用户名: 密码: 验证码:
钢丝绳断丝损伤信号处理及定量识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢丝绳作为工程承载的关键构件应用广泛,在其长期作业过程中受环境腐蚀、不确定性交变载荷、机械冲击、磨损等的影响,会出现诸如断丝、磨损、锈蚀等损伤,日积月累导致强度降低甚至突然断裂,轻则造成生产停顿、重则机毁人亡。因此,对钢丝绳的损伤进行检测和准确识别,避免断绳事故的发生,具有重要的社会意义和巨大的经济效益。
     由于钢丝绳结构的复杂性、损伤的多样性导致损伤产生的磁场变化及其特征与钢丝绳损伤之间的本质关系异常复杂,且涉及多学科领域,因此至今仍未形成钢丝绳损伤检测的完善成型的理论和有效方法,所研发的仪器对钢丝绳损伤诊断的准确率和重复率不高、且不具通用性。
     本文以危害最大、最常见的损伤形式——断丝损伤为研究对象,分别在钢丝绳励磁器及检测器设计、断丝损伤信号的采集与处理、特征提取及断丝损伤定量识别等方面进行了理论与试验研究。
     分析了钢丝绳的磁化方式与磁场特征、研究了励磁回路的分析计算方法、磁性材料的优选原则及励磁装置结构对磁场的影响规律,并设计了励磁装置;研究了基于霍尔元件的钢丝绳断丝漏磁检测原理及检测器设计、检测信号预处理及信号采集方法;搭建了钢丝绳断丝检测试验台,并通过试验对理论分析和设计结果进行了验证。
     研究了基于小波系数尺度间的相关性改进阈值的信号去噪方法,即根据噪声随小波分解层数的增加、稠密度减少、幅值降低、而钢丝绳断丝信号与之相反的特性,提出了特征系数的概念及改进阈值新算法,该特征系数可表征信号的性质。钢丝绳断丝信号其值较小,而噪声信号其值较大,因此采用该特征系数在断丝信号处减小阈值、在噪声处增大阈值。基于该改进阈值对小波分解系数进行处理,即可实现逐点自适应改变阈值大小,达到更好地保留断丝信号,最大限度的去除噪声信号的目的。同时,研究了基于表征钢丝绳断丝信号局部特征的自相关系数逐点选择最佳预测器和更新器的降噪方法,实现了在保留有用断丝损伤信号的前提下对检测信号的有效降噪。通过对钢丝绳断丝损伤检测信号的模拟及实际检测信号的降噪处理试验,验证了上述方法降噪效果的优越性。
     分析了钢丝绳断丝损伤检测信号的时域、时频域特征及其对断丝损伤的区分度;引入信息熵技术,通过理论分析和试验,研究了检测信号的功率谱熵及重心频率对钢丝绳断丝位置、断口宽度及断丝根数的区分性能,结果表明,功率谱熵及重心频率组成的二维信息可有效区分钢丝绳的断丝位置,而对断口宽度及断丝根数的区分度较差。在对钢丝绳断丝损伤检测信号多域特征研究的基础上,进一步提出了以由检测信号的频域特征(功率谱熵及重心频率)、时频域特征(小波能量)和时域特征(峰值、波形下面积、波宽)组成的混合特征向量作为输入的钢丝绳断丝损伤定量识别方法,通过可分离性判据和试验证明,与采用时域与时频域特征向量相比,采用混合特征向量对钢丝绳断丝损伤进行识别,具有更好的可分离性。因此,该混合特征向量可作为钢丝绳断丝损伤定量识别的有效特征输入。
     研究了钢丝绳断丝损伤定量识别BP神经网络模型、RBF神经网络模型及支持向量机模型的构建依据和方法,以混合特征向量作为输入,分别构建了基于模式匹配的钢丝绳断丝损伤定量识别的BP神经网络模型、基于函数逼近理论的钢丝绳断丝损伤定量识别的RBF神经网络模型、支持向量机模型,并采用相同的训练样本集和测试样本集对所构建的模型进行训练及测试,对比研究了三种模型对断丝损伤定量识别的性能。结果表明,BP神经网络模型对于钢丝绳断丝损伤识别,具有较强的泛化能力;RBF神经网络模型在只有内层或外层断丝时比BP神经网络稍优;支持向量机模型泛化性能优越,对小样本条件下的钢丝绳断丝损伤的识别效果好,为解决小样本条件下的钢丝绳断丝损伤定量识别问题提供了有效的途径。
     在对钢丝绳断丝损伤定量识别BP神经网络模型、RBF神经网络模型及支持向量机模型进行理论分析和试验研究的基础上,提出了基于D-S证据理论的钢丝绳断丝损伤多模型融合决策识别方法。研究了多模型融合决策识别模型构建、识别框架构造、证据体基本概率分配函数以及证据体联合规则和决策规则确定的理论依据和方法,构建了基于D-S证据理论的钢丝绳断丝损伤多模型融合决策识别系统,并进行了试验。结果表明,多模型融合决策识别系统对钢丝绳断丝损伤定量识别结果的准确率和可靠性与单一模型的识别结果相比,明显提高,是钢丝绳断丝损伤定量识别的有效新方法。
The wire rope is widely used in engineering as a key load-bearing component.During a long-term service, by the effect of enviromental corrosion, uncertainalternating load, mechanical impact and wear etc., damages such as wire breaking,wear, rust will happen, which cumulatively decreases the strength or even lead tofracture of the wire rope. Consequently it may result in a standstill of the machine or afatal crash. Therefore, the detection and accurate identification of the damagecondition of the wire rope in order to avoid the wire breaking accident is of socialsignificance and huge ecomonical benefit.
     Because of the intricate structure of the wire ropes, the complicated relationbetween the diverse damages and the variation and feature of the magnetic fieldleading to the damages, and multidisciplinary fields involved, by far there is nocomplet theory and effective method formed on the detection of the wire rope damage.Moreover, the instruments developed are not univerisal and usually giveinreproducible and inaccurate results.
     In this thesis, the most commn damage, wire breaking, is studied theoretically andexperimentally by the design of exciter and detector, signal collectionn and processing,feature extraction and quantitative recognition,etc..
     Firstly, by analyzing the mode of magnetization and magnetic field characteristicsof wire rope, the analysis and calculation method of excitation circuit, optimumselecting principle of magnetic materials and the law of the exciter structureinfluencing on magnetic field are studied and a excitation device is designed. Thedetection principle of leakage magnetic field based on the hall element, the detectordesign, the method of signal preprocessing and acquisition are investigated. A test rigfor the detection of wire breaking is setted up and the theoretical analysis and designare verified through the experiments.
     Secondly, the signal denoising method by improving the threshold based on thecorrelation of multi-dimension wavelet coefficients is studied. According to thecharacteristics that the density and the amplitude of noise are decreased with the increase of the layer of wavelet decomposition, but wire breaking signal is opposite,the concept of characteristic coefficient has been put forward. The characteristiccoefficient can characterize the nature of signal, which of wire breaking signal is small,but the one of noise signal is big, the characteristic coefficient is adopted to decreasethe threshold in the wire breaking signal, while increase the threshold in the noise.With the processing of wavelet decomposition coefficients based on the improvedthreshold, the adaptive change of threshold point by point can be realized, so thepurpose of better retaining wire breaking signal and removing noise signal is reached.At the same time, the noise reduction method is studied which chooses the bestpredictor and updater point by point based on the autocorrelation coefficientcharacterizing the local characteristics of wire breaking signal. This method achievedthe effective noise reduction for signal detection on the premise of remaining usefulbroken wire signal. The superiority of the above methods's noise reduction effect isverified through the experiment of denoising processing of simulating signal and theactual detection signal.
     Thirdly, the time domain and time-frequency domain characteristics of thedetection signal and the dipartite degree of wire breaking are analyzed. The divisionalperformance of signal power spectral entropy and centroid frequency to wire breakingposition, fracture width and the number of broken wires is studied through theoreticalanalysis and experiment. The results show that the two-dimensional information madeup of power spectral entropy and centroid frequency can effectively distinguish theposition of broken wires, but has a poor differentiation to the fracture width and thenumber of broken wires. Based on the study of the multi-domain characteristics ofdetection signal when the wire rope appears wire breaking, the quantitativeidentification method for broken wire is furtherly put forward which takes the mixedfeature vector consisting of the frequency domain characteristics (power spectralentropy and centroid frequency), time-frequency domain characteristic(wavelet energy)and time domain features (peak value, area of waveform and wave width) as input. Theseparability criterion and experiment prove that using mixed feature vector for brokenwire identification has better separability than using time domain and time-frequency domain feature vector. Therefore, the mixed feature vector can be used as the effectivecharacteristics input of the quantitative identification when wire rope appears brokenwires.
     At last, the basis and method of building quantitative identification models ofBP neural network, RBF neural network and support vector machine (SVM) for brokenwire are studied. Taking the mixed feature vector as input, the BP neural networkmodel based on pattern matching, the RBF neural network model based on the functionapproximation theory and the support vector machine model are respectivelyestablished and trained by the same data. Then the performance of the three trainedmodels is compared using the same test sample sets to test the model. Results showthat BP neural network model can be used for damage identification of wire rope, RBFneural network model is slightly better than BP neural network, support vectormachine model has superior generalization performance and identification effect underthe condition of small sample of broken wire. SVM provides an effective way forsolving the problem of broken wire's quantitative identification under the condition ofsmall sample.
     On the basis of theoretical analysis and experimental research on the BP neuralnetwork model, RBF neural network model and support vector machine model forbroken wire's quantitative identification, the multi-model fusion decision-makingrecognition method is proposed for the broken wire based on Dempster-Shaferevidential theory. The theory basis and method are researched including the building ofmulti-model fusion recognition model, the construction of frame of discernment,determination of basic probability assignment function of evidence and establishmentof evidential combination algorithm and decision rule. Then a multi-model fusiondecision-making recognition system for broken wire based on D-S evidence theory isconstructed and the experiments are carried on. The results show that the accuracy andthe reliability of quantitative recognition results for broken wire with multi-modelfusion decision-making recognition system, compared with the single modelidentification, are significantly improved. It is a new effective method for brokenwire's quantitative identification.
引文
[1] http://www.ihome027.com/shtml201209/posts_1347762689.html
    [2] http://www.chinanews.com/hd2011/2012/09-25/135578.shtml#nextpage
    [3] http://news.xinhuanet.com/newscenter/2008-10/30/content_10289369_1.htm
    [4]杨叔子,康宜华.钢丝绳断丝定量检测原理与技术[M].国防工业出版社,1995:2-5,57,66-78.
    [5] Geller,L.B.,Udd.J.E..How accurate are non-destructive testing based estimates ofmine haft rope breaking strength losses[J]. CIM Bulletin, December1990,83(944):47-50.
    [6] Kuun,T.C..Low Rotation Winding ropes for long lift drum winders.Internal AngloAmerican of South African Limited document,1993.
    [7] G.M.Nagaraja Rao,S.Jayanthu.Electromagnetic method of testing the wire ropevis-a-vis calibration of defects[R].Proc.National Seminar on Non-DestructiveEvaluation Dec.7-9,2006, Hyderabad.
    [8]Vorontsov, A., V. Volokhovsky, et al. Combined approach to damaged wire ropeslife-time assessment based on NDT results and rope mechanics[C].9th InternationalConference on Damage Assessment of Structures,2011:1-9.
    [9]Xu, F., X. Wang, et al. Inspection method of cable-stayed bridge using magnetic fluxleakage detection: principle, sensor design, and signal processing[J]. Journal ofMechanical Science and Technology,2012,26(3):661-669.
    [10]腾中雄三,小门纯一.端末リクント部にすけゐワイセローの探伤法につぃて.日本矿业会志.1985,101(1171).
    [11]邬述晖.钢丝绳金属截面积损失捡测系统研究[D].武汉理工大学硕士论文.2004.
    [12] Weischedel HR. Electromagnetic wire rope inspection in Germany1925-40[J].Materials Evaluation.1986.46(6):734-736.
    [13] Kitzinger,F.,Wint,G.A..Magnetic testing device for detecting loss of metallic areaand internal and external defects in longated objects[P].US.patent,no.4096437,1978.
    [14] Tomaiuolo,F.G.,Lang,J.G..Method and apparatus for nondestructive testing ofmagnetically permeable bodies using a first flux to saturate the body and a second fluxopposing the first flux to produce a measurable flux[P].US.patent,no.4495465,1985.
    [15] Weischedel HR.The inspection of wire ropes in service[J]. Wire JoumalInternational,1985,(9):180-198.
    [16] Weischedel HR.Method and apparatus for magnetic inspection[J]. United StatesPatent,1987,(4):659-991.
    [17] Weischedel HR.Ramsey RP.Electromagnetic testing:a reliable method for theinspection of wire rope in service[J].NDT International,1989,22(3):155-161.
    [18] Weischedel HR. Wire rope strength estimates, retirement critical andelectromagnetic inspection—a critical review[J]. Wire Rope News&Sling Technology,1993,(12):14-17.
    [19] Kalwa E,Piekarski K. Design of inductive sensors for magnetic testing of steelropes[J]. NDT&E International,1987,20(6):347-353.
    [20] Kalwa E,Piekarski K. Design of hall-effect sensors for magnetic testing ofropes[J].NDT&E International1987,20(5):295-301.
    [21] Kalwa E,Piekarski K. Determination of flaws located at different depth levels inthe cross-section of steel rope[J]. NDT&E Internationa1,1988,21(2):77-82.
    [22] Kalwa E,Piekarski K. Qualitative and quantitative determination of denselyoccurring defects in steel ropes by magnetic testing method[J]. Materials Evaluation,1988,46(5):767-770.
    [23] MironenkoA,SukhorukovV. Non-destructive testing of steel wire ropes in Russia[J].Non-destructive testing and condition monitoring,1998,(7):395-397.
    [24] Winter,S.,Briem,U.,Nussbaum,J.M..High resolution magnetic wire rope test-casestudy[C]. In:OIPEEC Technical meeting“The non-destructive testing of rope”, Krakow,September,1999:143-151.
    [25] Jomdecha C, Prateepasen A, Methong W. Design and construction of magnetic-flux-leakage equipment for detecting localized faults of wire rope[J]. MSAT2, MTEC2002:76-78.
    [26] Jomdecha C, Prateepasen A, Methong W. Localized faults of wire rope bymagnetic flux leakage inspection[J]. Hatyai,Thailand: EECON25Prince of SongklaUniversity,2002:11-15.
    [27] Jomdecha C, Prateepasen A, Methong W. Coil sensors for wire rope inspectionusing magnetic flux leakage instrument[C]. In: ICCAS2002,Muju Resort, Jeonbuk,Korea,2002:1131-1136.
    [28] Jomdecha, C. and A. Prateepasen. Design of modified electromagnetic main-fluxfor steel wire rope inspection[J]. NDT&E International,2009,42(1):77-83.
    [29] Moriya T, Sugawara M, Tsukada K. Magnetic nondestructive evaluation ofcorrosion in wire ropes[C]. Ocean '04-MTS/IEEE Techno-Ocean: Bridges across theOceans-Conference Proceedings, November9,2004, Kobe, Japan: Marine TechnologySociety Inc.1904-1909.
    [30] Torres V, Quek S, Gaydecki P. Study and application of a multi magnetoresistorsensor system to detect corrosion cables[C]. Review of Progress in QuantitativeNondestructive Evaluation, Vols29a and29b,2010,1211:1705-1712.
    [31] Torres, V., S. Quek, et al. Development of a scanning system to detect corrosion inwire bundles and pipes using magnetoresistive sensors[J].Insight-Non-DestructiveTesting and Condition Monitoring,2011,53(2):82-84.
    [32] Yoshioka, T., S. Hiroshi, et al. Wire rope flaw detection device[P]. WO Patent no148456,2011.
    [33]康宜华,杨克冲,杨叔子等.基于钢丝绳结构特征的断丝漏磁霍尔效应检测方法[J].华中理工大学学报,1992,(S1):188-194.
    [34] Kang, yihua,Yang, kechong,Xie,hongjiang, et al.Model-based quantitativeinspection for broken wires in wire ropes[C]. In: the2th international conference onmeasurement and intelligent instrument, Wuhan, China, Aug.1993.
    [35]武新军,康宜华,谢月云等.升船机钢丝绳断丝检测方法的研究[J].华中理工大学学报,1998,26(2):55-57.
    [36]金建华,康宜华.多传感器信息的决策融合法及其在电磁检测中的应用[J].无损检测,2003,25(11):585-588.
    [37] Jin, J. H., Kang, Y. H., Yang, S. Z.. An improved corrosion inspection andmonitoring instrument for used oil well tubing[J]. Materials Performance,2000,39(2):72-76.
    [38]康宜华,武新军,杨叔子.磁性无损检测技术中的信号处理技术[J].无损检测,2000,22(6):58-61.
    [39]康宜华,杨叔子,卢文祥等.空间域信号的采样方法[J].华中理工大学学报,1992,(S1):183-188.
    [40]窦毓棠,刘作伦.提升机钢丝绳断丝检测方法的研究[J].矿山机械,1990,(2):29-33.
    [41]褚建新,顾伟.钢丝绳缺陷漏磁场的磁通门检测法[J].仪器仪表报,1997,18(4):437-440.
    [42]谭继文等著.钢丝绳安全检测原理与技术[M].北京:科学出版社,2009.
    [43]刘克明,李劲松,卢文祥等.钢丝绳无损探伤原理及探伤系统信号处理装置的研究[J].强度与环境,1988,(3):17-22.
    [44]李劲松.钢丝绳状态自动定量检测原理与实现[D].华中理工大学博士学位论文,1991.
    [45]刁柏青,张孝令,石磊等.Bayesian预测及其在钢丝绳缺陷识别中的应用[J].振动、测试与诊断,1994,14(2):7-13.
    [46]胡阳,康宜华,卢文祥等.钢丝绳无损检测中的一些算法-信号的预处理和特征提取[J],无损检测,2000,22(11):483-488.
    [47]谭继文,庞素礼,朴承凤,钢丝绳断丝损伤的定量检测[J].煤矿机电,1993,(1):41-43
    [48] W.Gu, J.X.Chu.A transducer made up of fluxgate sensors for testing wire ropedefects [J]. IEEE Transactions on Instrumentation and Measurement,2002,51(1):120-124.
    [49] D.L.Zhang,Y.N.Cao,C.Wang and D.G.Xu.A new method of defects identificationfore wire rope based on three-dimensional magnetic flux leakage[C].Journal ofPhysics:Conference Series,2006,(48):334-338.
    [50]赵英亮,王黎明,宋文爱.高噪下的钢丝绳断丝定量检测[J].测试技术学报,2002,6(4):296-298.
    [51] H.Michel,K.Frank. Apparatus for increasing linear resolution of electromagneticwire rope testing[P].United States Patent5565771,1996,10,324/225.
    [52]卢文科,朱长纯,方建安,文常保.小波变换用于钢丝绳断丝检测的研究[J].传感技术学,2007,20(7):1659-1661.
    [53]王红尧.煤矿提升钢丝绳在线检测关键技术研究[D].中国矿业大学博士论文,2009.
    [54]夏国荣,徐志胜,马振燕.多小波阈值降噪法在钢丝绳缺陷检测中的应用[J].测试技术学报,2007,(4):319-323.
    [55]纪凤珠,孙世宇,王长龙等.模糊提升小波包变换降噪法在漏磁检测信号处理中的应用[J].无损检测,2011,(5):22-24,34.
    [56] Jomdecha C, Prateepasen A, Methong W. Characterization of wire rope defectsfrom magnetic flux leakage signals[J]. Thammasat Int J SciTechnol,2003,8(1):54-63.
    [57]陈礼娟,何辅云,徐明亮.小波变换在漏磁检测中的应用研究[J].合肥工业大学学报,2002,25(5):707-710.
    [58]张力严,陶德馨.基于小波变换的钢丝绳缺陷信号检测与分析[J].武汉理工大学学报,2001,25(4):493-495.
    [59]张鹏,刘晓平,王睿.基于自适应提升小波的漏磁信号降噪[J].软件,2012,33(7):91-92,155.
    [60]赵洁,华钢,于博.基于改进小波阈值算法的矿用钢丝绳损伤检测信号去噪方法[J].煤矿机械,2013,34(1):284-286.
    [61]纪凤珠,王长龙,梁四洋.自适应提升小波在漏磁信号处理中的应用[J].探测与控制学报,2007,(6):59-62.
    [62] G.Y. Tian, A. Sophian. Reduction of lift-off effects for pulsed eddy current NDT[J].NDT&E International,2005,38:319-324.
    [63] Noppadon Sumyong, Asa Prateepasen, Pakorn Kaewtrakulpong. Influence ofscanning velocity and gap distance on magnetic flux leakage measurement[J].EctiTransactions on Electrical Eng, Electronics, and Communications,2007,5(1):118-122.
    [64] Christen, R., A. Bergamini, et al. Influence of steel wrapping on magneto-inductive testing of the main cables of suspension bridges[J]. NDT&E International,2009,42(1):22-27.
    [65]陈厚桂,康宜华,武新军.基于相关性的钢丝绳断丝特征提取[J].机械工程学报,2006,42(5):224-228.
    [66]胡阳,康宜华,卢文祥等.钢丝绳无损检测中的一些算法-信号的预处理和特征提取[J].无损,2000,22(11):483-488.
    [67]徐俊峰,陶德馨.基于BP神经网络的钢丝绳断丝模式识别[J].武汉理工大学学报,2002,24(2):4-6.
    [68]谭继文.钢丝绳损伤与张力在线定量检测及安全性评价的研究[D].东北大学博士论文,2000.
    [69]张东来,徐殿国,王炎.钢丝绳断丝信号的空间域划分及在小波变换下的频域特征提取[J].电子学报,2000,28(7):59-62.
    [70]张静远,基于小波变换的特征提取方法分析信号处理[J].信号处理,2000,16(2):156-162.
    [71] Christen,R.,Bergamini,A..Automatic flaw detection in NDE signals using a panelof neural networds [J].Ndt&E Int,2006,39(7):547–553.
    [72]王阳生,师汉民,杨叔子等.钢丝绳断丝定量检测的原理与实现[J].中国科学A辑,1989,(9):993-1000.
    [73]刁柏青,姚来昌,史铁林等.钢丝绳缺陷定量识别的贝叶斯建模方法[J].华中理工大学学报,1996,24(4):42-44.
    [74]顾伟,褚建新.钢丝绳缺陷信号的特征量分析与损伤状况的模糊辩识[J].机械工程学报,2002,38(5):122-125.
    [75]黄锐,卢文祥,杨叔子.神经元网络钢丝绳断丝信号定量识别技术[J].中国科学工程,1994,5(1):1-3.
    [76]曹印妮.基于漏磁成像原理的钢丝绳局部缺陷定量检测技术研究[D].哈尔滨工业大学博士论文,2007.
    [77]徐俊峰.钢丝绳断丝损伤的智能化检测技术研究[D].武汉理工大学硕士论文,2002.
    [78]张东来,徐殿国.基于小波神经网络的钢丝绳断丝定性和定量检测[J].仪器仪表学报,2002,23(S2):486-491.
    [79] Bergamini, A. and R. Christen. A simple approach to the localization of flaws inlarge diameter steel cables[J].SPIE,2003,(8):243-251.
    [80]王贤江,杜润生,卢文祥等.基于决策树的钢丝绳断丝定量识别[J].信息与控制,1994,23(5):299-307.
    [81]武新军,康宜华,程顺峰.基于事例推理的漏磁无损检测数据处理方法[J].无损检测,2003,25(7):365-368.
    [82] Dohm, M.An evaluation of magnetic rope testing instrument defect detectioncapabilities, particularly in respect of low rotation, multi-layer rope constructions[C].In:OIPEEC Technical Meeting “The non-destructive testing of rope”, Kraków,September1999:37-62.
    [83]邵永波,裴珍等.基于声发射技术的钢丝绳断丝模式识别[J].应用声学,1999,18(1):1-5.
    [84]中华共和国煤炭工业部.煤矿安全规程[M].北京:煤炭工业出版社,1986.
    [85]周强.钢丝绳力磁效应与疲劳损伤漏磁信号监测的研究[D].武汉理工大学博士论文,2002.
    [86]陈厚桂.钢丝绳磁性无损检测技术的评估方法及标准研究[D].华中科技大学博士论文,2006.
    [87]袁渊,古军,习友宝等.虚拟仪器基础教程[M].成都:电子科技大学出版社,2005.
    [88]田军,谭继文,李春静.钢丝绳探伤的永磁励磁器设计[J].矿山机械,2006,(2):60-61.
    [89]谭继文.钢丝绳断丝损伤的漏磁检测系统研究[D].阜新矿业学院硕士论文,1989.
    [90] C.Jomdech, A.PrateePasen, W.Methong. Characterization of wire rope defects frommagnetic flux leakage signals[J].Thammasat Int.J.Sc.Tech.,2003,8(1):54-63.
    [91] V.Lunin,V.Barat.Wavelet transform of signal for enhancement of SNR in wire ropeinspection[C]. AIP Conf.Proc.,2002,615(1):707-714.
    [92] Donoho DL, Johnstone I.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,12(18):425-455.
    [93] Donoho DL. Denoising soft-thresholding[J]. IEEE Transaction on Information,1995,(3):613-627.
    [94] Swetdens.W..The lifting scheme:A new philosophy in biorthogonal waveletconstructions[J].Wavelet Applicat.SignalImage Process,1995,2569:68-79.
    [95] Sweldens.W..The lifting scheme:A custom-design construction of biothogonalwavelets[J].Journal of Applied and Comput.Harmonic Analysis,1996,3(2):186-200.
    [96] Sweldens.W..The lifting scheme: A contruction of second generation wavelet[J].SIAM J. Math. Ana1.1997,29(2):5l1-546.
    [97]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [98] Mallat S,Hwang W L.Singularity detection and processing with wavelets[J].IEEETrans.Information Theory,1992,38(2):617-643.
    [99]李仲宁,罗志增.基于小波变换的空域相关法在肌电信号中的应用[J].电子学报,2007,35(7):l413-l418.
    [100] Daubechies I, Swenldens W. Factoring wavelet transform into lifting steps[J].Journal of J Math Anal Appl,1998,4(3):247-269.
    [101] Stepien J, Zielinski T, Rumian R.Image denoising using scale-adaptive liftingschemes [C].IEEE International Conference on Image Processing, Vacouver,2000,(3):288-290.
    [102] Claypoole R L. Flexible wavelet transforms using lifting[EB/OL].URL:http://www.seg.drg/meetings/past/seg1998/techprog/st18/paper1375.pdf,1998.
    [103] Abhayaratne G C K,Momro D M.Embedded to lossless coding of motioncompensated prediction residual in lossless video coding [DB/OL].URL:http://dmsun4.bath.tic.uk/papers/charith.VCIP01pdf,2000-09,19.
    [104] Fernandez G,Periaswamy S,Sweldens W. LIFT-PACK:a software package ofwavelet transforms using lifting[DB/0L].URL:http://bell-labs.com/who/vim/papers/spie96/pdf.2000-01-02.
    [105]胡阳,康宜华,卢文祥等.钢丝绳无损检测中的一些算法——信号的预处理和特征提取[J].无损检测,2000,22(11):483-488.
    [106]顾伟钢.丝绳缺陷信号的特征量分析与损伤状况的模糊识别[J].机械工程学报,2002,38(5):122-125.
    [107]陈厚桂.基于相关性的钢丝绳断丝特征提取[J].机械工程学报,2006,42(5):224-228.
    [108]张东来.基于线性B—小波的钢丝绳信号数据压缩和特征提取[J].仪器仪表学报,1998,19(3):249-255.
    [109]徐殿国.基于自适应小波包的钢丝绳局部损伤相平面定量检测方法研究[J].仪器仪表学报,2001,22(4):391-393,399.
    [110]黄树红,韩守木等.旋转机械振动信号的信息熵特征[J].机械工程报,2001,37(6):94-98.
    [111]王太勇.谱熵分析方法在漏磁信号特征提取中的应用[J].天津大学学报,自然科学与工程技术,2004,37(3):216-222.
    [112]谭小红,张佃中.心音信号功率谱熵与年龄的关系[J].实用预防医学,2005,12(1):193-194.
    [113]刘红星.振动加速度信号中诊断信息提取与集成[D].西安交通大学博士论文,1997.
    [114]刘红星,左洪福,姜澄宇等.信号频谱的二维向量及其应用[J].中国机械工程,1999,10(5):37-539.
    [115]赵志宏,杨绍普.基于相对小波能量的滚动轴承故障诊断[J].电子测量与仪器学报,2011,25(1):44-48.
    [116]李骏.板带材缺陷检测中的多特征优化组合方法研究[J].计算机工程与应用,2007,43(22):197-200.
    [117] Poyhonen S,Negrea M,ArkkioA,etc.Support vector classification for faultdiagnostics of an electrical maehine[C].In Proc. of intemational conference on signalprocessing(ICSP’02),Beijing-China,2002,8:26-30.
    [118] Poyhonen S, Negrea M, ArkkioA, etc. Fault diagnostics of an electrical machinewith multiple support vector classifiers[C]. In Proc.of the2002IEEE internationalsymposium on intelligent controlVancouver.Canada,2002,10:27-30.
    [119] Junfeng Gao,Wengang Shi,JianxunTan,etc. Support vector machines based onapproach for fault diagnosis of valves in reciprocating pumps[C].In Proc.of the2002IEEE Canadian conference of electrical&computer engineering,2002:1622-1627.
    [120] Sanna P. Fault diagnostics of an electrical machine with multiple support vectorclassifiers[C].Proc of2002IEEE International Symposium on Intelligent Control,Vancouver Canada,2002:373-378.
    [121]张周锁,李凌均,何正嘉.基于支持向量机的多故障分类器及应用[J].机械科学与技术,2004,23(5):536-601.
    [122] Martin T.Hagan.Neural network design[M].Prentice-Hall,1996.
    [123] Robert Hecht-Nielsen. Theory of back propagation neural networks[C].Proceedings of the International Joint Conference on Neural Networks. Washington:IEEE,1989:593-605.
    [124]闻新等.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003.
    [125] Kearns,M. A bound on the error of cross validation using the approximation andestimation rates with consequences for the training-test split[C]. In: Touretzky D. S.,Mozer M. C., and Hasselmo M.E.(Eds.), Advances in Neural Information Processing8.Cambridge, MA, The MIT Press,1996:183-189.
    [126] Hartman E J,Keeler J D.Layered neural networks with gaussian hidden units asuniversal approximations[J]. Neural Computation,1990,(2):210-215.
    [127]邓乃扬,田英杰.支持向量机理论算法与拓展[M].北京:科学出版社,2009.
    [128]田英杰.支持向量回归机及其应用研究[D].中国农业大学博士论文,2005.
    [129]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [130] Vapnik V. N.Statistical leanring theory[M]. NewYork:JohnViley&Sons,Inc.,1998.
    [131] Kressel U.Pairwise classification and support vector machines[C].In ScholkopfB.etal(Eds.), Advances in kenrel Method——Support vector learning, Cambridge, M.A,MIT Press,1999:255-268.
    [132]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机(第1版)[M].北京:科学出版社,2004.
    [133] Vapnik V. The nature of statistical learning theory[M]. New york: Spring-cerlag,1995.
    [134] DemPster A.P..Upper and lower probabilites induced by a multivalued mapping[J].Annalsof Matllematical Statisties,1967,38:325-339.
    [135] Dempster A.P..A generalization of bayesian infeenee[J]. Joumal of the RoyalStatistical Soeiety,1968,30:205-247.
    [136]董海鹰,李娜.基于D-S证据理论信息融合的转辙机故障诊断方法研究[J].测试技术学报,2013,27(1):1-7.
    [137]杨广,吴晓平,辛登松等.粗糙集-神经网络与证据理论融合推理的综合故障诊断方法研究[J].武汉理工大学学报,2013,37(1):62-66.
    [138]何东健,乔永亮,李攀等.基于SVM-DS多特征融合的杂草识别[J].农业机械学报,2013,44(2):182-187.
    [139]王文杰,叶世伟.人工智能原理与应用(第1版)[M].北京:人民邮电出版社,2004:178-186.
    [140]余志富,吕久明,罗景青.基于时间融合的雷达辐射源自动识别方法[J].火力与指挥控制,2008,33(3):24-27.
    [141]陈小玄,罗大庸,单勇腾.基于神经网络信息融合的机车牵引电机故障诊断[J].计算机测量与控制,2007,15(5):563-565.
    [142]王俊林,张剑云.基于统计证据的Mass函数和D-S证据理论的多传感器目标识别[J].传感技术学报,2006,19(3):862-864.
    [143]李春光,刘国栋.基于D-S证据理论的移动机器人多传感器信息融合方法研究与应用[J].传感技术学报,2003,(4):388-392.
    [144]戴冠中,潘泉,张山鹰等.证据推理的进展及其存在的问题[J].控制理论与应用,1999,16(4):465-469.
    [145]吴文杰.基于信息融合的航空发动机故障诊断方法[D].电子科技大学博士论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700