用户名: 密码: 验证码:
钛合金棒材连轧过程的智能优化控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以钛合金棒材连轧生产线为工程背景,总结和分析了棒材轧制技术的特点,轧制方式和智能优化控制技术在轧制领域的应用,并对轧制过程的模型进行了深入的研究。由于国内外用户对棒材产品质量要求越来越高,棒材连轧的精确控制就显得尤为重要。本文重点研究了基于NMPSO算法的粗轧机速度优化控制和速度补偿策略,研究了基于ISTPSO优化的中轧机和精轧机张力模糊控制,研究了基于ACPSO优化SVR的棒材轧制力预测算法和轧制过程的故障诊断等关键技术,并应用于实际轧制,效果良好。主要研究内容分为以下几个方面:
     (1)结合现场实际生产条件,给出了钛合金棒材连轧系统的组成和总体结构框图,研究了轧制过程的数学模型,包括:直流电动机的模型,张力模型,轧制力模型,变形抗力模型和温度模型等。
     (2)针对粗轧机速度不协调而引起的中轧机入口尺寸波动问题,提出了基于非均匀动态变异粒子群(]NMPSO)优化粗轧机速度PID算法及补偿策略。首先研究了粒子群算法和非均匀动态变异粒子群算法的原理,然后应用Rosenbrock函数和Rastrigrin函数对NMPSO算法进行了测试,测试结果显示NMPSO算法收敛速度快于标准粒子群算法,最后给出了粗轧机速度输出及负载扰动时的SIMULINK仿真模型,并将该模型与粒子群算法相结合应用于轧件咬入轧辊时的速度补偿仿真和实验研究,仿真结果和实验证明经过优化和补偿的速度控制策略能够克服棒材咬入时的速度跌落,使得粗轧轧制过程平稳,顺畅。
     (3)针对中轧机和精轧机由于张力控制不协调引起的堆料及拉料现象,提出了基于改进的自协调粒子群(ISTPSO)优化的中精轧机张力模糊PID控制算法。由于中轧机和精轧机的轧制速度快,且速度与张力相互耦合,不容易建立精确的数学模型,而模糊控制算法不依赖于被控对象的精确数学模型,鲁棒性和适应性好,因此本文提出应用模糊算法优化中精轧机张力控制器。为了克服实际控制中来自被控对象一定程度的波动所导致的控制系统难以取得较高精度的现象,本文提出了改进的自协调粒子群优化模糊控制器的量化因子和比例因子的算法,并配合提出的张力软测量方法,把算法应用在多机架连轧系统,仿真及实验结果验证了所提方法的有效性,解决了中轧机由于张力波动引起的实际堆料及拉料现象。
     (4)针对钛合金棒材热连轧轧制力的精确预测问题,提出了一种基于加速收敛的粒子群优化支持向量回归机的预测算法。该算法首先通过使粒子在每次速度迭代过程中偏离速度迭代一个小角度,在位置迭代过程中偏离迭代位置一小步,改善了粒子群算法的收敛性及收敛速度,再通过ACPSO算法实现对支持向量回归机的参数ε,c,γ的同时寻优,从而使ACPSO-SVR模型具有较高的预测精度和泛化能力。通过仿真实验和实际数据的比对,验证了方法的有效性。实验结果表明,ACPSO-SVR方法能够有效,快速的实现轧制力的精确预测,在预测速度和适应性方面,优于基于PSO-SVR的预测方法;在预测精度方面,该方法优于BPNN、SVR、PSO-SVR等方法,平均误差率从BP神经网络的±9%降到±4%以内。
     (5)在钛合金棒材连轧轧制过程的应用背景下,结合提升小波数据降噪方法,提出了LW-RLSSVM、LW-PNN两种轧制过程故障诊断改进方法。基于现场数据的仿真实验结果验证了所提方法的有效性,全面提升了棒材连轧系统优化控制的可靠性。
     本文的研究内容,面向钛合金棒材连轧轧制过程的实际控制,具有很强的实用性。本文的研究结论在生产现场得到了验证,提高了棒材产品的质量。
This thesis is based on the project of the titanium alloy rod rolling line. The characteristics of bar rolling technology, rolling method, the application in the field of intelligent optimization control technologies and the model of the rolling process are summarized and analyzed. Due to the increasingly high demand for domestic and foreign users of the product quality, accurate control of bar rolling is particularly important. Main research methods of this thesis include speed optimization control and speed compensation of Roughing mill based on NMPSO algorithm, tension fuzzy optimization control of intermediate mill and finishing mill, bar rolling force prediction algorithm based on ACPSO optimized SVR and fault diagnosis of rolling process. The main research methods are used to actual rolling and have achieved good results. The main research contents and conclusions are as follows:
     (1) Combined with the actual production condition, the composition of titanium alloy rod rolling system and the framework of overall structure are studied. The mathematical model of rolling process included dc motor model, tension model, rolling force model, deformation resistance model and the temperature model.
     (2) Aiming at the size fluctuation problem of the inlet of intermediate mill causing by rough mill's speed mismatch, an optimization algorithm based on NMPSO optimized speed PID and compensation strategy are proposed. Firstly, the principle of PSO algorithm and non-uniform dynamic mutation particle swarm optimization algorithm are studied, and then the Rosenbrock function and Rastrigrin function are tested. Test result shows that NMPSO algorithm convergence speed is faster than the standard PSO algorithm. The simulink model of Roughing mill speed output and load disturbances is presented finally. The model combined with NMPSO algorithm is applied to roll speed compensation research. Simulation results and experimental showed that optimization and compensation strategy of speed can overcome the speed drop and which can make rough rolling process smooth.
     (3) Aiming at the heap materials and pull material phenomenon caused by tension's mismatch, an optimization algorithm based on ISTPSO optimized fuzzy tension PID control algorithm is proposed. Due to the mutual coupling of speed and tension, it is not easy to establish accurate mathematical model. Fuzzy control algorithm does not rely on accurate mathematical model of controlled object, and which has good robustness and adaptability, so tension controller optimized by fuzzy algorithm in the intermediate mill and finishing mill were used. In order to overcome the disturbance of the actual control, an1STPSO algorithm was proposed which can optimize the quantization factor and scaling factor. Combined with tension soft measurement method, the ISTPSO algorithm is applied to rolling system, the simulation and experimental results verify the effectiveness of the proposed method, and which solved the heap materials and pull material phenomenon caused by tension fluctuation.
     (4) Aiming at the accurate prediction problem of titanium alloy bars rolling force, an optimal approach of support vector regression (SVR) parameters is proposed based on the accelerate convergence particle swarm optimization (ACPSO) algorithm. Firstly, this algorithm improve convergence and convergence speed through making particle's speed deviate from a small angle in each speed iterative process and making particle's position deviate from a small step in each position iterative process. Secondly, ACPSO algorithm is applied to optimize the three parameters synchronously, which make the ACPSO-SVR model good prediction accuracy and generalization capabilities. Through simulation experiment and particle date comparison, the validity of the method is validated. The results show that the ACPSO-SVR algorithm can effectively predict rolling force, and is superior to PSO-SVR at prediction speed and adaptability, and the ACPSO-SVR algorithm is better than BPNN, SVR and PSO-SVR in precision of prediction and the average error rate decreases from±9%achieved by the BP neural network to less than±4%by using ACPSO-SVR algorithm.
     (5) Under the background of application of titanium alloy rod continuous rolling process, combined with lifting wavelet data noise reduction method, LW-RLSSVM algorithm and LW-PNN algorithm are put forward, which are used for the fault diagnosis of rolling process. Simulation results verify the validity of the proposed method, and enhance the reliability of bar rolling optimal control system.
     The content of this research is focused on the control of titanium alloy rod rolling process, which has a strong practical. The research result in the thesis has been confirmed in the work field and the production is improved.
引文
[1]王国栋,刘相华,姜正义,等.人工智能在轧制中的应用(一)[J].轧钢.1996,3,36-38
    [2]王国栋.刘相华.姜正义.等.人工智能在轧制中的应用(二)[J].轧钢.1996,4.41-43
    [3]Ferrero J, Hutt A. Sweet S. Beta titanium alloys and thein use in various automotive spring applications Ti-2003 science and technology [M.] Hamburg:DGM,2004,385-389
    [4]王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社.1985:168-175
    [5]郭拉凤,原梅妮,梁敏.钛及钛合金线材轧制工艺研究[J].稀有金属.2011,35(2).196-201
    [6]张小平,秦建平.轧制理论[M].北京:冶金工业出版社,2006:111-125
    [7]Shuai Meirong. Huan Qingxue, Zhu Yanchun. Analysis of mechanical parameters during hot continuous rolling process of titanium alloy TC11 rod [J]. Rare metal materials and engineering,2012,41(6):952-957
    [8]谢权.连轧47mm×2.8mm薄壁角钢的孔型设计[J].轧钢,2008,25(5):65-69
    [9]李民,张安平.三辊棒材减定径机组孔型设计及力能参数计算[J].轧钢,2007,24(5):23-27
    [10]王国栋,刘相华,张殿华.轧制过程模拟优化的新进展[J].轧钢,2000,17(6):3-5
    [11]贺建军,喻寿益,钟掘.板带钢平整机张力-速度解耦控制[J].控制与决策,2003,18(5):522-544
    [12]帅美容,黄庆学,秦建平.等.钛合金棒材轧制成型研究进展[J].材料导报A,2012,26(2):111-115
    [13]李振垒,李海军,王昭东.等.热轧板带钢的超快速冷却控制系统[J].东北大学学报,2012,33(10):1436-1452
    [14]吴东升,王大志,杨青,等.基于ACPSO优化SVR的棒材连轧轧制力预测研究[J].仪器仪表学报.2012,33(11):2579-2585
    [15]李维刚.刘相华.热连轧机轧制力成比例分配的CLAD算法[J].东北大学学报,2012,33(3):352-356
    [16]魏立新,李兴强,李莹,等.基于改进自适应遗传算法的冷连轧轧制规程优化设计[J].机械工程学报,2010,46(16):136-141
    [17]赵景云,臧勇,逄晓男,等.基于流函数的H型钢轧制力能参数模型[J].北京科技大学学报,2013,35(1):112-119
    [18]孙欣,孙汉峰.棒线材轧机速度级联控制系统[J].冶金自动化,S1,2009,96-98
    [19]王益群,方一鸣,孙登月,等.2030冷连轧机速度控制系统的建模及电动机负载转矩的计算[J].机械工程学报,2005,41(3):128-134
    [20]闫向峰,毛伟.高刚度传动系统在减定径机组的应用[J].冶金自动化,2012,36(5):55-58
    [21]张殿华,刘恩洋,刘卫东,等.热连轧层流冷却系统速度前馈补偿的优化[J].东北大学学报,32(4):516-519
    [22]胡海兵,胡庆波,吕征宇.基于粒子群优化的PID控制器设计[J].浙江大学学报,2006,40(12):2144-2148.
    [23]杨智,陈志堂,范正平,等.基于改进粒子群优化算法的PID控制器整定[J].控制理论与应用,2010,27(10):1345-1352.
    [24]王秀君,胡协和.一种改进的单神经元PID控制策略[J].浙江大学学报,2011,45(8):1498-1501.
    [25]王国强,王志新.粒子群与PIDNN控制器在VSC-HVDC中的应用[J].中国电机工程学报,31(3):8-13
    [26]李明辉,柴德喜.卷纸机间接张力控制的原理及实现[J].电机与控制应用,2011,38(4):47-49
    [27]崔席勇,花福安,张殿华,等.冷轧带钢连续退火模拟实验机张力控制系统[J].冶金自动化,2010,34(3):39-42
    [28]季宝伟,吕金,周先杰,等.卡罗塞尔卷取机在冷轧生产线中的控制及应用[J].电气传动,2011,41(10):41-54
    [29]孙文权,杨荃,彭鹏,等.全连续冷轧机张力控制系统[J].冶金自动化,2009,33(3):20-24
    [30]展鹏,张晓琳,张军保.连续热镀锌钢板生产线张力调节系统和实现方法[J].电气传动,2012,42(9):47-50
    [31]何金保,郭帅,何永义,等.基于遗传优化的张力模糊控制[J].控制理论与应用,2009,26(3):243-248.
    [32]车海军,李素,杨景明.模糊灰色预测控制器在冷连轧机张力控制系统中的应用[J].轧钢,2009,26(5):43-46.
    [33]张岩,邵富群,王军生,等.灰色预测模型在冷轧动态张力控制中的应用[J].东北大学学报,2011,32(5):614-617.
    [34]车海军,郝瑞峰,杨景明,等.自适应模糊PID在双铝轧机机架间张力控制中的应用[J].钢铁研究,2012,40(1):17-29.
    [35]张国滨,张贵杰,武学泽.棒、线材热轧力能参数计算软件的开发与应用[J].钢铁,2000,35(11):34-38
    [36]郭立伟,杨荃,郭磊.冷连轧过程控制轧制力模型综合参数自适应[J].北京科技大学学报,2007,29(4):413-416
    [37]刘立忠,刘相华,王国栋,等.双峰轧制压力形成因素的数值模拟[J].机械工程学报,2001,37(7):30-32
    [38]王欣,王长松,尹佐勇,等.H型钢轧制过程的计算机仿真[J].北京科技大学学报,25(6):560-567
    [39]潘学军.冷连轧过程仿真软件包的研制[J].系统仿真学报,1998,10(4):20-31
    [40]张大志,程秉祥,李谋渭,等.基于遗传神经网络的冷连轧机轧制压力模型[J].北京科技大学学报,2000,22(4):384-388
    [41]刘华强,唐荻,杨荃,等.模糊小脑模形神经网络在多辊冷连轧机轧制力预报模型中的应用[J].北京科技大学学报,28(10):969-972
    [42]丁敬国,胡贤磊,焦景民,等.变异PSO算法协同神经元网络在轧制力预报中的应用[J].钢铁研究学报,2007,19(12):56-59
    [43]付天亮,王昭东,王国栋,等.修正遗传神经网络预测中厚板轧机轧制力[J].东北大学学报,29(10):1438-1442
    [44]陈治明,罗飞,黄晓红,等.基于混沌优化支持向量机的轧制力预测[J].控制与决策,24(6):808-812
    [45]宋勇,苏岚,荆丰伟,等.热轧带钢轧制力模型自学习算法优化[J].北京科技大学学报,2010,32(6):802-806
    [46]王健,刘长青,肖宏.热连轧精轧机组预设定和自适应研究[J].中南大学学报,2012,43(7):2607-2612
    [47]张进之.中厚板轧制过程分层递阶智能控制[J].钢铁,1998,33(11):34-38
    [48]彭开香,余尚志.基于贝叶斯神经网络的带钢厚度预测与控制[J].北京科技大学学报,2010,32(2):256-262
    [49]田野,高晓华,汤建民,等.基于粒子群遗传优化的热轧带钢头尾宽度控制[J].钢铁,2011,46(1):55-59
    [50]王修岩,葛平,孙一康,等.基于多模型自适应控制方法的FGC控制[J].北京科技大学学报,26(1):99-102
    [51]边海涛.基于神经网络和遗传算法的冷连轧机FGC控制[J].钢铁研究学报,2008,20(3):27-30
    [52]符强,张进之.基于人工神经网络的热连轧参数预测模型[J].钢铁研究学报,2003,15(4):70-72
    [53]Hasan A Y, Mohaned E Elkhatib, Omar A.Sebakhy. Wavelet network-based motion control of DC motors [J]. Expert Systems with Applications,2010,37:1522-1527
    [54]Omar B A A, Haikal A Y M., Areed F F G. Design adaptive neuro-fuzzy speed controller for an electro-mechanical system [J]. Ain Shams Engineering Journal,2011,2(2):99-107
    [55]Alfi Alireza, Hamidreza Modares. System identification and control using adaptive particle swarm optimization [J]. Appplied Mathematical Modelling,2011.35:1210-1221
    [56]Panda S, Sahu B.K. Mohanty P.K. Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization [J]. Journal of the Franklin Institute.2012. 349:2609-2625
    [57]Pittner J, Simaan M A. Control of a continuous tandem cold metal rolling process [J]. Control Engineering Practice 16.2008:1379-1390
    [58]Pittner J, Samaras N S, Simaan S A. A New Strategy for Optimal Control of Continuous Tandem Cold Metal Rolling, IEEE transactions on industry applications[J].2010.46(2):703-711
    [59]Pittner J, Simaan M A. A optimal control method for improvement in tandem cold metal rolling[C]. IEEE industry applications society,2007,p382-389
    [60]Li G. Janabi Sharifi. Fuzzy looperless tension control for hot strip rolling [J]. Fuzzy sets and Systems,2009,160(4): 521-536.
    [61]Kang H K. Lee C W, Shin K H. et al. Modeling and matching design of a tension controller using pendulum dancer in roll-to-roll systems [J]. IEEE transactions industry applications,2011.47(4):1558-1566
    [62]Giannoccaro N I, Messina A, Sakamoto T. Updating of a lumped model for an experimental web tension control system using a multivariable optimization method [J]. Applied mathematical modelling.2010,34:671-683
    [63]Jia Chunyu, Shan xiu ying, Niu zhao ping. High precision prediction of rolling force based on fuzzy and nerve method for cold tandem mill [J]. Journal of Iron and Steel Research, International,2008.15(2):23-27
    [64]Gudur P. P, Dixit U S. An application of fuzzy inference for studying the dependency of roll force and roll torque on process variables in cold fat rolling [J]. Int J Adv Manuf Technol,2009,42:41-52
    [65]Mahdi Bagheripoor. Hosein Bisadi. Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process [J]. Applied Mathematical Modelling.2012,37(7):4593-4607
    [66]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2003:30-31
    [67]Xu Yunbo, Yu Yongmei, Liu Xianghua, et al. Prediction of rolling load, recrystallization kinetics, and microstructure during hot strip rolling [J]. Journal of iron and steel research, international.2007,14(6):42-46
    [68]WIEDERKEHR T, KLUSEMANN B, MULLER H, et al. Fast, curvature-based prediction of rolling forces for porous media based on a series of detailed simulations [J]. Advances in Engineering Software,2011,42(4):142-150.
    [69]ZHANG S H, ZHAO D W, GAO C R. The calculation of roll torque and roll separating force for broadside rolling by stream function method [J]. International Journal of Mechanical Sciences,2012,57(1):74-78
    [70]Dong Yonggang, Zhang Wenzhi, Song Jianfeng. Theoretical and experimental research on rolling force for rail hot rolling by universal mill [J]. Journal of iron and steel research, international.2010,17(1):27-32
    [71]Cao Guangming, Li Chenggang, Zhou Guoping, et al. Rolling force prediction for strip casting using theoretical model and artificial intelligence [J]. J.cent. south univ. Technol.2010,17:795-800
    [72]边海涛,许建国.神经网络在冷连轧机轧制力预测中的应用[J].轧钢.2008,25(1):51-53
    [73]刘相华,胡贤磊,杜林秀,等.轧制参数计算模型及其应用[M].北京:化学工业出版社,2007,55-86
    [74]Sims R B, Wright H. Roll force and torque in hot rolling mills [J]. Journal of the iron and steel institute,1963,3:261-267
    [75]陈瑞飞,徐本军,杨茂麟,等.热变形温度对82B盘条变形抗力的影响[J].过程工程学报,2010,10(5):1010-1014
    [76]张敏,周旭东,李长生,等.带钢热精轧机组机架间冷却控制数学模型[J].钢铁研究学报,2003,15(2):19-23
    [77]Ren X Y, Du F S, Huang H G, el al. Application of improved immune PID controller to bending control system [J]. Journal of iron and steel research, international,2011,18(3):28-33
    [78]Liu G M, Di H S, Zhou C L, el al. Tension and Thickness Control Strategy Analysis of Two Stands Reversible Cold Rolling Mill [J]. Journal of iron and steel research, international,2012,19(10):20-25
    [79]恩格尔布雷希特,谭营.计算群体智能基础[M].北京:清华大学出版社,2009:132-135
    [80]Langeveld Joost, Andries P Engelbrecht. Set-based particle swarm optimization applied to the multidimensional knapsack problem [J]. Swarm Intelligence,2012,6(4):297-342
    [81]王欢,钟卫军,王晔华,等.基于快速非均匀平面波算法和混合粒子群算法的目标外形反演[J].核电子学与探测技术,2009,29(5):1209-1213
    [82]曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338.
    [83]Gao Hao, Xu Wenbo. Particle swarm algorithm with hybrid mutation strategy [J]. Applied soft computing,2011,11: 5129-5142.
    [84]康波,李云霞.计算机控制系统[M].北京:电子工业出版社,2011:163-165
    [85]Kennedy J, Eberhart R. A Discrete Binary Version of the Particle Swarm Optimization Algorithm. Proceedings of the IEEE International Conference on Systems [J]. Man and Cybernetics. Orlando:Institute of Electrical and Electronics Engineers,1997,4104-4108
    [86]Kennedy J, Eberhart R. Particle swarm optimization [J]. Proceedings of the IEEE International Conference on Neural Networks,1995,4:1942-1984
    [87]Shi Y, Eberhart R.A modified particle swarm optimizer[C]. IEEE international conference on computational intelligence, Anchorage, AK, USA,1998:69-73
    [88]Trelea I C.The particle swarm optimization algorithm:convergence analysis and parameter select [J]. Information processing letters,2003,8(5):317-325
    [89]刁东宇,赵英凯.带双重变异算子的自适应粒子群优化算法[J].计算机工程与设计,2009,30(5):1186-1188
    [90]Zadeh L A. Fuzzy Sets [J]. Information and control,1965,8:338-353
    [91]Mandani E. H. Application of fuzzy algorithms for control of simple dynamic plant [J]. Proceedings of Institution of Electrical Engineers,1974,121(12):1585-1588
    [92]李士勇.模糊控制神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社;1998:254-286
    [93]Shen Q, Jian H J. Modified Particle Swarm Optimisation Algorithm for Variable Selection in MLR and PLS Modeling:QSAR Studies of Antagonism of Antagonism of Angiotensin II Antagonists [J]. European Journal of Pharmaceutical Science,2004,22(2-3):145-152
    [94]Zhou Hongjun, Fang Kangling, Song Haiwen. Study and realization of three-stand profiled bar hot continuous rolling control system[C]. Proceedings of the 7th world congress on intelligent control and automation. 2008.2637-2641
    [95]张向葵.棒材连轧机组自动化系统构成及微张力控制[J].电气传动,2007.3:57-60
    [96]周富强,曹建国,张杰,等.冷连轧机轧制力的影响因素[J].机械工程学报,2007,43(10):94-97
    [97]Moon C H, Lee Y. Approximate model for predicting roll force and torque in plate rolling with peening effect considered [J]. ISIJ int,2008,48.1409-1418
    [98]王伟,连家创.采用混合摩擦模型预报冷轧薄板轧制力[J].钢铁研究学报.2000,12(1):10-13
    [99]周富强,曹建国,张杰.等.基于神经网络的冷连轧机轧制力预报模型[J].中南大学学报,2006.37(6):1155-1160
    [100]张俊明,刘军,俞晓峰,等.一种RBF神经网络在某冷连轧机组轧制力计算中的组合应用[J].塑性刚才学报,2008,15(1):133-137
    [101]张俊明,刘军,俞晓峰,等.轧制力预测中RBF神经网络的组合应用[J].钢铁研究学报.2008,20(2):33-36
    [102]VAPNIK V N. The Nature of Statistical Learning Theory [M]. Mew York:Springer-Verlag,1995:1-2
    [103]VAPNIK V N. Statistical Learning Theory [M]. New York:Wiley,1998:160-162
    [104]VAPNIK V N. An overview of statistical learning theory [J]. IEEE Transaction on Neural Networks.1999.10(5): 988-999
    [105]晏密英,桂卫华,阳春华.基于灰色关联和改进SVM的钴离子浓度预测研究[J].仪器仪表学报,2011,32(5):961-967
    [106]吴一全,尹丹艳,纪守新.基于双树复数小波和SVR的红外小目标检测[J].仪器仪表学报.2010,31(8):1834-1839
    [107]许文海,续元君,董丽丽,等.基于水平集和支持向量机的图像声呐目标识别[J].仪器仪表学报.2012,33(1):49-55
    [108]行鸿彦,武向娟,吕文华,等.自动气象站数据采集器温度通道的环境温度补偿[J].仪器仪表学报,2012,33(8):1868-1875
    [109]唐静远,师奕兵,张伟.基于支持向量机集成的模拟电路故障诊断[J].仪器仪表学报,2008,29(6):1216-1220
    [110]洪涛,黄志奇,杨畅.涡轮泵实时故障检测的快速支持向量机算法[J].仪器仪表学报,2012,33(8):1786-1792
    [111]Ji Wu, Xiao Leizhang. Efficient Multiple Kernel Support Vector Machine Based Voice Activity Detection [J]. IEEE Signal Processing Letters,2011,18(8):466-469
    [112]Yang J B, Ong C J. Determination of Global Minima of Some Common Validation Functions in Support Vector Machine [J]. IEEE Transactions on Neural Networks,2011,22(4):654-659
    [113]Bovolo F., Bruzzone L., Carlin L. A Novel Technique for Subpixel Image Classification Based on Support Vector Machine [J]. IEEE Transactions on Image Processing,2010,19(11):2983-2999
    [114]Kao J.W.-H., Berber S.M., Kecman V. Blind Multiuser Detector for Chaos-Based CDMA Using Support Vector Machine [J]. IEEE Transactions on Neural Networks,2010,21(8):1221-1231
    [115]JUANG C F, HSIEH C D. A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization [J]. IEEE Transactions on Fuzzy Systems,2012,20(2):372-384
    [116]TSAIH H, JHUANG Y J, LAI Y S. An SVD-based image watermarking in wavelet domain using SVR and PSO [J]. Applied Soft Computing,2012,12(8):2442-2453
    [117]Elattar E.E., Goulermas J., Wu Q.H. Electric Load Forecasting Based on Locally Weighted Support Vector Regression [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2010, 40(4):438-447
    [118]Wu S M, Akbarov A. Support vector regression for warranty claim forecasting [J]. European Journal of Operational Research,2011,213(1):196-204
    [119]Yang J. B, Ong C J. Feature selection using probabilistic prediction of support vector regression [J]. IEEE Transactions on Neural Networks,2011,22(6):954-962
    [120]任子晖,王坚.加速收敛的粒子群优化算法[J].控制与决策,2011,26(2):201-206
    [121]ZHAO M Y, REN J, JI L P, et al. Parameter selection of support vector machines and genetic algorithm based on change area search [J]. Neural computing & applications,2012,21(1):1-8
    [122]孙林凯,金家善,耿俊豹.基于加权精度的ε-SVR组合参数优化[J].系统工程与电子技术,2011,33(8):1820-1823
    [123]YEH C Y, HUANG C W, LEE S J. A multiple-kernel support vector regression approach for stock forecasting [J]. Expert Systems with Applications,2011,38:2177-2186
    [124]WU Q, LAW R. The forecasting model based on modified SVRM and PSO penalizing gaussian noise [J]. Expert Systems with Applications,2011,38:1887-1894
    [125]但斌斌,陈奎生,应保胜.支持向量机的高速线材精轧机组主电机故障智能诊断系统[J].组合机床与自动化加工技术,2009,2,41-49
    [126]赵会平,陆宁云,姜斌.轧钢过程故障诊断研究现状及发展趋势[J].轧钢,2011,28(1):48-53
    [127]Sweldens W. The construction and Application of Wavelets in Numerical Analysis [M]. Belgium:Department of Computer Science, Katholieke Universiteit Leuven,1995,181-187
    [128]Sweldens W. The lifting scheme:A construction of second generation wavelets. Siam Journal On Mathematical Analysis[J],1998,29(2):511-546
    [129]Donoho D L. Denosing by soft-thresholding [J]. IEEE Transactions on Information theory,1995,41(3):613-627
    [130]杨青,田枫,王大志,等.基于提升小波和递推LSSVM的实时故障诊断方法[J].仪器仪表学报,2011,32(3):596-602
    [131]Suykens J A K, Vandewalle J. Recurrent least squares support vector Machines [J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2000,47(7):1109-1114
    [132]Gu Y P, Zhao W J, Wu Z S. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems [J]. Journal of Process Control,2011,21(7):1040-1048

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700