用户名: 密码: 验证码:
矿震监测的理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿震是采矿诱发的矿井地震,是矿井自然灾害之一。如何降低和减少矿震所导致的事故和灾难,是目前研究的重要课题,而解决这一问题的主要途径之一,是对矿震进行实时连续监测。本文针对这一问题,对矿震监测的理论与应用进行研究。
     (1)探讨矿震的发生机理,建立了矿震波在均匀与非均匀介质中的传播模型。
     根据矿震的物理特征、矿震的能量特征、参与矿震的岩体类别、矿震力源和矿震发生失稳机理等对矿震进行分类;详细论述与总结了断层错动型矿震、煤体压缩型矿震、顶板断裂型矿震的发生机理。建立了均匀介质中矿震波的三维显式波动方程,以及分层介质中的三维显示波动方程。通过在矿震监测系统的应用表明,所建模型有效提高了震级计算和定位计算的精度。
     (2)建立矿震波初至自动识别方法。
     通过分析矿震信号的特征及其干扰因素,对各种震相自动识别方法进行了总结,评价了各种识别方法的优缺点,并基于分形理论对矿震震相初至的自动识别进行了的研究,采用Hausdorff分形维数方法中使用超立方体对振动波形进行覆盖的计算方法,克服了其他同类方法对矿山地震进行平面简化问题,到时读取的精度有了一定提高。通过对实际矿山地震进行定位,垂直误差均值为4.5m,水平方向误差为0.4m,满足煤矿安全生产要求。
     (3)建立了矿震定位方法,并对SW-GBM定位方法进行修正。
     在地震定位问题的解决方法的基础上,研究了适合于矿震特点的定位方法。采用用走时和震源距离之间的关系式推导出了矿震发震时刻的计算公式;研究了基于发震时刻计算公式单台站定位方法,并在木城涧矿震监测定位系统中的应用,定位结果小于系统规定的误差上限;研究了适合于两台站和三台站定位的直线方程法;对SW-GBM法的各种情况进行了讨论,给出了矿震定位质量的评估方法。并结合矿震波传播规律对SW-GBM定位方法进行了修正,计算结果表明,能够有效的提高矿震定位精度。
     (4)建立震级计算公式,并通过现场实测数据建立了矿震预测公式。
     根据矿震不同于地震的特点,采用李学政的近场起算函数,计算近震震级;利用加速度测定矩震级;采用曲线拟合的方式拟合木城涧矿区的持续时间震级公式;并对近震震级和持续时间震级的结果进行对比分析。运用最大熵理论建立信息熵预测矿震的统一预测模型,现场实例验证该模型预测精度较高,是一种可行的矿震预测方法。
     (5)建立矿震监测台站的空间分布准则。
     台站的空间分布在煤矿监测中具有重要的地位,在给定速度模型后,台站的几何分布将直接影响监测精度。运用维数优化原理建立矿震监测台站优化方法,实践表明优化的监测台站空间布置能够大大减小震中定位误差,为其他煤矿微震台站选址和布置具有一定的借鉴意义。此外讨论了台网数量对矿震预测的影响,增加台网密度,提高监测频率是今后矿震监测的主要方向之一。
     (6)修正并完善原有矿震监测系统,开发矿震监测管理和预警系统。
     基于上述研究成果,对原有矿震监测系统进行完善。开发了矿震监测管理和预警系统,确定应力异常区矿山微震敏感指标,并从现场矿山微震规律中,抽取相关特征参量,确定了煤矿高应力异常区域矿山微震确定方法和危险性动态趋势预测方法,给出了相关指标的预警临界值。
Mine earthequake is induced by mining, is one of the natural disasters in coal mine.How to reduce the accidents and disasters caused by mine earthquake is an importantresearch subject, and one of the main solutions of this problem is, mine earthquakereal-time continuous monitoring. Aiming at the question of mine earthquake, the papercarried on a system research on the theory and application of mine earthquakemonitoring.
     Explore the occurrence mechanism of Mine earthequake, establish propagationmodel of a mine shock wave in homogeneous and heterogeneous medium.
     According to physics characteristics, shock energy characteristics of mineearthquake, rock types that participate in the mine earthquake, force source of mineearthquake, instability mechanism when mine earthquake happened, classify the mineearthquakes; Detailed summarizes the occurring mechanism of mine earthquake of faultmovement type, of coal body compression type, of roof fracture type. Establish3dexplicit wave equation of shock wave in the homogeneous medium, and3d explicit waveequation in layered medium. Through the application in the rock-burst monitoringsystem, it shows that the model effectively improve the precision of magnitudecalculation and positioning calculation.
     Establish automatic identification method of ore seismic first break.
     Through the research of characteristics and interference factors of rock-burst signal,summarized seismic phase automatic identification methods of earthquake, andevaluated the advantages and disadvantages of various of identification methods, andresearch on automatic identification method of the beginning of seismic phase of mineearthquake based on the fractal theory, uses the Hausdorff fractal dimension method,depend on the calculation method which use hypercube to cover vibration waveform,overcome the problem of simplify mine earthquake by plane that other methodsencounter, the accuracy of come time is increased. Based on the actual miningearthquake location, the average location error on the vertical direction is4.5m, theaverage location error on the horizontal direction is0.5m, comply with the requirementsof safety production in coal mine.
     Established location methods of the mine earthquake, and correct SW-GBMpositioning methods.
     In the foundation of the solutions of seismic location problems, has studied thesolving method suitable for the characteristics of mine earthquake location problem.Deduce the calculation formula of mine earthquake seismogenic moment with theequation between travel time and focal distance. Research single station positioningmethod based on the seismogenic moment calculation formula, and applied in rock-burstmonitoring and orientation system in Muchengjian Mine, the error in positioning resultsis less than system prescribed error upper limit; Research equation of the straight linemethod which is suitable for two stations and three station positioning; A variety ofconditions in SW-GBM method are discussed, Gives the evaluation methods for mineearthquake location quality. Correct SW-GBM positioning methods with shock wavepropagation law, the results show that: it can improve the mine earthquake locationaccuracy effectively.
     Establish magnitude formula, and built mine earthquake prediction formula throughthe field measured data.
     The characteristics of mine earthquake is different from that of earthquake, use thenear field counting function of Li Xuezheng to calculate near earthquake magnitude;measure the moment magnitude with acceleration; Fit the duration magnitude formula ofMuchengjian Mine with the way of curve fitting; And analyze the results of the nearearthquake magnitude and duration magnitude. The unity of mine earthquake predictionmodel which predict by deducing information entropy through the maximum entropytheory, the example verify that it has high accuracy, lots of advantages, is a kind offeasible analysis method for mine earthquake prediction.
     Establish space distribution rule of mine earthquake monitoring stations.
     The spatial distribution of stations in coal mine monitoring plays an important role,when given speed model, the geometric distribution of stations will directly affect themonitoring accuracy; Establish optimization method of space distribution of mineearthquake monitoring stations with dimension optimization principle method, practiceshows that the optimization of space layout of the microseismic monitoring station cangreatly reduce the epicenter location error, it has reference significance for the location and layout of other mine microseismic station. Network number has an importantinfluence on mine earthquake prediction, increasing the network density and improvingthe monitoring frequency is one of the main directions of rock-burst monitoring researchin the future.
     Correct and improve exists mine earthquake monitoring systems, developmanagement and early warning system of rock-burst monitoring.
     Based on the research results, improve the original mine earthquake monitoringsystems, develop management and early warning system of rock-burst monitoring.Determines sensitive index of mine microseismic in the stress anomaly area, andextracting relevant characteristic parameters from the rule of field mine microseismic,and determined the mine microseismic determine method in high stress anomaly area ofthe coal mine and forecast method of dynamic trend of risk, and gives the relevantindexes of early warning threshold.
引文
[1]胡社荣,戚春前,赵胜利,等.中国深部矿井分类及其临界深度探讨[J].煤炭科学技术,2010,38(7):10-13.
    [2] Sato Y,Skoko D. Optimum distribution of seismic observation points. II. Bull. Of EarthquakeRes. Inst.1965,(43):451-457.
    [3] Kijko A. An algorithm for the optimum distribution of a regional seismic network-I. Pageoph.1977,(115):999-1009.
    [4] Kijko A. An algorithm for the optimum distribution of a regional seismic network-II. Ananalysis of the accuracy of location of local earthquake depending on the number of seismicstations.1977,(115):1011-1021.
    [5] Mendecki A J. Seismic Monitoring in mines. London:Chapman and Hall Press,1997.
    [6] Mendecki A J. Van Aswegen G. A method for the optimal design of mine seismic networks inrespect to location errors an its application. Research report,AAC Research and DevelopmentServices, Rock Mechanics Department,56.
    [7]巩思园,窦林名,曹安业,等.煤矿微震监测台网优化布设研究[J].地球物理学报.2010,53(2):457-466.
    [8]牟宗龙,窦林名,巩思园,等.矿井SOS微震监测网络优化设计及震源定位误差数值分析[J].煤矿开采,2009,14(3),8-14.
    [9] Frederik J. Simons, Ben D. E. Dando, Richard M. Allen.Automatic detection and rapiddetermination of earthquake magnitude by wavelet multiscale analysis of the primary arrival.F.J.Simons et al./Earth and Planetary Science Letters250(2006)214-223.
    [10] Bogdan ENESCU, Kiyoshi ITO, and Zbigniew R. TRUZIK.WAVELET-BASEDMULTIFRACTAL ANALYSIS OF REAL AND SIMULATED TIME SERIES OFEARTHQUAKES. Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No.47B,2004.
    [11] Haijiang Zhang, Clifford Thurber, and Charlotte Rowe.Automatic P-Wave arrival Detectionand Picking with Multiscale Wavelet Analysis for Single-Component Recordings.Bulletin of theSeismological Society of America, Vol.93, No.5, pp.1904-1912, October2003.
    [12]刘希强,沈萍,山长仑.数字化地震波形资料的时频分析方法及应用[J].西北地震学报,2004,26(2):118-125.
    [13]刘希强,周蕙兰,郑治真,等.基于小波包变换的弱震相识别方法.地震学报,1998,7:373-380.
    [14]杨配新,邓存华,刘希强,等.数字化地震记录震相自动识别的方法研究[J].地震研究,2004,10:308-313.
    [15] Jiao L et al. Variance fractal dimension analysis of seismic refraction signals. Proceeding ofIEEE WESCANEX97congference on communications,power and computer,116-120.
    [16] Chang Xu et al. Hausdorff fractal algorithm for picking first break in seismic traces. BUTSURITANSA,1999,52(4):316-322.
    [17]曹茂森,Length分形维算法拾取地震波初至[J].石油勘探物理,2004,39(4):509-514.
    [18]沙海军,刘冬英.汶川8级地震余震序列的分形特征及应用[J].国际地震动态,2008,11:109.
    [19] Idziak A,Sagan G,Zuberek W N. An analysis of Frequency Distributions0f Shocks from theUpper Silesian Coal Basin[J].Publ Inst Geophys,Pol Acad sci,1991,235(M-15):163.
    [20] Dessokey M M. Statistical Models of the Seismic Hazard Analysis for Mining tremors andNatural Earthquake [J]. Publ Inst Geophys,Pol Acod Scl,1994,l74(A-15):l.
    [21]李治平,王建宙,蔡美峰.矿山地震震级的极值分布[J].北京科技大学学报.2002,24(3):235-238.
    [22]潘一山,赵扬锋,官福海,等.矿震监测定位系统的研究与应用[J].岩石力学与工程学报,2007,26(5):1002-1011.
    [23]丁红旗,李国臻,贾宝新.微震振源激振模型及振动周期与震级的关系[J],辽宁工程技术大学学报:自然科学版,2009,28(3);352-354.
    [24]丁红旗,李国臻,贾宝新.微震振源激振模型及震级计算公式的建立[J].科学与技术工程2009,9(14);4130-4133.
    [25]王焕义.岩体微震事件的精确定位研究[J].工程爆破,2001,7(3):5-8.
    [26]邴绍丹,潘一山.矿山微震定位方法及应用研究[J].煤矿开采,2007,12(5).1-4.
    [27]李文军,陈棋福.用震源扫描算法(SSA)进行微震的定位[J].地震,2006,26(3):107-115.
    [28]陈炳瑞,冯夏庭,李庶林,等.基于粒子群算法的岩体微震源分层定位方法[J].岩石力学与工程学报.2009,28(4):740-749.
    [29] GEIGER L.Probability method for the determination of earthquake epicenters form the arrivaltime only[J].Bulletin of Saint Louis University,1912,8:60-71.
    [30] BULAND R. The mechanics of locating earthquakes[J].Bulletin the Seismological Society ofAmerica,1976,66(1).173-187.
    [31] GIBOWICZS J,KUKO A.An introduction to mining seismology[M] San Diego:AcademicPress Inc.,1994.
    [32] RABINOWITZ N. Microearthquake location by means of nonlinear simplexprocedure[J].Bulletin of the Seismological Society of America,1988,78(1):380-384.
    [33] TARANTOLA A, VALETTE B. Inverse problems=quest for information[J]. Journal ofGeophysics,1982,50(3):159-170.
    [34] SPENCE W. Relative epicenter determination using P-wave arrival-timedifferences[J].Bulletin of the Seismological Society of America,1980,70(1):171-183.
    [35] RABINOWITZ N,KULHANEK O. Application of a nonlinear algorithm to teleseismiclocations using P-wave readings from the Swedish seismographic network[J].Physics of theEarth end Planetary Interiors,1988,50(2):11l-115.
    [36] CROSSON R S.Crustal structure modeling of earthquake data1.simultaneous least squaresestimation of hypocenter and velocity parameters[J]. Journal of GeophysicalResearch,1976,96(B17):6403-6414.
    [37]吴永国,贺振华,黄德济.基于惠更斯原理的波动方程共炮点道集地震正演[J].成都理工大学学报:自然科学版,2008,35(3):275-278.
    [38]赵爱华,丁志峰,孙为国,等.复杂介质地震定位中震源轨迹的计算[J].《地球物理学报》,2008,51(4):1188-1195.
    [39]赵国敏,张中,滕吉文,等.线性连续变化非弹性介质中地震波射线轨迹与走时研究[J].华北地震科学.1994,12(2):49-54.
    [40]阮颖铮.用复惠更斯原理综合地震波反射场[J].电子科技大学学报1990,19(4):336-341.
    [41]王平,姜福兴,王存文,等.冲击地压的应力增量预报方法[J].煤炭学报,2010,S1:5-9.
    [42]王林瑛,陈学忠,朱传镇,等.地震活动性总体参量Rt及其在地震预测中应用的研究[J].地震,2006,02:54-60.
    [43]李铁,孙学会,吕毓国,等.基于岩体加卸载响应原理的强矿震危险性预测[J].北京科技大学学报,2011,11:1307-1311.
    [44]尹祥础,尹迅飞,余怀忠,等.加卸载响应比理论用于矿震预测的初步研究[J].地震,2004,02:25-30.
    [45]李志华,窦林名,管向清,等.矿震前兆分区监测方法及应用[J].煤炭学报,2009,05:614-618.
    [46]周辉.矿震孕育过程的混沌性及非线性预测理论研究[J].岩石力学与工程学报,2000,06:8-13.
    [47]李铁,蔡美峰,纪洪广,等.强矿震预测的研究[J].北京科技大学学报,2005,03:260-263.
    [48]徐长发.科技应用中的微分变分模型[M].华中科技大学出版社,2004.
    [49]陈祖墀.偏微分方程[M].高等教育出版社,2008,05.
    [50]卓越课程中心.波动方程[M].北京理工大学,2009.
    [51]叶根喜,姜福兴,郭延华,等.煤矿深部采场爆破地震波传播规律的微震原位试验研究[J].岩石力学与工程学报,2008,27(5),1053-1058.
    [52]言志信,蔡汉成,王群敏,等.岩土体在地震作用下的破坏研究[J].煤炭学报,2010.35(10)1621-1626.
    [53]李铁,孙学会,吕毓国,等.强矿震临界破裂阶段的岩体弹性波场[J].煤炭学报,2011.36(5)747-751.
    [54]王进强,姜福兴,吕文生,等.地震波传播速度原位试验及计算[J].煤炭学报,2010.35(12),2059-2063.
    [55]耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测,2002(1):23-28.
    [56]石显鑫,蔡栓荣,冯宏,等.利用声发射技术预测预报煤与瓦斯突出[J].煤田地质与勘探,
    [57]张少泉,张诚,修济刚,等.矿山地震研究述评[J].地球物理学进展,1993,8(3):69-85.
    [58]卢文韬.岩石声发射实验的衰减排噪法[J].岩石力学与工程学报,1995,4(2):187-192.
    [59] Zhang S Q, Yang M Y. Seismological Research on Mining Tremors. Progress in AcousticEmission V[J].The Japanese Society for NDI,1990:260-265.
    [60]王海军.低信噪比地震记录中信号初至的估计.西安交通大学学报,2003,37(6):659-660.
    [61]隋惠权,范学理.深井开采地质灾害及矿山地震研究[J].中国地质灾害与防治学报,2002,Vol.13,No.4:49-52.
    [62]朱元清.数字化台网的近震震相自动识别.西北地震学报,2002.24(1):5-12.
    [63] Boschetti F,Denyith M D and List RD. A Fractal based algorithm for deyecing first arrival onseismic traces.Society of Exploration Geophysicists.1996,4:1095-1102.
    [64]徐晨,赵瑞珍,甘小冰.小波分析·应用算法.北京:科学出版社,2004.5.
    [65]时书丽.声发射源定位的测试方法[J],辽宁大学学报,1998,25(1):42-46.
    [66]刘希强,周蕙兰.用于三分向记录震相识别的小波变换方法[J].地震学报,2000,3:125-131.
    [67]张军华,赵勇,赵爱国,等.用小波变换与能量比方法联合拾取初至波[J].物探化探计算技术,2002,24(4),309-312.
    [68] Jiao L et al. Variance fractal dimension analysis of seismic refraction signals. Proceeding ofIEEE WESCANEX97congference on communications,power and computer,116-120.
    [69] Chang Xu et al. Hausdorff fractal algorithm for picking first break in seismic traces. BUTSURITANSA,1999,52(4):316-322.
    [70]曹茂森,Length分形维算法拾取地震波初至[J].石油勘探物理,2004,39(4):509-514.
    [71]张诚.地震分析基础[M].北京:地震出版社,1988.
    [72]郭飚,刘启元,陈九辉,等.首都圈数字地震台网的微震定位实验[J].地震地质,2002,24(3):453-460.
    [73]田王月,陈晓非.地震定位研究综述[J].地球物理学进展,2002,17(1):147-155.
    [74]汪素云,许忠淮,俞言祥,等.北京及邻区现代微震重新定位及其构造含义[J].中国地震,1995,11(3):222-230.
    [75] Waldhauser F, Ellsworth W. L.A double difference earthquake location algorithm: methodandapplication to the Northern Hayward Fault, California [J]. Bull. Seism. Soc. Am,2000,90(6):1353-1368.
    [76]胡新亮,马胜利,高景春,等.相对定位方法在非完整岩体声发射定位中的应用[J].岩石力学与工程学报,2004,23(2):277-283.
    [77]汪素云,许忠淮,俞言祥,等.北京西北地区现代微震重新定位[J].地震学报,1994,1(61):24-31.
    [78]张银平.岩体声发射与微震监测定位技术及其应用[J].工程爆破,2002,8(1):58-61.
    [79]王焕义.岩体微震事件的精确定位研究[J].工程爆破,2001,7(3):5-8.
    [80]陈运泰,刘瑞丰.地震的震级[J].地震地磁观测与研究,2004,25(6):1-12.
    [81]迟振才,迟天峰.两种震级标度讨论[J].东北地震研究,2000,16(4):9-15.
    [82]潘一山.矿震的发生和破坏规律研究[博士后出站报告][R].北京:中国地震局地质研究所,2003:1.
    [83]中国地质局监测预报司.数字地震观测技术[M].北京:地震出版社,2003.
    [84]徐戈,王保太,杨彩霞,等.江苏数字地震台网与模拟台网的震级对比[J].地震学刊,2000,20(2):32-39.
    [85]山长仑,张玲,李永红,等.对数字地震记录用速度与位移测定近震震级的讨论[J].华北地震科学,2001,19(4):65-72.
    [86]陈绯雯.福建数字地震台网测定台湾地震的震级问题[J].福建地震,2001,17(4):20-25.
    [87]蔡杏辉.福建数字地震台网永春台测定地震震级分析及其台基校正值计算[J].福建地震,2003,19(1):28-30.
    [88]张从珍,赵明淳,高景春.河北数字遥测地震台网大震速报震级问题的初步研究[J].华北地震科学,2005,23(1):27-31.
    [89]陈培善,白彤霞,成瑾.利用加速度或速度记录快速测定矩震级的一种新方法[J].地球物理学报,1998,41(suppl):290-297.
    [90]赵荣国.即将通用的矩震级标度M W—远震震级测定工作综述[J].国家地震动态,1994,(12):14-17.
    [91]邢西淳,毛娟.泾阳台地震持续时间震级公式MD初探[J].内陆地震,1994,8(3):247-252.
    [92]陆振飞,郑建华,黄才中,等.江苏台网尾波持续时间震级的初步研究[J].地震学刊,1995,(3):20-24.
    [93]赵珠,谢蓉华,罗昭明.二滩水电站地震遥测台网持续时间震级的研制[J].地震地磁观测与研究,1998,19(2):21-29.
    [94]赵珠,吴今生,谢蓉华,等.大桥水库地震遥测台网持续时间震级的研制[J].四川地震,1999,(3):18-24.
    [95]刘玉兴.通化地震台MD震级公式的研究[J].东北地震研究,1996,12(3):73-76.
    [96]张群,李广平.辽宁省及邻近地区较大地震震级的测定方法[J].东北地震研究,1994,10(3):31-37.
    [97]蒋海昆,刁守中.一个具有分形结构的地震活动性模型及分形维数D与b值之间关系的初步讨论[J].地震学报,1995,17(4):524-527.
    [98]屈世显.分形维数与熵间的关系[J].高压物理学报,1993,7(2):127-131.
    [99] C.Singh,A Singh,R K Chadha.喜马拉雅东部和西藏南部的分形和b值测绘[J].世界地震译丛,2010,(3):15-20.
    [100]李元辉,刘建坡,赵兴东,等.岩石破裂过程中的声发射b值及分形特征研究[J].岩土力学,2009,30(9):2559-2564.
    [101]谢和平,高峰,周宏伟,等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报,2003,23(4):1-9.
    [102]李全林.地震频度—震级关系的时空扫描.北京:地展出版社,1979.
    [103]马洪庆.华北地区几次大震前的b值异常变化.地球物理学报.1978,21(2):126-141.
    [104]国家地震局科技监测司.地震监测与预报方法清理成果汇编测震学分册.四川几个地震带(区)的b值变化与地震预报(韩渭宾等).北京:地展出版社,1989,234-242.
    [105]国家地震局科技监测司.地震监测与预报方法清理成果汇编测震学分册.广东及其邻区近期地震活动特征的分析(越毅,等).北京:地展出版社,1989,293-299.
    [106]国家地展局科技监测司.地展监测与预报方法清理成果汇编测震学分册.单台地震目录在研究四川地震活动异常中的应用(廖志和).北京:地震出版社,1989,315-319.
    [107] Aki,K.前兆现象的概率综合.世界地展译丛.1982,22-29.
    [108] King,G., The accommodation of large strains in the upper lithosphere of the earth and solidsby self-similar faule systems: the geometrical origin of by value. Pure Appl.Geophys.122,761-815,1983.
    [109]Turcotte,D.L.,A fractal approach to probabilistic seismic hazard assessment,TECTONOPHYSICS,Vol,167,No.2-4,PP171-177,1989.
    [110]洪时中.分维与地震科学.科学,1990,42(2):104-108.
    [111]张建中.地震b值的估计方法及其标准误差.地震学报,1981,3(3):292-301.
    [112]国家地震局科技监测司.地震监测与预报方法清理成果汇编测震学分册.关于b值估计方法的讨论(高运龙).北京:地震出版社,1989,243-248.
    [113]国家地震局科技监测司.地震预报方法实用化研究文集地震学专辑.震级序列的前兆研究(黄德瑜等).北京:学术书刊出版社,1989,173-182.
    [114]黄玮琼.b值统计中的影响因素及危险性分析中b值的选取.地震学报,1989,11(4).351-360.
    [115]刘江峰.甘肃及邻区b值与中强展的关系研究.西北地展学报,1991,13(2):29-38.
    [116]许传华,任青文,李瑞.围岩稳定的熵突变理论研究[J].岩石力学与工程学报,2004,23(12):1992-1995.
    [117]王海涛,朱令人.地震前兆观测数据的信息熵分析[J].地震,1991,5:13-18.
    [118] Skoko D. and Sato Y. Optimum distribution of seismic observation points, III. Bull. Enrthq..Res. Insr. Tokyo Univ.44,13-22(1966).
    [119] Arora S. K., Varghese T. G. and Basu T. K. Relative performance of different triangularnetworks in locating regional seismic sources. Proc. Indian Acad. Sci.,(E&P Sciences-4),81,271-282(1978).
    [120] Uhrhammer R. A. The optimal estimation of earthquake parameters. Phys. Earth Planet.Inreriors4,1369-1379(1982).
    [121] Gibowicz S. J. and KijkoA. An Introduction to Mining Seismology. Academic Press, NewYork (1994).
    [122]汪兵,李存斌.EVC高级编程及其应用开发[M].北京:中国水利水电出版社,2005.
    [123]邴少丹,潘一山.矿山微震定位方法及应用研究.煤矿开采,2007.12(5)1-3.
    [124]官福海.木城涧煤矿矿震监测定位系统的研究与应用[D].辽宁工程技术大学,2006.
    [125]梁宝霞.矿震信号识别和定位及其在木城涧煤矿的应用[D].辽宁工程技术大学,2007.
    [126]陈松.深部采场矿震监测定位系统的研究[D].辽宁工程技术大学,2009.
    [124]王世娟.东滩煤矿地垒断层型矿震发生机制及监测分析[D].辽宁工程技术大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700