用户名: 密码: 验证码:
组合型生态浮床对富营养化水体的净化效果及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过在富营养化水体中构建组合型生态浮床,以试验场内养猪场粪便沼气发酵池后的氧化塘富营养化水体为受试水体,研究组合型生态浮床对富营养化水体的净化效果及其作用机理,为该技术进一步的改进和推广提供实验和科学依据。本文比较研究了组合型生态浮床对富营养化水体上覆水和底泥表层沉积物多项污染物的净化效果,分析了不同污染物间的相关关系,探讨了组合型生态浮床对富营养化水体的净化机理;同时,对组合型生态浮床作用下富营养化水体上覆水中和浮床植物根际细菌、真菌和放线菌种群数量动态变化以及对沉积物碱性磷酸酶活性(APA)影响作了研究;研究了组合型生态浮床对浮床植物生长特性、植物体内氮磷累积分布,以及植物氮磷吸收速率等方面的影响。主要研究内容和取得的研究结论如下:
     (1)试验期间,在组合型生态浮床作用下模拟池上覆水中COD、TN、NH4+-N、 NO3--N、TP的去除效果明显,SD上升幅度大,Chla浓度下降趋势显著,DO和Eh都处于较高水平,pH基本维持在7.63~8.23之间。营养状态从重度富营养化转变为轻度富营养化,水质得到明显改善,组合型生态浮床对富营养化水体的生态净化效果显著。
     (2)底泥表层沉积物中,有机态氮是沉积物氮的主要形式,NH4+-N是沉积物无机氮的主要组成成分,N03+-N在沉积物中含量不均匀,NH4+-N和TN在沉积物中含量相对均匀。在磷的各种赋存形态中,自生钙结合磷(Ca-P)和有机磷(OP)含量远高于其它各形态,为TP的主要组分,Detr-P、Fe-P和Ads-P含量较为接近,分别占TP的12.41%、10.51%和9.37%;无机磷(IP)是TP的主要组成成分,平均占TP的70.27%,有机磷(OP)只占较小的比例;IP中各形态磷的含量差异明显,以自生钙结合磷所占的比重最大(Ca-P),含量顺序依次为:Ca-P>Detr-P>Fe-P>Ads-P。
     (3)在组合型生态浮床净化富营养化水体期间,模拟池沉积物中TN、NH4+-N和NO3--N含量下降趋势明显,且呈现先慢后快的变化特征。在组合型生态浮床作用下模拟池表层沉积物中Ca-P在TP和IP中占的比重最大且含量稳定,是TP的重要组成部分,也是IP的主要组成部分;Fe-P的含量呈现出小幅上升趋势,在IP和OP中的比重都有所上升;可交换态磷含量呈现较大幅度的下降趋势,在TP和IP中的比重都有所下降:有机磷的含量有较大幅度提高,在总磷中比重也有所上升;Ads-P含量有小幅下降;Detr-P含量较为稳定,基本上没有变化。
     (4)在组合型生态浮床作用下,模拟池沉积物中碱性磷酸酶活性(APA)在试验开始时最高,随着试验时间变化呈现下降趋势,到试验结束,APA达到最低点,从季节上来看,春季>夏季>秋季;在各种氮形态中,沉积物中TN和NO3--N与APA最具相关性(p<0.01)其次是NH4+-N (p<0.05);在各种磷形态中,APA与Ads-P最具相关性(p<0.01), APA与TP和Fe-P的相关性也较高,为显著负相关(p<0.01), APA与Ca-P和Detr-P则是显著不相关。
     (5)试验期间,模拟池上覆水中以及5种浮床植物根际微生物数量均以细菌所占比例最大,其次是放线菌,真菌数量最少。浮床植物根际微生物数量在7月份最高,5月和9月数量相对较少,5种浮床植物根际细菌、真菌和放线菌数量都呈现:水稻>千屈菜>菖蒲>美人蕉>再力花。
     (6)组合型生态浮床改变了上覆水中的理化性质,不断降解、吸收上覆水中的氮;同时加剧上覆水-沉积物界面的不同形态氮的迁移和转化。上覆水中TN、NH4+-N和NO3--N和沉积物中TN在α=0.01时互为显著正相关:上覆水中TN和NH4+-N与沉积物中NH4+-N在α=0.01时互为显著正相关;沉积物中TN和NH4+-N在α=0.05时互为显著正相关;上覆水中的NH4+-N和沉积物中的NO3--N在α=0.05时互为显著正相关。组合型生态浮床作用下模拟池中上覆水和沉积物中不同形态磷含量和环境因子之间有不同的相关性。上覆水中TP与沉积物中TP、OP和Fe-P在α=0.01时为显著负相关,与Ads-P在α=0.01时为显著正相关;沉积物中TP、OP和Fe-P在α=0.01时互为显著正相关:沉积物中TP和Ads-P在α=0.01时为显著负相关:沉积物中OP和IP在α=0.05时为显著负相关;沉积物中OP和Ads-P在α=0.01时为显著负相关;沉积物中OP和Fe-P在α=0.01时为显著正相关;沉积物中IP和Ca-P在a=0.01时为显著正相关;沉积物中Ads-P和Fe-P在α=0.01时为显著负相关。
     (7)5种植物中美人蕉和再力花的分蘖繁殖能力均高于千屈菜、菖蒲和水稻;在5种植物不同部位单位干物质量所含氮量分布中,美人蕉和再力花均是茎叶>根系,其茎叶、根系所含氮量比分别为1.20和1.92,而千屈菜、菖蒲和水稻则是根系>茎叶,茎叶、根系所含氮量比分布为0.86、0.94和0.84:在5种植物不同部位单位干物质量所含磷量分布中,美人蕉、再力花和水稻均是茎叶>根系,茎叶、根系所含氮量比分别为1.21、1.13和1.18,而千屈菜和菖蒲则是根系>茎叶,茎叶、根系所含氮量比分别为0.48和0.95。
     (8)5种植物的氮磷累积量差异显著。再力花和美人蕉对氮磷的吸收速率显著高于千屈菜、菖蒲和水稻,两者对氮磷的吸收量均是茎叶>根系,非常适合作为组合型生态浮床系统建设的浮床植物,可以通过浮床系统植物水上部分的收割去除水体中的氮磷。
A combined ecological floating bed (CEFD) was built in this research to study its purifying effect on the eutrophic water body after methane fermentation in pig farm and the mechanism, which provided experimental and scientific basis for further improvement and promotion of this technology. In this research, various indexes of the sediment and the overlying water and the corrections of different indexes were studied to explore the purifying effect of CEFD on eutrophic water body. Besides, the population changes of bacteria, fungi and actinomycetes in the water and the roots of plant and the changes of alkaline phosphatase activity in sediment were studied during the CEFD operation. The effect of the CEFD on the growth and the phosphorus and nitrogen accumulation and absorption of plant were also analyzed in this research. The main research contents and research conclusions were as follows:
     (1) In the experiment, COD, TN, NH4+-N, NO3--N and TP were removed significantly, SD increased and the cotent of Chla decreased significantly in overlying water after the purification of the CEFD. The Eh was in the high level and the pH kept in7.63~8.23. The eutrophic state changed from high eutrophication to light one and the water quality was improved obviously. Thus, the CEFD had the significant purifying effect on the eutrophic water.
     (2) Organic nitrogen was the main form in the surfaced sediment and the NH4+-N was the main composition in the inorganic nitrogen in the sediment. NO3--N was uneven while the NH4+-N and TN was relatively even in sediment. Ca-P and OP as the main composition was higher than other phosphorus forms. Detr-P. Fe-P and Ads-P was12.41%.10.51%and9.37%of TP respectively. IP as the main composition of TP was the70.27%of TP when OP took up less proportion. The contents of various phosphorus forms in IP were different and the order was Ca-P>Detr-P>Fe-P>Ads-P.
     (3) The contents of TN, NH4+-N and NO3--N in sediment decreased obviously and showed the trend of slow and then fast change during the CEFD operation. Ca-P in the sediment took up the highest and stable content in TP and IP. The content of Fe-P showed the trend of minor decrease in both of IP and OP; The content of exchangeable phosphorus showed decreasing trend in both of IP and TP; The content of organic phosphorus showed increasing trend in TP; Ads-P decreased when Detr-P was stable.
     (4) The highest APA in the sediment in the start stage of the test was decreased during the test and was the lowest in the end of the test. And the order was spring>summer>fall. In various nitrogen forms, the TN and NO3--N had the strongest correlation with APA (p<0.01) and then NH4+-N(p<0.05); In various phosphorus forms, the Ads-P had the strongest correlation with APA (p<0.01) and then TP and Fe-P (p<0.01) when Ca-P and Detr-P had no correlation with APA.
     (5) Bacteria in the overlaying water and the roots of five kinds of plant showed the highest proportion in microorganism and then actinomycetes and fungi. Microorganism in the roots of plant showed the highest in July and relatively low in May and September. The numbers of bacterial, fungi and actinomycets in the plant showed the order:O. Saliva L.> Lythrum salicaria Lin> Acorus calamus Linn> Canna indica indica> Thalia dealbata.
     (6) The CEFD changed the physicochemical property of the overlying water and improved the exchange and transform of different nitrogen forms in the interface of overlying water and sediment. TN, NH4+-N and NO3--N in the water had the significant correction with TN in the sediment at α=0.01; TN and NH4+-N in the water had the significant correction with NH4+-N in the sediment at α=0.01; TN had the correction with NH4+-N in the sediment at α=0.05; NH4+-N in the water had the correction with NO3--N in the sediment at α=0.05. TP in the water had the significant correction with TP, OP and Fe-P in the sediment at α=0.01; TP had the significant correction with Ads-P in the sediment α=0.01; OP had the significant correction with Fe-P in the sediment α=0.01; IP had the significant correction with Ca-P in the sediment α=0.01; Ads-P had the significant correction with Fe-P in the sediment α=0.01.
     (7) In the five kinds of plants, the reproduce ability of Canna indica and Thalia dealbata was higher than that of O. Sativa L., Lythrum salicaria Lin and Acorus calamus Linn. The nitrogen content in the stem and leaves of Canna indica and Thalia dealbata was higher than that in their roots. The ratio of nitrogen in the stem and leaves and the roots in Canna indica and Thalia dealbata was1.20and1.92respectively. While the nitrogen content in the roots of O. Saliva L., Lythrum salicaria Lin and Acorus calamus Linn was higher than that in their stem and leaves. The ratio of nitrogen in the stem and leaves and the roots in O. Sativa L., Lythrum salicaria Lin and Acorus calamus Linn was0.86,0.94and0.84respectively. The phosphorus content in the stem and leaves of Canna indica, Thalia dealbata and O. Sativa L. was higher than that in their roots. The ratio of phosphorus in the stem and leaves and the roots in Canna indica, Thalia dealbata and O. Sativa L. was1.21.1.13and1.18respectively. While the phosphorus content in the roots of Lythrum salicaria Lin and Acorus calamus Linn was higher than that in their stem and leaves. The ratio of phosphorus in the stem and leaves and the roots in Lythrum salicaria Lin and Acorus calamus Linn was0.48and0.95respectively.
     (8) Nitrogen and phosphorus accumulations in five plants were significantly different. The absorption rate of Canna indica and Thalia dealbata was higher than that of Lythrum salicaria Lin, Acorus calamus Linn and O. Sativa L.. The absorption quantity of nitrogen and phosphorus in the stem and leaves of Canna indica and Thalia dealbata was higher that that in their roots. Thus, they were adapted to be used in the CEFD and remove the nitrogen and phosphorus in water with harvest of plants.
引文
[1]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社、1990.
    [2]国家环保总局科技标准司编.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001.
    [3]中华人民共和国环境保护部.2010年中国环境状况公报[M].
    [4]马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002,11(6):575-578.
    [5]张维昊,徐小清,丘昌强.水环境中微囊藻毒素研究进展[J].环境科学研究,2001,14(2):57-61.
    [6]袁志字,赵斐然.水体富营养化及生物学控制[J].中国农村水利水电,2008,(8):56-58.
    [7]涂建峰,郑丰,编译.美国湖泊富营养化治理战略研究[J].水利水电快报,2007,28(14):5-11.
    [8]Yusaku, Nogami. Cultural eutrophication of Kojima Lake in Japan[J]. Yunnan Geographic Environment Research.2002,14(2):51-55.
    [9]Scheren P A,lbe A C,Janssen F J, et al. Environmental pollution in the Gulf of Guinea-a regional Approach[J]. Marine Pollution Bulletin,2002,44:633-641.
    [10]张自杰.排水工程(第四版)[M].北京:中国建筑工业出版社,2000.
    [11]付春平,钟成华,邓春光.水体富营养化成因分析[J].重庆建筑大学学报,2005,27(1):128-131.
    [12]程丽巍,许海,陈铭达,等.水体富营养化成因及其防治措施研究进展[J].环境保护科学,2007,33(1):18-21.
    [13]秦伯强.太湖水环境面临的主要问题、研究动态与初步进展[J].湖泊科学,1998,10(4):1-9.
    [14]李振,陈玉林.水产养殖中水体污染的营养控制措施[J].广东饲料,2004,13(2):41-42.
    [15]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学, 2002,14(3):193-202.
    [16]冯太国,万新南.富营养化对湖泊的危害及修复技术探讨[J].水上保持研究.2006,13(2):145-146,161.
    [17]张莉.湖泊富营养化及控制对策研究[J].环境与可持续发展.2008.(6):62-64.
    [18]刘臣炜,汪德爟.湖泊富营养化内源污染的机理和控制技术研究[J].农业环境科学学报,2006.25(增刊):814-818.
    [19]李世杰.窦鸿身,舒金华,等.我国湖泊水环境问题与水生态系统修复的探讨[J].中国水利,2006,(6):14-17.
    [20]邹平,江霜英,高廷耀.城市景观水体的处理方法[J].中国给排水,2003,19(2):24-25.
    [21]崔龙哲,吴桂萍,马静.景观水体污染的治理方法及工艺[J].中南民族大学学报(自然科学版),2005,4(2):31-34.
    [22]周栋,王瑟蓝,杨云.景观水体水华防治措施[J].净水技术,2004,23(5):28-31.
    [23]吴永红,方涛,邱昌强,等.藻·菌生物膜法改善富营养化水体水质的效果[J].环境科学.2005.26(1):84-89.
    [24]陈银广,何群彪,陈洪斌.景观水体修复的研究进展[J].广州环境科学,2007,22(4):20-23.
    [25]司友斌,包军杰,曹德菊,等.香根草对富营养化水体净化效果研究[J].应用生态学报,2003,14(2):277-279.
    [26]任照阳,邓春光.生态浮床技术应用研究进展[J].农业环境科学学报,2007.26(增刊):261-263.
    [27]Li W, Friedrich R.In situ removal of dissolved phosphorus in irrigation drainage water by planted floats:preliminary results from growth chamber trial[J]. Agriculture Ecosystems and Environment,2002,90(1):9-15.
    [28]井艳文,胡秀琳,许志兰,等.利用生物浮床技术进行水体修复研究与示范[J].北京水利,2003,6:20-22.
    [29]吴春笃,杨峰,俞杰翔,等.生态浮床与接触氧化法协同处理生活污水[J].水处理技术,2008.34(4):48-51.
    [30]Brix H. Do macrophytes play a role in constructed treatment wetlands[J]. Water Science and Technology,1997,35(5):11-17.
    [31]李锋民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用[J].中国给水排水,2004,20(11):18-21.
    [32]Keigo Nakamura, Yukihiro Shimatani. The state-of-the-art of the artificial floating islands[J]. Civil Engineering Journal,1999,41(7):26-31.
    [33]宋祥甫,邹国燕,吴伟明,等.浮床水稻对富营养化水体中氮、磷的去除效果及规律研究[J].环境科学学报,1998,18(5):489-493.
    [34]陈荷生,宋祥甫.邹国燕.利用生态浮床技术治理污染水体[J].中国水利,2005,15(8):50-53.
    [35]赵祥华.田军.人工浮岛技术在云南湖泊治理中的意义及技术研究[J].云南环境科学,2005,24(增刊1):130-132.
    [36]郑世华,郑仕远,卿立述.水培陶瓷浮床的研制及应用探索[J].农村经济与科技,1999,10(7):20-21.
    [37]刘淑媛,任久长,由文辉.利用人工基质无土栽培经济植物净化富营养化水体的研究[J].北京大学学报(自然科学版),1999,35(4):518-522.
    [38]王怡,彭党聪.珍珠岩生物载体开发研究[J].化工矿物与加工,2005,(12):7-11.
    [39]代培,吴小刚,张维昊,等.人工生物浮床载体的研究进展[J].环境科学与管理,2006,31(6):13-16.
    [40]何成达.循环水流-浮床种植法处理生活污水的试验研究[J].环境科学与技术,2004,27(6):12-13.
    [41]黄伟来,李瑞霞,杨再福,等.城市河流水污染综合治理研究[J].环境科学与技术,2006,29(10):109-111.
    [42]刘冰,张光生,周青,等.城市环境污染的植物修复[J].环境科学与技术,2005,28(1):109-111.
    [43]卢进登,赵丽娅,康群,等.人工生物浮床技术治理富营养化水体研究现状[J].湖南环境生物职业技术学院学报,2005,11(3):214-21.
    [44]陈晓蕾.王鲁民.水相环境中生物可降解高分子材料的研究进展[J].海洋渔业,2009,31(1):106-112.
    [45]李大戍.立体式生态浮床对水源地水质改善效果的研究[D].南京:东南大学,2006.
    [46]昊平凡,李泉生,吴永红,等.稻草秸秆基人工浮床支撑材料的研究[J].科技资讯,2007(10):95.
    [47]罗固源,韩金奎,肖华,等.美人蕉和风车草人工浮床治理临江河[J].水处理技术,2008,34(8):46-48,54.
    [48]刘淑媛,任久长,由文辉.利用人工基质无土栽培经济植物净化富营养化水体的研究[J].北京大学学报(自然科学版),1999,35(4):518-522.
    [49]郭亚平,谢练武.镁改性蛭石对铵离子的交换性能[J].太原师范学院学报(自然科学版),2004,3(4):55.
    [50]刘勇,肖丹,郭灵虹,等.天然蛭石对金属离子的吸附性能研究[J].四川大学学报(工程科学版),2006,38(3):92-96.
    [51]代培,吴小刚.张维吴,等.人工生物浮岛载体的研究进展[J].环境科学与管理.2006,31(6):13-16.
    [52]丁则平.介绍日本的湿地净化技术——人工浮床(AFI)[EB/OL].2002http://www..szwrb.gov.cn/wrkj-show.php?info-id=5.
    [53]刘淑媛,任久长,由文辉.利用人工基质无土栽培经济植物净化富营养化水体的研究[J].北京大学学报(自然科学版),1999,35(4):518-522.
    [54]王海珍,陈德辉,王全喜,等.水生植被对富营养化湖泊生态恢复的作用[J].自然杂志,2002,24(1):33-36.
    [55]成水平.人工湿地废水处理系统的生物学基础研究进展[J].环境科学学报,1996,8(3):269.
    [56]Dunbabin J S, Pokomy J Bowmer K H.Rhizosphere Oxygenation by Typha Domingensis Per. in miniature artificial wetland filters used for metal removal from wastewaters[J]. Aquatic Botany,1988, (29):303-317.
    [57]王剑虹,麻密.植物修复的生物学机制[J].植物学通报,2000,17(6):504-512.
    [58]王英彦,熊易,铁锋.用凤眼莲根内金属硫肽检测重金属污染的研究[J].环境科学学报.1994,14(4):421-438.
    [59]种云霄,胡洪营,钱易,等.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36-39.
    [60]张志勇,冯明雷.杨林章.浮床植物净化生活污水中N、P的效果及N2O的排放 [J].生态学报,2007,27(10):4333-4341.
    [61]罗固源,吴松,肖华,等.风车草泡板型浮床在污染河水中的脱氮试验[J].重庆大学学报,2008,31(10):1169-1173.
    [62]黄廷林.宋李桐,钟建红,等.人工浮床净化城市景观水体的试验研究[J].西安建筑科技大学学报(自然科学版),2007,19(1):30-33.
    [63]孙连鹏,刘阳,冯晨等.不同季节浮床美人蕉对水体氮素等污染物的去除[J].中山大学学报(自然科学版),2008,47(2):127-130.
    [64]严以新.操家顺,李欲如.冬-春季节浮床技术净化重污染河水的动态试验研究[J].河海大学学报(自然科学版),2006,34(2):119-22.
    [65]张增胜,徐功娣,陈季华,等.生物净化槽/强化生态浮床工艺处理农村生活污水[J].中国给水排水,2009,25(9):8-11.
    [66]孙连鹏,冯晨,刘阳.强化生态浮床对珠江水中氮污染物去除研究[J].中山大学学报(自然科学版),2009,48(1):93-97.
    [67]李海英,杨海华,柯凡,等.微曝气生态浮床的净化效果与生物膜特性研究[J].中国给水排水,2009,25(7):35-40.
    [68]李伟,李先宁,曹大伟,等.组合生态浮床技术对富营养化水源水质的改善效果[J].中国给水排水,2008,24(3):34-8.
    [69]吴春笃,杨峰,俞杰翔,等.生态浮床与接触氧化法协同处理生活污水[J].水处理技术,2008,34(4):48-51.
    [70]Sun X X, Choi J K, Kim E K. Apreliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment[J]. Journal of Experimental Marine Biology and Ecology,2004,304:35-49.
    [71]胡洪营,门玉洁,李锋民.植物化感作用抑制藻类生长的研究进展[J].生态环境,2006,15(1):153-157.
    [72]李锋民,胡洪营.芦苇抑藻化感物质的分离及其抑制蛋白核小球藻效果研究[J].环境科学,2004,25(5):89-92.
    [73]王扬才,陆开宏.蓝藻水华的危害及治理动态[J].水产学杂志,2004,17(1):90-93.
    [74]庄源益,赵凡,戴树桂,等.高等水生植物对藻类生长的克制效应[J].环境科学进展,1995,6(3):44-49.
    [75]李锋民.胡洪营.植物化感作用控制天然水体中有害藻类的机理与应用[J].给水排水.2004,30(2):1-4.
    [76]王海珍,陈德辉,王全喜,等.水生植被对富营养化湖泊生态恢复的作用[J].自然杂志,2002.24(1):33-36.
    [77]李锋民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用[J].中国给水排水,2004,20(11),18-21.
    [78]门玉洁,胡洪营.芦苇化感物质EMA对铜绿微囊藻生长及藻毒素产生和释放的影响[J].环境科学,2007,28(9):2058-2062.
    [79]Mulderij G, Van Donk E, Roelofs J G M. Differential sensitivity of green algae to all elopathic substances from Chara[J]. Hydrobiologia,2003,491:261-271.
    [80]Korner S, Nicklisch A. All elopathic growth inhibition of Selected phytoplankton species by submerged maerophytes[J]. Journal of Phycology,2002,38(5):862-871.
    [81]种云臀,胡洪营,钱易,等.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36-39.
    [82]戴全裕.水生高等植物对太湖重金属的检测及其评价[.J].环境科学学报,1983(3):213-221.
    [83]Bower S, Orons G L. Minimization of organic and metallic industrial waste via Lemna minor concentration[J].Technical Research Assoc, Inc., Salt Lake City, UT(USA),1992:43-44.
    [84]Hammouda O. Gaber A, Abdel-Hameed M S. Assessment of the effectiveness of treatment of wastewater-contaminated aquatic systems with Lemna gibba[J]. Enzyme and Microbial Technology,1995,17(4):317-323.
    [85]Shanti S, Sharma J, Gaur P. Potential of Lemna Polyrrhiza for removal of Heavy metals[J]. Ecological Engineering,1995(4):37-43.
    [86]黄永杰,刘登义,王友保.八种水生植物对重金属富集能力的比较研究[J].生态学杂志,2006,25(5):541-545.
    [87]侯晓龙,马祥庆.水生植物对垃圾渗滤液中重金属的吸附效果研究[J].农业环境科学学报,2007,26(6):2262-2266.
    [88]科学技术鉴定成果:污染水体矩阵生态修复技术项目(湘环科鉴字[2009]第02 号)
    [89]杨仁斌.胡佑忠,宋建军,等,矩阵生态系统直接修复富营养化水体试验[C].第十三届世界湖泊大会论文集.2009:659-661.
    [90]刘娅琴,邹国燕,宋祥甫.等.框式复合型生态浮床对富营养水体浮游植物群落结构的影响[J].水生生物学报.2010.34(1):196-203.
    [91]Li W, Friedrich R. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats:preliminary results from growth chamber trial[J]. Agric Ecosyst Environ,2002,90(1):9-15.
    [92]Nakamura K, Shimatani Y. Water purification and environmental enhancement by the floating wetland[C]. Proceeding of 6th IAWQ Asia-Pacific regional conference in Korea,1997.
    [93]周小平,王建国,薛丽红,等.浮床植物系统对富营养化水体中氮、磷净化特征的初步研究[J].应用生态学报,2005,16(11):2199-2203.
    [94]刘士哲,林东教,唐淑军,等.利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究[J].应用生态学报,2004,15(7):1261-1265.
    [95]Kivaisi A K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries:a review[J]. Ecological Engineering,2001,16(4): 545-560.
    [96]Peterson S B, John M T. The role of plants in ecologically engineered wastewater treatment systems[J]. Ecological Engineering,1996,6(1):137-148.
    [97]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.101,264-281.
    [98]Ray A W, Inouye R S. Development of vegetation in a constructed wetland receiving irrigation return flows[J]. Agriculture, Ecosystems & Environment,2007,121(4): 401-406.
    [99]苏胜齐,姚维志.沉水植物与环境关系评述[J].农业环境科学学报,2002,21(6):570-573.
    [100]Kim Y, Kim W. Role of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds[J]. Water Research, 2000,34(13):3285-3294.
    [101]朱杰,付永胜.生物脱氮处理过程中氮素转化规律的研究[J].环境化学,2006,25(5):624-628.
    [102]刘超翔,胡洪营,张建,等.不同深度人工复合生态床处理农村生活污水的比较[J].环境科学,2003.24(5):92-96.
    [103]高吉喜,杜娟.水生植物对而源污水净化效率研究[J].中国环境科学,1997,17(3):247-251.
    [104]李涛,周津.湿地植物对污水中氮、磷去除效果的试验研究[J].环境工程,2009,27(4):25-28.
    [105]Joan S T, James J S, William E W. Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production[J]. Ecological Engineering,2002,18:441-457.
    [106]高镜清,熊治廷,张维吴,等.常见沉水植物对东湖重度富营养化水体磷的去除效果[J].长江流域资源与环境,2007,16(6):796-800.
    [107]Marten S. The effect of aquatic vegetation on turbidity: how important are the filter feeders?[J]. Hydrobiologia,1999,408/409:307-316.
    [108]由文辉.我国利用水生植物监测和净化污水的研究进展[J].环境科学动态,1993,(2):8-11.
    [109]胡春华,王国祥.冬季净化湖水的效果与机理[J].中国环境科学,1999,19(6):561-565.
    [110]Van Raaphorst W, Kloosterhuis H. Phosphorous sorption in superficial intertidal sediments[J]. Marine Chemistry,1994,48:1-16.
    [111]Cartaxana P, Cacador I, Vale C, et al. Seasonal variation of inorganic nitrogen and net mineralization in a salt marsh ecosystem[J]. Mangroves and Salt Marshes,1999, 3:127-134.
    [112]张清春.于仁成,周名江,等.不同氮源对微小亚历山大藻生长和毒素产生的影响[J].海洋学报.2005,27(6):143-148.
    [113]Berman T, Chava S. Algal growth on organic compounds as nitrogen sources[J]. Journal of Plankton Research,1999,21(8):1423-1437.
    [114]Brigault S, Ruban V. External phosphorus load estimates and p-budget for the hydroelectric reservoir of bort-les-orgues, France[J]. Water, Air and Soil Pollution, 2000,119(1-4):91-103.
    [115]Pan G, Krom M D, Herut B. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in East Mediterranean Seawater[J]. Environmental Science & Technology,2002.36(16):3519-3524.
    [116]黄清辉,王东红,马梅,等.沉积物和土壤中磷的生物有效性评估新方法[J].环境科学,2005,26(2):206-208.
    [117]Cha H J, Lee C, Kim B S. et al. Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea(Japan Sea)[J]. Marine Geology,2005,216(3):127-143.
    [118]戴继翠.宋金明,李学刚,等.胶州湾沉积物中的磷及其环境指示意义[J].环境科学,2006,27(10):1953-1962.
    [119]Lii X X, Song J M, Li X G, et al. Geochemical characteristics of nitrogen in the southern Yellow Sea surface sediments[J]. Journal of Marine Systems, 2005,56(1-2):17-27.
    [120]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2002.47-56.
    [121]Watts C J. Seasonal phosphorus release from exposed, reinundated littoral sediments of two Australian reservoirs [J]. Hydrobiologia.2000,431(1):27-39.
    [122]Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology & Oceangraphy,1992,37(7): 1460-1482.
    [123]李悦,乌大年,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球化学意义[J].海洋环境科学,1998,17(1):15-20.
    [124]刘素美,张经.沉积物中磷的化学提取分析方法[J].海洋科学,2001,25(1):22-25.
    [125]李辉,潘学军,史丽琼,等.湖泊内源氮磷污染分析方法及特征研究进展[J].环境化学,2011.30(1):281-292.
    [126]古宾河.美国Apopka湖的富营养化及其生态恢复[J].湖泊科学,2005,17(1):1-8.
    [127]吴建强,黄沈发,丁玲.水生植物水体修复机理及其影响因素[J].水资源保护,2007,23(4):18-22,36.
    [128]Turner B L, Cade-Menun B J, Condron L M, et al. Extraction of soil organic phosphorus[J]. Talanta 2005.66(2):294-306.
    [129]李大鹏.黄勇,李勇,潘杨.沉积物扰动持续时间对悬浮物中磷形态数量分布的影响[J].环境科学,2012,33(2):379-384.
    [130]李大鹏,黄勇,李伟光.不同曝气方式对底泥吸收磷的影响[J].水处理技术,2007,33(11):17-19,48.
    [131]王立志,王国祥,俞振飞,等.沉水植物生长期对沉积物和上覆水之间磷迁移的影响[J].环境科学,2012,33(2):385-392.
    [132]胡俊,丰民义,吴永红,等.沉水植物对沉积物中磷赋存形态影响的初步研究[J].环境化学,2006,25(1):28-31.
    [133]Wetzel R G. Limnology[M].2nd Edition. Philadelphia:Saunders College Publishing, 1983.
    [134]Chrost R J, Overbeck J. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake plu\see (North German Eutrophic lake)[J]. Microbial Ecology,1987,13(3):229-248.
    [135]高光.高锡芸,秦伯强,等.太湖水体中碱性磷酸酶的作用阈值[J].湖泊科学,2000,12(4):353-358.
    [136]Sayler G S, Puziss M, Silver M. Alkaline phosphatase assay for freshwater sediments:application to pertubed sediment systems[J].Applied and Environmental Microbiology,1986,38(5):922-927.
    [137]Venkateswran K, Natarajan R. Distribution of free phosphatase in sediments of Porto Novo[J]. Indian J Marsic..1983,14:231-232.
    [138]Degobbis D, Homme-Maslaowska E, Orio A A, et al. The role of alkaline phosphatase in the sediments of Venice Lagoon on nutrient regeneration[J]. Estuar Cosat Shelf Sci.,1986.22(4):425-437.
    [139]周易勇,李建秋,付永清,等.浅水湖泊中碱性磷酸酶活性及其动力学参数的分层现象[J].湖泊科学,2000,12(1):53-57.
    [140]周易勇,李建秋,张敏,等.浅水湖泊中沉积物碱性磷酸酶动力学参数的分布[J].湖泊科学,2001,13(3):261-266.
    [141]Stottmeister U, WieBner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J]. Biotechnology Advances,2003, 22:93-117.
    [142]Elsgaard L. Petersen S O. Debosz K. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil.1. Short-term effects on soil microbiology [J]. Environmental Toxicology and Chemistry, 2001,20(8):1656-1663.
    [143]Filip Z. International approach to assessing soil quality by ecologically-related biological parameters [J]. Agriculture Ecosystems and Environment,2002,88(2): 689-712.
    [144]Ottova V, Balcarova J, Vymazal J. Microbial characteristics of constructed wetlands [J].Water Science and Technology,1997,35(5):117-123.
    [145]吴伟,胡庚东,金兰仙,等.浮床植物系统对池塘水体微生物的动态影响[J].中国环境科学,2008,28(9):791-795.
    [146]李潞滨,刘敏,杨淑贞,等.毛竹根际可培养微生物种群多样性分析[J].微生物学报,2008,48(6):772-779.
    [147]项学敏,宋春霞,李彦生,等.湿地植物芦苇和香蒲根际微生物特性研究[J].环境保护科学,2004,24:35-38.
    [148]Liang W, Wu Z B, Cheng S P, et al. Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system [J]. Ecological Engineering,2003,21:191-195.
    [149]范秀荣,李广武,沈萍.微生物学实验[M].北京:高等教育出版社,1980.
    [150]薛雄志,洪华生.香港维多利亚港沉积物中ALPase活性与各形态磷及微生物特性的关系[J].海洋学报,1997,19(5):133-137.
    [151]薛雄志,洪华生.厦门西海域沉积物中碱性磷酸酶活性分布\动态及其与各形态磷的关系[J].海洋学报,1995,17(5):81-87.
    [152]戴纪翠,宋金明,李学刚,等.胶州湾沉积物中的磷及其环境指示意义[J].环境科学,2006,27(10):1953-1962.
    [153]朱健,李捍东.王平.环境因子对底泥释放COD、TN和TP的影响研究.水处理技术,2009,35(8):44-49.
    [154]郭建宁,卢少勇,金相灿,等.低溶解氧状态下河网区不同类型沉积物的氮释 放规律[J].环境科学学报,2010,30(3):614-620.
    [155]郑立国.杨仁斌,胡佑忠.等.矩阵生态工程系统技术修复富营养化水体的优越性[J].农业环境与发展,2010.27(2):48-51.90.
    [156]Jin X C, Wang S R, Pang Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China.[J].Environmental Pollution,2006,139 (2):288-295.
    [157]范成新,相崎守弘.好氧和厌氧条件对霞浦湖沉积物—水界面氮磷交换的影响[J].湖泊科学.1997,9(4):337-342.
    [158]李大鹏.黄勇.底泥间歇扰动对静止水体磷迁移的累加效应[J].环境化学,2010,29(6):1075-1078.
    [159]Sooknah R. D., Wtlkie A. C. Nutrient removal by floating aquatic macrophyes cultured in anacrovically digested flushed dairy manure waste water. Ecol. Eng., 2004,22:27-42.
    [160]Hubbard R K. Floating vegetated mats for improving surface water quality[J]. Emerging Environmental Technologies,2010,2:211-244.
    [161]Sun L P, Liu Y, Jin H. Nitrogen removal from polluted river by enhanced floating bed grown canna[J]. Ecological Engineering,2009,35(1):135-140.
    [162]罗固源,卜发平,许晓毅,等.温度对生态浮床系统的影响[J].中国环境科学,2010,30(4):499-503.
    [163]周明真,叶青,陈春花,等.3种浮床植物系统对富营养化水体净化效果研究[J].环境工程学报,2010,4(1):91-95.
    [164]宋祥甫,邹国燕,吴伟明,等.浮床水稻对富营养化水体中氮磷的去除效果及规律研究[J].环境科学学报,1998,18(5):489-491.
    [165]吴建之.葛滢,王晓月.过硫酸钾氧化吸光光度法测定植物总氮[J].理化检验:化学分册,2000,36(4):166-167.
    [166]GB/T6437-2002.饲料中总磷的测定分光光度法.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700