ball. Slot trading opportunities in collaborative ground delayprograms [J]. Transportation science,2006,40(1):29~43.
    [45]周茜,张学军,柳重堪.CDMGDP程序中混合使用跑道时隙分配问题研究[J].空中交通管制,2005,5:23~26.
    [46]周茜,张学军,柳重堪.时隙分配算法在CDMGDP程序中的应用[J].北京航空航天大学学报,2006,32(9):1043~1045.
    [47]董云龙.空中交通流量管理资源公平分配算法研究[硕士学位论文].南京:南京航空航天大学,2007.
    [48]陈世林,胡明华.一种新的基于贪婪法的CDM时隙分配最优化算法[J].系统工程理论与实践,2008,28(10):144~149.
    [49]张荣,胡明华,张洪海.协同式地面等待程序中时隙公平分配研究[J].交通与计算机,2008,26(5):62~65.
    [50]张洪海,胡明华,陈世林.基于3E均衡的CDM GDP机场时隙分配[J].人类工效学,2010,16(3):49~52.
    [51]张洪海,胡明华.CDM ADGDP机场容量与时隙协同配置[J].系统工程理论与实践,2010,30(10):1901~1908.
    [52]张洪海.机场终端区协同流量管理关键技术研究[博士学位论文].南京:南京航空航天大学,2009.
    [53]王飞,徐肖豪,张静,等.GHP时隙分配问题的组合拍卖竞胜标模型与算法[J].系统工程,2010,28(2):30~35.
    [54] G. Andretta, G. Romanin. Aircraft flow management under congestion[J]. Transportation Science,1987,21(3):249~253.
    [55] E. P. Gilbo. Airport capacity: representation, estimation, optimization[J]. IEEE Transactions onControl Systems Technology,1993,1(3):144~154.
    [56] E. P. Gilbo. Optimizing airport capacity utilization in air traffic flow management subject toconstraints at arrival and departure fixes[J]. IEEE Transactions on Control Systems Technology,1997,5(5):490~503.
    [57] E. P. Gilbo, K. W. Howard. Collaborative optimization of airport arrival and departure traffic flowmanagement strategies for CDM[C].3rdUSA/Europe Air Traffic Management R&D Seminar,Napoli,2000:1~11.
    [58] D. O. Paolo, L. Guglielmo. A dynamic programming approach for the airport capacity allocationproblem[J]. IMA Journal of Management Mathematics,2003,14(3):235~249.
    [59]余江,王大海,蒲云.终端区起飞着陆的协同优化[J].系统工程学报,2003,18(5):462~465.
    [60]马正平,崔德光,谢玉兰.机场终端区流量分配及优化调度[J].清华大学学报(自然科学版),2003,43(7):876~879.
    [61]陈欣,陆迅,朱金福.基于满意度准则的机场终端区容量利用和流量分配的多目标优化模型研究[J].信息与控制,2008,37(3):377~381.
    [62]陈欣,陆迅,朱金福.枢纽机场空侧容量利用和流量分配优化模型研究[J].南京航空航天大学学报,2007,39(5):680~684.
    [63]陈欣.机场空侧容量评估与优化方法研究[博士学位论文].南京:南京航空航天大学,2007.
    [64]张洪海,胡明华,陈世林.机场进离场流量协同分配策略[J].南京航空航天大学学报,2008,40(5):641~645.
    [65]张洪海,胡明华,陈世林.机场终端区容量利用和流量分配协同优化策略[J].西南交通大学学报,2009,44(1):128~134.
    [66]曹力,邓雪云,王旭辉.基于机型的机场流量优化方法[J].南京航空航天大学学报,2008,40(5):646~650.
    [67]曹力,邓雪云,王旭辉,等.基于机型间隔的机场终端区流量优化[J].系统工程学报,2009,24(3):360~364.
    [68]张洪海,胡明华.多机场终端区容流利用和分配建模与仿真[J].系统仿真学报,2009,21(18):5639~5644.
    [69]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003.
    [70] Charnes A, Cooper W W. Chance-constrained programming[J]. Management Science,1959,6(1):73~79.
    [71] Liu B. Dependent-chance programming: A class of stochastic programming[J]. Computers&Mathematics with Applications,1997,34(12):89~104.
    [72] Soyster A L. Convex programming with set-inclusive constraints and applications to inexact linearprogramming[J]. Operation Research,1973,21(5):1154~1157.
    [73]王维佳.鲁棒离散优化理论在电梯群控调度中的应用[D].天津:天津大学,2007.
    [74] Ben-Tal A, A Nemirovski. Robust convex optimization[J]. Mathematics of Operations Research,1998,23(4):769~805.
    [75] Ben-Tal A, A Nemirovski. Robust solutions of uncertain linear programs[J]. Operations ResearchLetters,1999,25(1):1~13.
    [76] Ben-Tal A, A Nemirovski. Robust solutions of linear Programming problems contaminated withuncertain data[J]. Mathematical Programming,2000,88(3):411~424.
    [77] El Ghaoui L, H Lebret. Robust solutions to least-squares problems with uncertain data[J]. SiamJournal on Matrix Analysis and Applications,1997,18(4):1035~1064.
    [78] El Ghaoui L, F Oustry, H Lebret. Robust solutions to uncertain semidefinite programs[J]. SiamJournal on Optimization,1998,9(1):33~52.
    [79] Ben-Tal A, A Goryashko, E Guslitzer, et al. Adjustable robust solutions of uncertain linearprograms[J]. Mathematical Programming,2004,99(2):351~376.
    [80] Ben-Tal A, S Boyd, A Nemirovski Extending scope of robust optimization: Comprehensive robustcounterparts of uncertain problems[J]. Mathematical Programming,2006,107(1-2):63~89.
    [81] Kouvelis P, Yu G. Robust Discrete Optimization and its Applications[M]. Boston: KluwerAcademic Publishers,1997.
    [82] Bertsimas D, M Sim. Robust discrete optimization and network flows[J]. MathematicalProgramming,2003,98(1-3):49~71.
    [83] Bertsimas D, M Sim. The price of robustness[J]. Operations Research,2004,52(1):35~53.
    [84]张晋东.基于鲁棒优化的集装箱码头泊位分配问题研究[硕士学位论文].北京:清华大学,2008.
    [85]高莹.金融系统鲁棒优化问题研究[博士学位论文].沈阳:东北大学,2007.
    [86] Tasha R. Inniss. Stochastic Models for the Estimation of Airport Arrival CapacityDistributions[Doctor Dissertation]. College Park: University of Maryland,2000.
    [87] Joseph S. B. Mitchell, Valentin Polishchuk, Jimmy Krozel. Airspace Throughput AnalysisConsidering Stochastic Weather[C]. AIAA Guidance, Navigation, and Control Conference,Keystone,2006:1~19.
    [88] Jimmy Krozel, Joseph S. B. Mitchell, Valentin Polishchuk, et al. Capacity Estimation forAirspaces with Convective Weather Contraints[C]. AIAA Guidance, Navigation, and ControlConference, Hilton Head,2007:1~15.
    [89] Lixia Song, Craig Wanke, Daniel Greenbaum, et al. Methodologies for Estimating the Impact ofSevere Weather on Airspace Capacity[C]. The26th Congress of International Council of theAeronautical Sciences, Anchorage,2008:1~12.
    [90] Jingyu Zou, Joseph W Krozel, Jimmy Krozel, et al. Two Methods for Computing DirectionalCapacity given Convective Weather Constraints[C]. AIAA Guidance, Navigation, and ControlConference, Chicago,2009:1~15.
    [91] Joondong Kim, Jingyu Zou, Joseph S B Mitchell, et al. Sensitivity of Capacity Estimation Resultssubject to Convective Weather Forecast Errors[C]. AIAA Guidance, Navigation, and ControlConference, Chicago,2009:1~15.
    [92] Diana Michalek, Hamsa Balakrishnan. Building a Stochastic Terminal Airspace Capacity Forecastfrom Convective Weather Forecasts[C]. The89thAmerican Meteorological Society AnnualMeeting, Phoenix,2009:1~11.
    [93]常茂军.机场终端区容量动态预测方法研究[硕士学位论文].南京:南京航空航天大学,2007.
    [94]唐颖.基于设备失效的机场及终端区运行性能影响研究[硕士学位论文].南京:南京航空航天大学,2008.
    [95]邓兵,余静.一种基于证据理论的机场动态容量预测算法[J].四川大学学报(自然科学版),2008,45(5):1081~1084.
    [96]余静,杨红雨,马博敏,等.证据理论在机场动态容量预测模型中的研究[J].电子科技大学学报,2010,39(1):141~144.
    [97]张静,徐肖豪,王飞.天气影响的机场容量概率分布研究[J].南京航空航天大学学报,2011,43(1):41~48.
    [98]张静,徐肖豪,王飞.天气季节性影响的机场到达容量概率分布[J].西南交通大学学报,2011,46(1):154~161.
    [99]徐肖豪,李雄.航班地面等待模型中的延误成本分析与仿真[J].南京航空航天大学学报,2006,38(1):115~120.
    [100] Delahaye Daniel, Sofiane Oussedik, Puechmorel stephane. Airspace congestion smoothing bymulti-objective genetic algorithm[C]. ACM Symposium on Applied Computing, Santa Fe,2005:907~912.
    [101]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [102]陈刚,沈林成.复杂环境下路径规划问题的遗传路径规划方法[J].机器人,2001,23(1):42~44.
    [103] Srinivas N, Deb K. Multi-objective function optimization using non-dominated sortinggenetic algorithm[J]. Evolutionary Computation,1995,2(3):221~248.
    [104] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithm[C].1stInternational Conference on Genetic Algorithms, Pittsburgh, PA,1985,93~100.
    [105] Horn J, Nafpliotis N, Goldberg D E. A niched pareto genetic algorithm for multi-objectiveoptimization[C].1stIEEEConference on Evolutionary Computation, Piscataway, NJ,1994,82~87.
    [106] Zitzler E. Multiobjective evolutionary algorithm, a comparative case study and the strengthpareto approach[J]. IEEE Transactions on Evolutionary Computation,1999,3(4):251~271.
    [107] Deb K, Agrawal S, Pratap A, et al. A fast and elitist multi-objective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182~197.
    [108]李雄.飞行危险天气下的航班改航路径规划研究[博士学位论文].南京:南京航空航天大学,2009.
    [109] Ben-Tal A, Nemirovski A. Robust optimization-methodology and applications[J].Mathematical Programming,2002,92(3):452~480.
    [110]李建更.某些调度问题区间摄动鲁棒性的研究[J].自动化学报,2001,27(1):24~30.
    [111]王保华,何世伟.不确定环境下物流中心选址鲁棒优化模型及算法[J].交通运输系统工程与信息,2009,9(2):69~74.
    [112]姜涛,朱金福,覃义.基于最短路的中枢辐射航线网络鲁棒优化方法[J].系统工程,2007,25(1):53~59.
    [113] Yu G. Robust economic order quantity models[J]. European Journal of Operational Research,1997,100(3):482~493.
    [114]高莹.金融系统鲁棒优化:模型与应用[M].北京:经济科学出版社,2008.
    [115] Leung S C, Tsang S O, Ng W L, et al. A robust optimization model for multi-site productionplanning problem in an uncertain environment[J]. European Journal of Operational Research,2007,181(1):224~238.
    [116]田俊峰.不确定性条件下供应链管理优化模型及算法研究[博士学位论文].成都:西南交通大学,2005.
    [117] Jan R H, Hwang F J, Chen S T. Topological optimization of a communication networksubject to a reliability constraint[J]. IEEE Transactions on Reliability,1993,42:63~70.
    [118] Laporte G, Louveaux F V, Mercure H. The vehicle routing problem with stochastic traveltimes[J]. Transportation Science,1992,26:161~170.
    [119] Zhao R, Liu B. Stochastic programming models for general redundancy optimizationproblems[J]. IEEE Transactions on Reliability,2003,52(2):181~191.
    [120] Zhong J, Liu B. The critical path problem: Stochastic models and hybrid intelligentalgorithm[R]. Technical Report,2003.
    [121] Zhou J, Liu B. New stochastic models for capacitated location-allocation problem[J].Computers&Industrial Engineering,2003,45(1):111~125.
    [122] Linhares A. Preying on optimal: A predatory search strategy for combinatorial problems[C].IEEE International Conference on Systems, Man and Cybernetics, San Diego,1998:2974~2978.
    [123] Linhares A. State-space search strategies gleaned from animal behavior: A traveling salesmanexperiment[J]. Biological Cybernetics,1998,78:167~173.
    [124] Linhares A. Synthesizing a predatory search strategy for VLSI layouts[J]. IEEE Transactionson Evolutionary Computation,1999,3(2):147~152.
    [125]蒋忠中,汪定伟.有时间窗车辆路径问题的捕食搜索算法[J].控制与决策,2007,22(1):59~62.
    [126]柏明国,姜涛,朱金福.基于禁忌算法的中枢辐射航班网络鲁棒优化方法[J].数学的实践与认识,2008,38(13):1~10.
    [127]张萍,陈幼平,周祖德.不确定条件下供应链设施决策的鲁棒优化[J].武汉理工大学学报(信息与管理工程版),2008,30(5):800~803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700