用户名: 密码: 验证码:
基于污染物运移的填埋场屏障系统服役性能评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填埋场产生的有毒性渗滤液和填埋气对填埋场底部、填埋场周边土壤和大气环境造成了很大的威胁。国内外研究成果表明即使填埋场建造了标准的防渗系统,仍有相当多的场地对地下水、周围土体和大气环境造成了污染。
     本文在国家自然科学基金面上项目“垃圾填埋场覆盖屏障气体运移特性与长期服役性能评价方法”和国家自然科学基金青年基金项目“垃圾填埋场复合衬垫在高应力和高水头作用下的防污性能研究”、973计划“填埋场服役性能模拟、灾害评价及可持续防控”、国家自然科学基金重大国际合作项目“城市垃圾填埋场水气产生、运移及系统化工程控制”和浙江省公益性技术应用研究计划项目“垃圾填埋场复合衬垫长期性能的离心模型试验与污染防控技术”的基础上研究了填埋场屏障系统服役性能的评价方法。本文首先对国内外填埋场渗滤液和填埋气污染物迁移机理及影响因素进行了汇总和分析。在此基础上通过提出的解析方法和数值方法分析了填埋场饱和与非饱和衬垫系统和覆盖层系统中渗滤液及填埋气的运移问题。探讨了不同类型衬垫系统和覆盖层系统的有效性。最后在国内外对填埋场现场试验研究的成果上,针对淮南填埋场进行了现场试验研究并给出填埋场现场分析的定量方法。本文所做工作及相应的研究成果如下:
     (1)分别比较了国内外对填埋场底部衬垫系统及顶部覆盖层系统的组成差别及设计标准。对国内外填埋场渗滤液和填埋气的性质及国内外文献报道的渗滤液和填埋气主要污染物在填埋场土层中的环境土工参数进行了汇总和统计分析,给出了这些参数的设计取值范围;
     (2)由于固体垃圾中很大部分都是有机污染物,有机污染物的降解作用很重要。结合一阶降解理论,并在此基础上针对国内衬垫系统中土工聚合粘土垫(GCL)+衰减层(AL)复合衬垫系统,首次给出了考虑降解作用下污染物在GCL+AL复合衬垫系统的一维解析解。研究结果表明,如果GCL半衰期小于1年,在预测GCL+AL系统中有机污染物迁移时可以忽略GCL中有机物的降解作用;
     (3)结合非饱和单层土中含水量线性分布,得到了污染物在非饱和衬垫土层中的一维扩散解析解。该解析解简单方便,并能考虑含水量线性变化时污染物的扩散问题,同时指出非饱和问题对污染物浓度变化的影响;
     (4)分析了国内外填埋场设计中用于控制填埋气释放的覆盖层系统组成。建立了饱和覆盖层中填埋气的一维扩散模型,模型考虑了随时间变化的气体浓度边界。基于菲克定律及线性方程的叠加原理,得到了气体污染物通过饱和复合覆盖层的一维扩散解析解,在此基础上比较了国内不同类型覆盖层系统对填埋气控制性能的有效性,可以有效地应用于基于性能的填埋场复合覆盖层系统的初步设计;
     (5)对于国内覆盖层系统类型,饱和情况下GM+GCL、CCL、GM+CCL对气体扩散的控制性能依次减弱。对于GM/GCL,GCL含水饱和度从0.85增加到1时,覆盖层顶部通量减小了82.5%。饱和时GM/GCL系统顶部气体达到稳态的时间是非饱和情况下的约100倍。对于GM/CCL, CCL含水饱和度从0.1增加到0.85时,覆盖层顶部通量减小了近1个数量级;
     (6)针对垃圾填埋场内部生物降解产生的气体(以甲烷为主)和氧气等在非饱和覆盖层中的运移问题,建立了气体在成层非饱和覆盖层中的一维扩散模型。模型考虑了覆盖层含水量瞬态变化和气体扩散的耦合作用。对于lm厚的覆盖层,气体运移20d到100d时,祸合含水量瞬态变化时得到的气体相对浓度较含水量稳态变化时得到的浓度小近8倍。并总结了非饱和土中气体扩散系数变化的经验公式,比较得到不同气体扩散系数形式对祸合结果有较大影响;
     (7)根据国外对覆盖层顶部大气压强实测数据的基础上,拟合得到压强的变化规律,并提出了大气压强对填埋气运移作用明显时压强波动幅度的取值范围,对实际填埋场区域压强波动对气体控制的研究有很好的参考作用;
     (8)最后借助于对填埋场污染物的研究理论和分析方法研究了国内淮南某垃圾填埋场污染物的现场运移特性,给出了在成层粘土层中污染物运移及预测的分析方法。现场试验表明17年后,Cl-在填埋场底土中的运移深度已经达到了底土下部的老粘土层;COD的运移深度则在3m左右。将一维对流扩散理论与实测结果的比较可知对流弥散作用对于污染物的运移较为重要;以地表面为接触面得到拟合结果不能很好地表示实际污染物的运移,参考前人研究成果研究了有效接触面问题。最佳的拟合结果得到的有效接触面为地表面之上50cm。将一维对流-弥散解析解与实测数据的拟合比较则可得到粘土层相关运移参数的取值范围,可为污染物进一步运移提供依据。
The high concentration and high toxicity leachate and landfill gas generated in landfills have become a great threat to the bottom of landfill, surrounding soil and the atmosphere environment. Though the standard seepage control systems have been constructed for many landfills to impede leachate contaminants, the groundwater, surrounding soils and the atmosphere do have been contaminated due to landfilling.
     The research works in this thesis are funded by the National Science Foundation of China 'Evaluation of characteristics for gas migration in landfill covers and long-term service performance'and'Study on antifouling performance of landfill composite liner systems under effect of high stress and head', International (Regional) cooperation and exchange project of NSFC'Water gas generation, migration and systematic engineering controls of municipal solid waste landfill'and973Plan project'Simulation, evaluation and sustainable control on service performance of landfills'. The migration mechanism and transport parameters for leachate and landfill gas from the landfills of China and the foreign countries were summarized and analyzed in the present thesis. Using the proposed analytical methods and numerical methods, the mechanism of leachate and landfill gas migration through saturated and unsaturated landfill liner systems and cover systems was investigated. The performance of different landfill liners and cover systems was evaluated. A field investigation on contaminant transport in Huainan landfill was carried out and analyzed using the mathematical models. The main conclusions are as follows:
     (1) The composition of landfill bottom liners landfill and top cover systems was studied and compared respectively. The transport parameters for leachate and landfill gas in landfill soils were summarized and suggested on the basis of the reported research on landfill contaminants from China and the foreign countries;
     (2) The effect of degradation is important due to the large amount of organic contaminants in solid wastes. Considering the effect of degradation as a first-order process, this thesis presented an analytical solution to organic contaminant advection and dispersion in a composite liner consisting of a geosynthetic clay liner (GCL) and an attenuation layer (AL). Results show that if the half-life of GCL is larger than1year, the degradation in GCLcan be neglected when predicting organic contaminant transport in GCL/AL;
     (3) An analytical solution of contaminant diffusion through unsaturated liner soil is presented based on simplified linear profile of moisture. The diffusion of contaminant through the unsaturated liner soils can be well studied by the proposed solution. The presented analytical solution is relatively simple to apply and can be used for evaluating the influence of unsaturated condition on contaminant migration in landfill bottom liners and soils;
     (4) The principle goal of landfill cover systems is to control the emissions of landfill gas into the atmosphere. The composition and types of landfill cover systems was discussed. A one dimensional model of gas diffusion through saturated landfill cover was developed. The model takes into account the time-dependent concentration variation boundary conditions. Based on Fick's law and the superposition principle of linear equations, an analytical solution has been derived for one dimensional landfill gas diffusion in composite cover systems. The performance of the different landfill cover systems was then studied using the proposed analytical solutions. The obtained solutions can be useful for the preliminary design of landfill cover systems;
     (5) The results showed that the effectiveness of landfill cover systems for controlling the landfill gas emission is in the following order:GM+GCL>CCL> GM+CCL. For GM/GCL, when the degree of water saturation increases from0.85to1, the gas flux at the top of the cover system decreases by82.5%, and the time for the gas flux at the top of the system to reach the steady state for saturated cases is100times longer than the time for the test of unsaturated cases. For GM/CCL, the flux through the top of GM/CCL decreases by about an order of magnitude when the water saturation degree of CCL increases from0.1to0.85;
     (6) A one-dimensional model is developed to investigate landfill gas diffusion in the unsaturated layered cover systems. Coupled processes of gas diffusion in the unsaturated cover soils and transient water transport in the media were considered. For the1-meter-thcikness unsaturated cover soil, the relative gas concentrations for the case assuming coupled transport can be approximately8times smaller than those assuming steady state water distributions at the time range of20d to100d. The empirical formulas for determining gas diffusion coefficient were summarized and compared for cases of gas migration in unsaturated soils;
     (7) According to the measured atmospheric pressure on the top of cover system of landfills from foreign countries, the variation formula of atmospheric pressure was fitted. The range of the pressure fluctuations was obtained when the effect of atmospheric pressure on gas emission is significant. This study will be useful for the cases with large pressure fluctuations;
     (8) The field investigation of Huainan landfill indicate the maximum depth of migration of chloride was beyond the depths of the old clay layer, while the migration distance of COD varied around3m for17years of landfill operation period. It is indicated that advection transport and mechanism dispersion is important in contaminant transport. The range of the transport parameters of the contaminant were obtained by comparing the field data with the theory of one-dimensional contaminant transport. A better fit is obtained by employing an effective interface about50cm above the ground surface. The range of contaminant transport parameters can be used for the further investigation on the field studies of landfills.
引文
[1]Aachib, M., Aubertin, M., Mbonimpa, M., Laboratory measurements and predictive equations for gas diffusion coefficient of unsaturated soils.proceedings of the 55th Canadian geotechnical and joint iah-cnc and cgs groundwater speciality conference. Canadian Geotechnical Society,2002.163-171.
    [2]Abushammala, M. F. M., Basri, N. E. A., Basri, H. Kadhum, A. A. H. El-Shafie, A. H., Estimation of Methane Emission from Landfills in Malaysia using the IPCC 2006 FOD Model. Journal of Applied Sciences,2010.10:1603-1609.
    [3]Acar, Y. B., Haider, L., Transport of low-concentration contaminants in saturated earthen barriers. Journal of Geotechnical Engineering-ASCE,1990.116(7):1031-1052.
    [4]Al-Yaqout, A. F., Hamoda, M. F., Movement of unlined landfill under preloading surcharge. Waste Management,2007.27(3):448-458.
    [5]Arands, R., Lam, T., Massry, I., Berler, D. H., Muzzio, F. J., Kosson, D. S., Modeling and experimental validation of volatile organic contaminant diffusion through an unsaturated soil. Water Resources Research,1997.33(4):599-609.
    [6]Arega, F., Hayter, E., Coupled consolidation and contaminant transport model for simulating migration of contaminants through the sediment and a cap. Applied Mathematical Modelling, 2008.32(11):2413-2428.
    [7]Aubertin, M., Aachib, M., Authier, K., Evaluation of diffusive gas flux through covers with a GCL. Geotextiles and Geomembranes,2000.18(2-4):215-233.
    [8]Barone, F. S., Yanful, E. K., Quigley, R. M., Rowe, R. K.,Effect of multiple contaminat migration on diffusion and adsorption of some domestic waste contaminant in a natural clayey soil. Canadian Geotechnical Journal,1989.26(2):189-198.
    [9]Barral, C., Oxarango, L., Pierson, P., Characterizing the gas permeability of natural and synthetic materials. Transport in Porous Media,2010.81(2):277-293.
    [10]Barroso, M., Touze-Foltz, N., von Maubeuge, K., Pierson, P., Laboratory investigation of flow rate through composite liners consisting of a geomembrane, a gel and a soil liner. Geotextiles and Geomembranes,2006.24(3):139-155.
    [11]Baun, A., Jensen, S. D., Bjerg, P. L., Christensen, T. H., Nyholm, N.,Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark). Environmental Science & Technology,2000.34(9):1647-1652.
    [12]Bear, J., Dynamics of fluids in porous media. New York:Dover Publications,1988.
    [13]Beddoe, R. A., Take, W. A., Rowe, R. K.,Water-retention behavior of geosynthetic clay liners. Journal of Geotechnical and Geoenvironmental Engineering,2011.137(11):1028-1038.
    [14]Beyer, C., Chen, C., Gronewold, J., Kolditz, O., Bauer, S., Determination of first-order degradation rate constants from monitoring networks. Ground Water,2007.45(6):774-785.
    [15]Blum, P., Hunkeler, D., Weede, M., Beyer, C., Grathwohl, P., Morasch, B.,Quantification of biodegradation for o-xylene and naphthalene using first order decay models, michaelis-menten kinetics and stable carbon isotopes. Journal of Contaminant Hydrology,2009.105:118-130.
    [16]Bouazza, A., Rahman, F., Oxygen diffusion through partially hydrated geosynthetic clay liners. Geotechnique,2007.57(9):767-772.
    [17]Bouazza, A., Vangpaisal, T., An apparatus to measure gas permeability of geosynthetic clay liners. Geotextiles and Geomembranes,2003.21(2):85-101.
    [18]Bouazza, A., Vangpaisal, T., Effect of straining on gas advective flow of a needle-punched GCL. Geosynthetics international. Geosynthetics International,2004.11(4):287-295.
    [19]Bouazza, A., Vangpaisal, T., Laboratory investigation of gas leakage rate through a GM/GCL composite liner due to a circular defect in the geomembrane. Geotextiles and Geomembranes, 2006.24(2):110-115.
    [20]Bouazza, A., Vangpaisal, T., Abuel-Naga, H., Kodikara, J., Analytical modelling of gas leakage rate through a geosynthetic clay liner-geomembrane composite liner due to a circular defect in the geomembrane. Geotextiles and Geomembranes,2008.26(2):122-129.
    [21]Bonaparte, R., Gross, B. A., Field behavior of double liner systems. In:Bonaparte R eds. Waste containment systems:construction, regulation and performance. New York:ASCE Geotechnical Special Publication,1990.52-83.
    [22]Bright, M. I., Thornton, S. F., Lerner, D. N., Tellam, J. H.,Attenuation of landfill leachate by clay liner material in laboratory columns,1. Experimental procedures and behaviour of organic contaminants. Waste Management & Research,2000.18:198-214.
    [23]Carrara, S., Morita, D. M., Boscov, M., Biodegradation of di(2-ethylhexyl)phthalate in a typical tropical soil. Journal of Hazardous Materials,2011.197:40-48.
    [24]Carslaw, H. S., Jaeger, J. C., Conduction of heat in solids. Oxford Clarendon,1959,
    [25]Chai, J. C., Miura, N., Onitsuka, K., Adsorption characteristics of ariake clays to chromium and the effect of ph-value. Proceedings,9th Australia New Zealand Conference on Geomechanics,2004.467-472.
    [26]Chai, J., Miura, N., Comparing the performance of landfill liner systems. Journal of Material Cycles and Waste Management,2002.4(2):135-142.
    [27]Chalvatzaki, E., Lazaridis, M., Assessment of air pollutant emissions from the akrotiri landfill site (Chania, Greece). Waste Management & Research,2010.28(9):778-788.
    [28]Chesnaux, R., How groundwater seepage and transport modelling software can be useful for studying gaseous transport in an unsaturated soil. Water and Environment Journal,2009.23(1): 32-40.
    [29]Choi, J. W., Tillman, F. D., Smith, J. A., Relative importance of gas-phase diffusive and advective trichloroethene (TCE) fluxes in the unsaturated zone under natural conditions. Environmental Science & Technology,2002.36(14):3157-3164.
    [30]Christensen, T. H., Kjeidsen, P. L., Bjerg, D. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H., Heron, G.,Biochemistry of landfill leachate plumes. Appl. Geochem.,2001. 16(7-8):659-718.
    [31]Christophersen, M., Kjeldsen, P., Hoist, H., Chanton, J., Lateral gas transport in soil adjacent to an old landfill:factors governing emissions and methane oxidation. Waste Management & Research,2001.19(6):595-612.
    [32]Cleall, P. J., Li, Y. C., Analytical solution for diffusion of vocs through composite landfill liners. Journal of Geotechnical and Geoenvironmental Engineering,2011.137(9):850-854.
    [33]COMSOL, comsol multiphysics, engineering simulation software. Version 4.2. Burlington: COMSOL, Inc,2011..
    [34]Cozzarelli, I. M., Bekins, B. A., Eganhouse, R. P., Warren, E., Essaid, H. I.,In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater. Journal of Contaminant Hydrology,2010.111(1-4):48-64.
    [35]Cuevas, J., Ruiz, A. I., de Soto, l.S., Sevilla, T., Procopio, J. R., Da Silva, P., Gismera, M. J., Regadio, M., Jimenez, N. S., Rastrero, M. R., Leguey, S.,The performance of natural clay as a barrier to the diffusion of municipal solid waste landfill leachates. Journal of Environmental Management,2012.95S:S175-S181.
    [36]Czepiel, P. M., Shorter, J. H., Mosher, B., Allwine, E., McManus, J. B., Harriss, R. C., Kolb, C. E., Lamb, B. K.,The influence of atmospheric pressure on landfill methane emissions. Waste Management,2003.23(7):593-598.
    [37]Dhaliwal, P., Engdahl, N. B., Fogg, G. E.,Scale-dependent dispersivity explained without scale-dependent heterogeneity.2011.
    [38]Didier, G., Bouazza, A., Cazaux, D.,Gas permeability of geosynthetic clay liners. Geotextiles and Geomembranes,2000.18(2-4):235-250.
    [39]Disli, E.,Batch and column experiments to support heavy metals (cu, zn, and mn) transport modeling in alluvial sediments between the mogan lake and the eymir lake, golbasi, ankara. Ground Water Monitoring and Remediation,2010.30(3):125-139.
    [40]Dixon, K. L., Nichols, R. L., Permeability estimation from transient vadose zone pumping tests in shallow coastal-plain sediments. Environmental Geosciences (DEG),2005.12(4): 279-289.
    [41]Domenico, P. A., An analytical model for multidimensional transport of a decaying contaminant species. Journal of Hydrology,1987.91(1-2):49-58.
    [42]Donovan, S. M., Pan, J. L., Bateson, T., Gronow, J. R., Voulvoulis, N.,Gas emissions from biodegradable waste in united kingdom landfills. Waste Management & Research,2011.29(1): 69-76.
    [43]Du, Y. J., Hayashi, S,, Liu, S. Y., Experimental study of migration of potassium ion through a two-layer soil system. Environmental Geology,2005.48(8):1096-1106.
    [44]Du, Y. J., Shen, S. L., Liu, S. Y., Hayashi, S.,Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems. Geotextiles and Geomembranes,2009. 27(3):232-239.
    [45]Eganhouse, R. P., Cozzarelli,I. M., Scholl, M. A., Matthews, L. L.,Natural attenuation of volatile organic compounds (vocs) in the leachate plume of a municipal landfill:using alkylbenzenes as process probes. Ground Water,2001.39(2):192-202.
    [46]Fitts, C. R., Groundwater science.:Academic Press,2002,
    [47]Fityus, S. G., Smith, D. W., Booker, J. R.,Contaminant transport through an unsaturated soil liner beneath a landfill. Canadian Geotechnical Journal,1999.36(2):330-354.
    [48]Foose, G. J.,Transit-time design for diffusion through composite liners. Journal of Geotechnical and Geoenvironmental Engineering,2002.128(7):590-601.
    [49]Foose, G. J.,A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality. Waste Management,2010.30(8-9):1577-1586.
    [50]Foose, G. J., Benson, C. H., Edil, T. B.,Analytical equations for predicting concentration and mass flux from composite liners. Geosynthetics International,2001.8(6):551-575.
    [51]Fredlund, D. G., Xing, A. Q., Huang, S. Y., Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Canadian Geotechnical Journal,1994 a.31 (4):533-546.
    [52]Fredlund, D. G., Xing, A. Q., Equations for the soil-water characteristic curve. Canadian Geotechnical Journal,1994 b.31(4):521-532.
    [53]Garg, A., Achari, G.,A comprehensive numerical model simulating gas, heat, and moisture transport in sanitary landfills and methane oxidation in final covers. Environmental Modeling & Assessment,2010.15(5):397-410.
    [54]Gebert, J., Groengroeft, A.,Passive landfill gas emission-influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters. Waste Management,2006. 26(3):245-251.
    [55]Geng, F. H., Cai, C. J., Tie, X. X., Yu, Q., An, J. L., Peng, L., Zhou, G. Q., Xu, J. M.,Analysis of voc emissions using PCA/APCS receptor model at city of shanghai, china. Journal of Atmospheric Chemistry,2009.62(3):229-247.
    [56]Glinski, J., Stepniewski, W., Soil Aeration and its Role for Plants. CRC Press, Boca Raton, Florida,1985.
    [57]Goodall, D. C., Quigley, R. M., Pollutant migration from two sanitary landfill sites near Sarnia, Ontario. Can. Geotech. J.,1977.14:223-236.
    [58]Grable, A. R., Siemer, E. G., Effects of bulk density aggregate size and soil water suction on oxygen diffusion redox potentials and elongation of corn roots. Soil Science Society of America Proceedings,1968.32(2):180.
    [59]Graham, J., Halayko, K. G., Hume, H., Kirkham, T., Gray, M., Oscarson, D.,A capillarity-advective model for gas break-through in clays. Engineering Geology,2002. 64(2-3SI):273-286.
    [60]Guyonnet, D., Perrochet, P., Come, B., Seguin, J., Parriaux, A., On the hydro-dispersive equivalence between multi-layered mineral barriers. Journal of Contaminant Hydrology,2001. 51(3-4):215-231.
    [61]Hamamoto, S., Moldrup, P., Kawamoto, K., Wickramarachchi, P. N., Nagamori, M., Komatsu, T.,Extreme compaction effects on gas transport parameters and estimated climate gas exchange for a landfill final cover soil. Journal of Geotechnical and Geoenvironmental Engineering,2011.137(7):653-662.
    [62]Head, I. M., Jones, D. M., Larter, S. R., Biological activity in the deep subsurface and the origin of heavy oil. Nature,2003.426(6964):344-352.
    [63]Higashihara, T., Shibuya, H., Sato, S., Kozaki, T., Activation energy for diffusion of Helium in water-saturated, compacted na-montmorillonite. Engineering Geology,2005.81(3): 365-370.
    [64]Ho, C. K., Vapor transport processes. Theory and Applications of Transport in Porous Media,2006.20:27-46.
    [65]Hrapovic, L., Rowe, R. K., Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil. Journal of Contaminant Hydrology,2002.58(3-4):221-242.
    [66]Huang, J. H., Ilgen, G., Vogel, D., Michalzik, B., Hantsch, S., Tennhardt, L., Bilitewski, B.,Emissions of inorganic and organic arsenic compounds via the leachate pathway from pretreated municipal waste materials:a landfill reactor study. Environmental Science & Technology,2009.43(18):7092-7097.
    [67]Johnson, R. L., Cherry, J. A., Pankow, J. F.,Diffusive contaminant transport in natural clay-a field example and implications for clay-lined waste-disposal sites. Environ. Sci. Technol.,1989. 23(3):340-349.
    [68]Jun, D., Yongsheng, Z., Weihong, Z., Mei, H.,Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. Journal of Hazardous Materials,2009.161(1):224-230.
    [69]Kartha, S. A., Srivastava, R., Effect of immobile water content on contaminant transport in unsaturated zone. Journal of Hydro-Environment Research,2008.1(3-4):206-215.
    [70]Karthikeyan, O., Swati, M., Nagendran, R., Joseph, K., Performance of bioreactor landfill with waste mined from a dumpsite. Environ Monit Assess.,2007.135(1-3):141-151.
    [71]Kazimoglu, Y. K., McDougall, J. R., Pyrah, I. C., Moisture retention curve in landfilled waste.2005.
    [72]Khandelwal, A., Rabideau, A. J., Shen, P. L., Analysis of diffusion and sorption of organic solutes in soil-bentonite barrier materials. Environmental Science & Technology,1998.32(9): 1333-1339.
    [73]Kim, D. J., Kim, J. S., Yun, S. T., Lee, S. H., Determination of longitudinal dispersivity in an unconfined sandy aquifer. Hydrological Processes,2002.16(10):1955-1964.
    [74]Kim, H., Oxygen transport through multi-layer caps over mine waste, Ph.D.,2000.
    [75]Kim, H., Benson, C. H.,Contributions of advective and diffusive oxygen transport through multilayer composite caps over mine waste. Journal of Contaminant Hydrology,2004.71(1-4): 193-218.
    [76]Kim, J. Y., Edil, N. B., Park, J. K., Volatile organic compound (VOC) transport through compacted clay. Journal of Geotechnical and Geoenvironmental Engineering,2001.127(2): 126-134.
    [77]Kim, S. B., Jo, K. H., Kim, D. J., Jury, W. A., Determination of two-dimensional laboratory-scale dispersivities. Hydrological Processes,2004.18(13):2475-2483.
    [78]King, K. S., Quigely, R. M., Fernandez, F., Reades, D. W., Bacopoulos, A.,Hydraulic conductivity and diffusion monitoring of the keele valley landfill liners, maple, Ontario. Can. Geotech. J.,1993.30:124-134.
    [79]Korfiatis, G. P., Demerracopoulos, A. C., Bourodimos, E. L., Nawy, E. G., Moisture transport in a solid-waste column. Journal of Environmental Engineering-Asce,1984.110(4):780-796.
    [80]Kristensen, A. H., Thorbjorn, A., Jensen, M. P., Pedersen, M., Moldrup, P., Gas-phase diffusivity and tortuosity of structured soils. Journal of Contaminant Hydrology,2010.115(1-4): 26-33.
    [81]Kugler, H., Ottner, F., Froeschl, H., Adamcova, R., Schwaighofer, B.,Retention of inorganic pollutants in clayey base sealings of municipal landfills. Appl. Clay Sci.,2002.21(1-2SI): 45-58.
    [82]Lake, C. B., Rowe, R. K., Volatile organic compound diffusion and sorption coefficients for a needle-punched GCL. Geosynthetics International,2004.11(4):257-272.
    [83]Lake, C. B., Rowe, R. K.,A comparative assessment of volatile organic compound (VOC) sorptive to various types of potential GCL bentonites. Geotextiles and Geomembranes,2005a. 23(4):323-347.
    [84]Lake, C. B., Rowe, R. K., The 14-year performance of a compacted clay liner used as part of a composite liner system for a leachate lagoon. Geotechnical and Geological Engineering,2005b.23:657-678.
    [85]Larson, J., Kumar, S., Gale, S. A., Jain, P., Townsend, T.,A field study to estimate the vertical gas diffusivity and permeability of compacted MSW using a barometric pumping analytical model. Waste Management & Research,2012.30(3):276-284.
    [86]Li, J., Zhan, H., Huang, G., You, K.,Tide-induced airflow in a two-layered coastal land with atmospheric pressure fluctuations. Advances in Water Resources,2011.34:649-658.
    [87]Li, Y. C., Cleall, P. J.,Analytical solutions for contaminant diffusion in double-layered porous media. Journal of Geotechnical and Geoenvironmental Engineering,2010.136(11):1542-1554.
    [88]Li, Y. C., Cleall, P. J., Ma, X. F., Zhan, T., Chen, Y. M.,Gas pressure model for layered municipal solid waste landfills. Journal of Environmental Engineering-Asce,2012.138(7): 752-760.
    [89]Lin, J. S., Hildemann, L. M.,A nonsteady-state analytical model to predict gaseous emissions of volatile organic-compounds from landfills. Journal of Hazardous Materials,1995.40(3): 271-295.
    [90]Liu, C. L., Zhang, F. E., Zhang, Y, Song, S. H., Zhang, S., Ye, H., Hou, H. B., Yang, L. J., Zhang, M.,Experimental and numerical study of pollution process in an aquifer in relation to a garbage dump field. Environmental Geology,2005.48(8):1107-1115.
    [91]Liu, C. X., Ball, W. P.,Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium. Advances in Water Resources,1998.21(4): 297-313.
    [92]Liu, W. Q., Li, Y. S., Wang, B.,Gas permeability of fractured sandstone/coal samples under variable confining pressure. Transport in Porous Media,2010.83(2):333-347.
    [93]Lu, N., Time-series analysis for determining vertical air permeability in unsaturated zones. Journal of Geotechnical and Geoenvironmental Engineering,1999.125(1):69-77.
    [94]Mackey, R. E., von Maubeuge, K.., Advances in geosynthetic clay liner technology:2nd symposium.:West Conshohocken, PA:ASTM International,2004,
    [95]Maciel, F. J., Juca, J. F., Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil. Waste Manag.,2011.31(5):966-77.
    [96]Mallants, D., Vanclooster, M., Feyen, J.,Transect study on solute transport in a macroporous soil. Hydrological Processes,1996.10(1):55-70.
    [97]Marzougui, A., Mammon, A. B.,Impact of the dumping site on the environment:case of the henchir ei yahoudia site, tunis, tunisia. CR. Geosci.,2006.338(16):1176-1183.
    [98]Massmann, J. W., Applying groundwater-flow models in vapor extraction system-design. Journal of Environmental Engineering-Asce,1989.115(1):129-149.
    [99]Massmann, J., Farrier, D. F., Effects of atmospheric pressures on gas-transport in the vadose zone. Water Resources Research,1992.28(3):777-791.
    [100]Matthews, C., Braddock, R., Sander, G., Using a finite element grid on corner points in flow models. Anziam Journal,2003.44:C531-C549.
    [101]Mbonimpa, M., Aubertin, M., Aachib, M., Bussiere, B., Diffusion and consumption of oxygen in unsaturated cover materials. Canadian Geotechnical Journal,2003.40(5):916-932.
    [102]McWatters, R. S., Rowe, R. K.,Transport of volatile organic compounds through pvc and Ⅱdpe geomembranes from both aqueous and vapour phases. Geosynthetics International,2009. 16(6):468-481.
    [103]McWatters, R. S., Rowe, R. K.,Diffusive transport of vocs through Ⅱdpe and two coextruded geomembranes. Journal of Geotechnical and Geoenvironmental Engineering,2010. 136(9):1167-1177.
    [104]Menard, C., Ramirez, A. A., Nikiema, J., Heitz, M., Biofiltration of methane and trace gases from landfills:a review. Environmental Reviews,2012.20(1):40-53.
    [105]Merry, S. M., Fritz, W. U., Budhu, M., Jesionek, K.., Effect of gas on pore pressures in wet landfills. Journal of Geotechnical and Geoenvironmental Engineering,2006.132(5): 553-561.
    [106]Mitchell, J. K., ASCE, D. M., Geotechnical surprises—or are they? J. Geotech. Geoenviron. Eng.,2009.135:998-1010.
    [107]Mitchell, J. K., Santamarina, J. C.,Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering,2005.131(10):1222-1233.
    [108]Millington, R. J., Quirk, J. P., Transport in porous media. In Trans.7th Int. Congr. Soil Sci.,1960.1:97-106.
    [109]Moldrup, P., Olesen, T., Komatsu, T., Schjonning, P., Rolston, D. E.,Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phase. Soil Science Society of America Journal,2001.65(3):613-623.
    [110]Molins, S., Mayer, K., Amos, R., Bekins, B.,Adose zone attenuation of organic compounds at a crude oil spill site-interactions between biogeochemical reactions and multicomponent gas transport A-9097-2012. Journal of Contaminant Hydrology,2010. 112(1-4):15-29.
    [111]Moon, S., Nam, K., Kim, J. Y., Hwan, S. K., Chung, M., Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system. Waste Management,2008.28(10): 1909-1914.
    [112]Mulligan, C. N., Yong, R. N.,Natural attenuation of contaminated soils. Environment International,2004.30(4):587-601.
    [113]Munro, I., MacQuarrie, K., Valsangkar, A. J., Kan, K. T.,Migration of landfill leachate into a shallow clayey till in southern new brunswick:a field and modelling investigation. Canadian Geotechnical Journal,1997.34(2):204-219.
    [114]Neale, C. N., Hughes, J. B., Ward, C. H.,Impacts of unsaturated zone properties on oxygen transport and aquifer reaeration. Ground Water,2000.38(5):784-794.
    [115]Neeper, D. A., Harmonic analysis of flow in open boreholes due to barometric pressure cycles. Journal of Contaminant Hydrology,2003.60(3-4):135-162.
    [116]Newell, C.J., Rifai, H. S., Wilson, J. T., Connor, J. A., Aziz, J. J., Suarez, M. P., Calculation and Use of First-Order Rate Constants For Monitored Natural Attenuation Studies, U.S. EPA Remedial Technology Fact Sheet, U.S. Environmental Protection Agency. EPA/540/S-02/500,2002.
    [117]Olivella, S., Alonso, E. E.,Gas flow through clay barriers. Geotechnique,2008.58(3): 157-176.
    [118]Ozisik M N. Heat conduction.2nd edition. New York:John Wiley and sons,1993.
    [119]Park, E., Zhan, H. B., Analytical solutions of contaminant transport from finite one-, two-, and three-dimensional sources in a finite-thickness aquifer. Journal of Contaminant Hydrology,2001.53(1-2):41-61.
    [120]Pitanga, H. N., Pierson, P., Vilar, O. M., Measurement of gas permeability in geosynthetic clay liners in transient flow mode. Geotechnical Testing Journal,2011.34(1): 27-33.
    [121]Pivato, A., Raga, R., Tests for the evaluation of ammonium attenuation in msw landfill leachate by adsorption into bentonite in a landfill liner. Waste Management,2006.26(2): 123-132.
    [122]Pokhrel, D., Hettiaratchi, P., Kumar, S.,Methane diffusion coefficient in compost and soil-compost mixtures in gas phase biofilter. Chemical Engineering Journal,2011.169(1-3): 200-206.
    [123]Poulsen, T. G., Christophersen, M., Moldrup, P., Kjeldsen, P.,Modeling lateral gas transport in soil adjacent to old landfill. Journal of Environmental Engineering-Asce,2001. 127(2):145-153.
    [124]Quigley, R. M., Rowe, R. K.,Leachate migration through clay below a domestic waste landfill, Sarnia, Ontario, Canada:chemical interpretation and modeling philosophies. ASTM Specialty Publication on Industrial and Hazardous Waste STP 933,1986.93-103.
    [125]Rayhani, M. T., Rowe, R. K., Brachman, R., Take, W. A., Siemens, G.,Factors affecting GCL hydration under isothermal conditions. Geotextiles and Geomembranes,2011.29(6): 525-533.
    [126]Reddy, K. R., Adams, J. A., Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging. Journal of Hazardous Materials,2000. 72(2-3SI):147-165.
    [127]Regadio, M., Ruiz, A. I., de Soto, I. S., Rastrero, M. R., Sanchez, N., Gismera, M. J., Sevilla, M. T., Da Silva, P., Procopio, J. R., Cuevas, J.,Pollution profiles and physicochemical parameters in old uncontrolled landfills. Waste Management,2012.32(3):482-497.
    [128]Report, T., Dangerous substances in waste, Technical Report No.38. European Environment Agency,2000.
    [129]Rowe, R. K., Badv, K.,Chloride migration through clayey silt underlain by fine sand or silt. Journal of Geotechnical Engineering-ASCE,1996.122(1):60-68.
    [130]Rowe, R. K., Long-term performance of contaminant barrier systems. Geotechnique, 2005.55(9):631-677.
    [131]Rowe, R. K., Hrapovic, L., Kosaric, N., Cullimore, D. R., Anaerobic degradation of DCM diffusing through clay. Journal of Geotechnical and Geoenvironmental Engineering,1997.123(12):1085-1095.
    [132]Rowe, R. K., Nadarajah, P.,An analytical method for predicting the velocity field beneath landfills. Canadian Geotechnical Journal,1997.34(2):264-282.
    [133]Rowe, R. K., Quigley, R. M., Brachman, R. W., Booker, J. R., Barrier systems for waste disposal facilities,2nd edition.:Spon Press,2004,
    [134]Rowe, R. K., Rayhani, M. T., Take, W. A., Siemens, G., Brachman, R.,GCL hydration under simulated daily thermal cycles. Geosynthetics International,2011.18(4):196-205.
    [135]Rower, I. U., Geck, C., Gebert, J., Pfeiffer, E. M.,Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers. Waste Management,2011. 31(5SI):926-934.
    [136]Sander, G. C., Braddock, R. D., Analytical solutions to the transient, unsaturated transport of water and contaminants through horizontal porous media. Advances in Water Resources,2005.28(10):1102-1111.
    [137]Saquing, J. M., Saquing, C. D., Knappe, D., Barlaz, M. A.,Impact of plastics on fate and transport of organic contaminants in landfills. Environmental Science & Technology,2010. 44(16):6396-6402.
    [138]Scheutz, C., Bogner, J., Chanton, J. P., Blake, D., Morcet, M., Aran, C., Kjeldsen, P., Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a french landfill. Waste Management,2008.28(10):1892-1908.
    [139]Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A., Huber-Humer, M., Spokas, K.,Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research,2009.27(5):409-455.
    [140]Scheutz, C., Mosbaek, H., Kjeldsen, P., Attenuation of methane and volatile organic compounds in landfill soil covers. Journal of Environmental Quality,2004.33(1):61-71.
    [141]Schwarzenbach, R. P., Gschwend, P. M., Imboden, D. M., The gas-liquid interface: air-water exchange. In:Environmental Organic Chemistry.1993.
    [142]Shackelford, C. D., Transit-time design of earthen barriers. Engineering Geology,1990. 29(1):79-94.
    [143]Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B., Lin, L., Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotextiles and Geomembranes,2000.18(2-4):133-161.
    [144]Shackelford, C. D., Lee, J. M., Analyzing diffusion by analogy with consolidation. Journal of Geotechnical and Geoenvironmental Engineering,2005.131(11):1345-1359.
    [145]Shan, C., Stephens, D. B.,An analytical solution for vertical transport of volatile chemicals in the vadose zone. Journal of Contaminant Hydrology,1995.18(4):259-277.
    [146]Sharholy, M., Ahmad, K., Mahmood, G., Trivedi, R. C., Municipal solid waste management in India cities-a review. International Journal of Environmental Sciences,2010. 1(4):591-606.
    [147]Shelp, M. L., Yanful, E. K., Oxygen diffusion coefficient of soils at high degrees of saturation. Geotechnical Testing Journal,2000.23(1):36-44.
    [148]Shim, W. J., Jo, C. H., Analysis of pressure fluctuations in two-phase vertical flow in annulus. Journal of Industrial and Engineering Chemistry,2000.6(3):167-173.
    [149]Singh, N., Hennecke, D., Hoerner, J., Koerdel, W., Schaeffer, A., Mobility and degradation of trinitrotoluene/metabolites in soil columns:effect of soil organic carbon content. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2008.43(7):682-693.
    [150]Smith, D., Pivonka, P., Jungnickel, C., Fityus, S., Theoretical analysis of anion exclusion and diffusive transport through platy-clay soils. Transport in Porous Media,2004.57(3): 251-277.
    [151]Southen, J. M., Rowe, R. K., Evaluation of the water retention curve for geosynthetic clay liners. Geotextiles and Geomembranes,2007.25(1):2-9.
    [152]Staub, M. J., Marcolina, G., Gourc, J. P., Simonin, R.,An incremental model to assess the environmental impact of cap cover systems on msw landfill emissions. Geotextiles and Geomembranes,2011.29(3):298-312.
    [153]Swati, M., Karthikeyan, O. P., Joseph, K., Nagendran, R.,Landfill bioreactor:a biotechnological solution for waste management. Journal of Scientific & Industrial Research,2007.66(8):670-674.
    [154]Tassi, F., Montegrossi, G., Vaselli, O., Morandi, A., Capecchiacci, F., Nisi, B.,Flux measurements of benzene and toluene from landfill cover soils. Waste Management & Research,2011.29(1):50-58.
    [155]Tecle, D., Lee, J., Hasan, S.,Quantitative analysis of physical and geotechnical factors affecting methane emission in municipal solid waste landfill. Environmental Geology,2009. 56(6):1135-1143.
    [156]Townsend, T. G., Wise, W. R., Jain, P.,One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills. Journal of Environmental Engineering-Asce,2005.131(12):1716-1723.
    [157]Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., LeMouel, A., McCord, B. N., Gas-liquid two-phase flow in microchannels-part Ⅱ:void fraction and pressure drop. International Journal of Multiphase Flow,1999.25(3):395-410.
    [158]Turan, N. G., Ergun, O. N.,Removal of Cu(Ⅱ) from leachate using natural zeolite as a landfill liner material. Journal of Hazardous Materials,2009.167(1-3):696-700.
    [159]USEPA, National primary drinking water standards.Office of waste (4A1),2002,
    [160]van Duijn, C. J., Eichel, H., Helmig, R., Pop,I. S.,Effective equations for two-phase flow in porous media:the effect of trapping at the micro scale. Transp Porous Med,2007. 69:411-428.
    [161]Wang, H., Wang, C., Chen, F., Ma, M., Lin, Z., Wang, W., Xu, Z., Wang, X.,Modification to degradation of hexazinone in forest soils amended with sewage sludge. Journal of Hazardous Materials,2012.199-200:96-104.
    [162]Wickramarachchi, P., Kawamoto, K., Hamamoto, S., Nagamori, M., Moldrup, P., Komatsu, T.,Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil. Waste Management,2011.31(12):2464-2472.
    [163]Williams, P., Waste treatment and disposal,2nd ed. England:John Wiley & Sons Ltd,2005.
    [164]Wilson, J. L., Miller, P. J., Two-dimensional plume in uniform ground-water flow. Journal of the Hydraulics Division,1978.104(4):503-514.
    [165]Worrell, W. A., Vesilind, P. A., Solid waste engineering, Second Edition. USA:Cengage Learning,2012,
    [166]Xie, H. J., Lou, Z. H., Chen, Y. M., Jin, A. M., Chen, P. X.,An analytical solution to contaminant advection and dispersion through a GCL/AL liner system. Chinese Science Bulletin,2011.56(8):811-818.
    [167]Xie, H. J., Chen, Y. M., Zhan, L. T., Chen, R. P., Tang, X., Chen, R. H., Investigation of migration of pollutant at the base of suzhou qizishan landfill without a liner system. Journal of Zhejiang University SCIENCE A,2009.10(3):439-449.
    [168]Xu, J., Chen, W. P., Wu, L. S., Chang, A. C.,Adsorption and degradation of ketoprofen in soils. Journal of Environmental Quality,2009.38(3):1177-1182.
    [169]Yanful, E. K., Mousavi, S. M., De Souza, L. P., A numerical study of soil cover performance. Journal of Environmental Management,2006.81(1):72-92.
    [170]Yates, S. R., Papiernik, S. K., Gao, F., Gan, J.,Analytical solutions for the transport of volatile organic chemicals in unsaturated layered systems. Water Resources Research,2000. 36(8):1993-2000.
    [171]You, K. H., Zhan, H. B., Can atmospheric pressure and water table fluctuations be neglected in soil vapor extraction? Advances in Water Resources,2012.3541-54.
    [172]You, K. H., Zhan, H. B., Comparisons of diffusive and advective fluxes of gas phase volatile organic compounds (VOCs) in unsaturated zones under natural conditions. Advances in Water Resources,2013.52:221-231.
    [173]Young, A., Mathematical-modeling of landfill degradation. Journal of Chemical Technology and Biotechnology,1989.46(3):189-208.
    [174]Young, A., The effects of fluctuations in atmospheric-pressure on landfill gas migration and composition. Water Air and Soil Pollution,1992.64(3-4):601-616.
    [175]Zheng, C., Bennett, G. D., Applied contaminant transport modeling:theory and practice. New York, USA:Van Nostrand Reinhold,1995,
    [176]陈云敏,谢海建,柯瀚,唐晓武,层状土中污染物的一维扩散解析解.岩土工程学报,2006a.(4):521-524.
    [177]陈云敏,谢海建,柯瀚,唐晓武,挥发性有机化合物在复合衬里中的一维扩散解.岩土工程学报,2006b.(9):1076-1080.
    [178]陈云敏,叶肖伟,张民强,柯瀚,张泉芳,多场耦合作用下重金属离子在粘土中的迁移性状试验研究.岩土工程学报,2005.(12):1371-1375.
    [179]陈家军,王红旗,王金生,等.填埋场释放气体运移数值模型及应用.环境科学学报,2000.20(3):327-331.
    [180]冯世进,高丽亚,王印,垃圾填埋场边坡上土工膜的受力分析.岩土工程学报,2008.30(10):1484-1489.
    [181]冯世进,李夕林,高丽亚,不同降雨模式条件下填埋场封顶系统最大饱和深度.岩土工程学报,2012.(5):924-930.
    [182]高睿智.中国填埋气估算模型用户手册.美国北卡罗来纳州东方研究集团.2009.
    [183]郭永龙,王焰新,蔡鹤生,刘红涛,蔡志杰,垃圾填埋场渗滤液对地下水环境影响的评价.地质科技情报,2002.(1):87-90.
    [184]何俊,高子坤,詹国才,有机污染物在复合衬垫中的运移分析.水文地质工程地质,2009.(1):124-127.
    [185]何苗,杂环化合物和多环芳烃生物降解性能的研究.2002..
    [186]黄冠华,黄权中,詹红兵,陈静,熊云武,冯绍元,均质介质中污染物迁移的分数微分对流-弥散模拟.中国科学(D辑:地球科学),2005.(S1):249-254.
    [187]蒋惠忠,李建萍,张洁,赵淑云,段亦然,生活垃圾填埋场渗滤液对潜层地下水污染的实验模拟分析以北京北天堂垃圾填埋场为例.世界地质,2001.20(4):374-378.
    [188]孔宪京,孙秀丽,邹德高,娄树莲,垃圾土中有机物降解引起的体积缩减量与时间的关系研究.岩土工程学报,2006.(12):2060-2065.
    [189]李红霞,何少华,袁华山,高伟,凤迎春,膨润土对废水中有机污染物的吸附.矿业工程,2006.(4):59-61.
    [190]李锡夔,武文华,非饱和土中溶混污染物运移模型及特征线有限元法.岩土工程学报,1999.(4):427-437.
    [191]刘可卿,陈泽智,刘鹏,许雪松,唐秋萍,南京市某垃圾填埋场重金属污染现状调查.环境监测管理与技术,2008.(4):24-26+50.
    [192]刘凌,崔广柏,吸附对土壤水环境中有机污染物生物降解过程的影响研究.水科学进展,2000.(4):401-407.
    [193]楼紫阳,赵由才,张全,渗滤液处理处置技术及工程实例.:化学工业出版社,2007,
    [194]卢欢亮,王伟,垃圾渗滤液中重金属离子的吸附实验研究.环境卫生工程,2004.12(B06):3-4.
    [195]栾茂田,张金利,杨庆,污染物运移过程的一维数值分析.岩土工程学报,2005.(2):185-189.
    [196]马志飞,安达,姜永海,席北斗,李定龙,张进保,杨昱,某危险废物填埋场地下水污染预测及控制模拟.环境科学,2012.(1):64-70.
    [197]宁立波,陈津端,洛阳市某垃圾填埋场垃圾渗滤液对地下水的污染预测.湖南师范 大学自然科学学报,2012.(6):89-92.
    [198]彭绪亚,余毅,填埋垃圾体气体渗透特性的实验研究.环境科学学报,2003.23(4):530-534.
    [199]钱学德,施建勇,郭志平,吕进,粘土衬垫系统污染物迁移规律研究.河海大学学报(自然科学版),2004.(4):415-420.
    [200]钱学德,施建勇,刘晓东,现代卫生填埋场的设计与施工.:中国建筑工业出版社,2001,
    [201]秦耀东,土壤物理学.北京:高等教育出版社,2003,76-86.
    [202]唐晓武,罗春泳,陈云敏,史成江,粘土环境岩土工程特性对填埋场衬垫防渗标准的影响.岩石力学与工程学报,2005.(8):1396-1401.
    [203]田扬捷,黄仁华,杨虹,周海燕,李道棠,海滨垃圾填埋场渗沥液对地下水系统的污染.环境卫生工程,2005.(1):1-5.
    [204]王康,非饱和土壤水流运动及溶质迁移.北京:科学出版社,2010,139-142.
    [205]王翊虹,赵勇胜,北京北天堂地区城市垃圾填埋对地下水的污染.水文地质工程地质,2002.6:45-47.
    [206]王超,阮晓红,污染物在非饱和土壤中迁移规律的研究.河海大学学报:自然科学版,1996.24(2):7-13.
    [207]汪东林,栾茂田,杨庆,重塑非饱和黏土的土-水特征曲线及其影响因素研究.岩土力学,2009.30(3):751-756.
    [208]魏宁,李小春,王燕,谷志孟,城市垃圾填埋场甲烷资源量与利用前景.岩土力学,2009.(6):1687-1692.
    [209]席永慧,锌和镍在粉煤灰-粘土介质中扩散系数的测定.同济大学学报(自然科学版),2007.(11):1520-1524.
    [210]夏立江,温小乐,生活垃圾堆填区周边土壤的性状变化及其污染状况.土壤与环境,2001.10(1):17-19.
    [211]谢海建,成层介质污染物的运移机理及衬垫系统防污性能研究[博士学位论文],杭州,浙江大学,2008.
    [212]谢海建,柯瀚,陈云敏,浓度变化时复合衬层中有机污染物的一维扩散分析.环境科学学报,2006.(6):930-935.
    [213]谢海建,陈云敏,楼章华,污染物通过有缺陷膜复合衬垫的一维运移解析解.中国科学:技术科学,201Oa.(5):486-495.
    [214]谢海建,楼章华,陈云敏,金爱民,陈培雄,污染物通过GCL/AL防渗层的对流-弥散解析解.科学通报,2010b.(21):2153-2163.
    [215]谢海建,唐晓武,陈云敏,柯瀚,原始土层影响下成层介质污染物一维扩散模型.浙江大学学报(工学版),2006.(12):2191-2195.
    [216]谢焰,谢海建,陈云敏,楼章华,填埋场底土污染物浓度实测值和理论解的比较.自然灾害学报,2009.18(5):62-69.
    [217]薛强,刘磊,垃圾填埋气体运移的多场耦合理论及应用.:科学出版社,2012,
    [218]薛强,赵颖,刘磊,陆海军,垃圾填埋场灾变过程的温度-渗流-应力-化学耦合效应研究.岩石力学与工程学报,2011.(10):1970-1988.
    [219]阎昌琪,气液两相流.:哈尔滨工程大学出版社,2010,
    [220]杨文参,谢海建,陈培雄,陈云敏,金爱民,楼章华,考虑降解时污染物在底泥及覆盖层中的运移解.土木工程学报,2011.(S2):181-185+211.
    [221]杨志兵,王金生,滕彦国,郭敏丽,垃圾渗滤液有机组分和氨氮在孔隙介质中的迁移 特征.生态环境,2008.17(4):1407-1410.
    [222]余开彪,胡斌,张挺,垃圾渗滤液在土体中扩散规律的模拟计算.岩石力学与工程学报,2004.(11):1944-1948.
    [223]袁聚云,土质学与土力学.北京:人民交通出版社,2009,
    [224]岳波,林哗,黄泽春,黄启飞,王琪,张维,刘学建,垃圾填埋场的甲烷减排及覆盖层甲烷氧化研究进展.生态环境学报,2010.(8):2010-2016.
    [225]詹良通,刘伟,陈云敏,陈如海,某简易垃圾填埋场渗滤液在场底天然土层迁移模拟与长期预测.环境科学学报,2011.(8):1714-1723.
    [226]张金利,栾茂田,杨庆,非饱和土层中污染物运移过程的数值分析.岩土工程学报,2006.28(2):221-224.
    [227]张建红,劳敏慈,胡黎明,非饱和土中水分迁移及污染物扩散的离心模拟.岩土工程学报,2002.24(5):622-625.
    [228]张文杰,城市生活垃圾填埋场中水分运移规律研究,博士,2007.
    [229]张文杰,陈云敏,詹良通,垃圾填埋场渗滤液穿过垂直防渗帷幕的渗漏分析.环境科学学报,2008.(5):925-929.
    [230]张文杰,詹良通,陈云敏,魏海云,垃圾填埋体中非饱和-饱和渗流分析.岩石力学与工程学报,2007.(1):87-93.
    [231]张小平,固体废物污染控制工程.:化学工业出版社,2004,
    [232]张玉军,核废料处置概念库近场热-水-应力耦合模型及数值分析.岩土力学,2007.(1):17-22+44.
    [233]张振营,吴世明,陈云敏,城市生活垃圾土性参数的室内试验研究.岩土工程学报,2000.22(1):35-39.
    [234]张相锋,肖学智,何毅,等,垃圾填埋场的甲烷释放及其减排.中国沼气,2006.24(1):35.
    [235]中华人民共和国建设部,生活垃圾卫生填埋场封场技术规范(CJJ112-2007).北京:中国建筑工业出版社,2007.
    [236]中华人民共和国建设部,生活垃圾卫生填埋场防渗系统工程技术规范(CJJ113-2007).北京:中国建筑工业出版社,2007.
    [237]http://sh.people.com.cn/GB/n/2012/1011/c 176737-17572489.html,人民网.
    [238]http://www.gdepb.gov.cn/hbxw/200503/t20050331_14853.html,京华时报.
    [239]http://www.msw.com.cn/bbs/read.php?tid=2015,黎巴嫩垃圾填埋场爆炸.
    [240]http://epaper.21cbh.com/html/2013-03/19/content_61919.htm?div=-1,:21世纪网.
    [241]http://www.zhhbw.com/news/media/226535.html,山东潍坊地下水污染祸因垃圾填埋场.中华环保宣传网.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700