用户名: 密码: 验证码:
考虑渗流、地震作用的典型尾矿坝稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿坝尾矿一般都含有重金属物质,如果尾矿坝发生溃坝,将造成人员伤亡、环境污染等严重后果。引起尾矿坝溃坝的主要原因为渗流作用、地震作用,考虑渗流、地震作用的典型尾矿坝稳定性研究具有重要的理论和现实价值。本文以者拉母箐典型尾矿坝工程为例,以尾矿坝的渗流性典型特征为主线,通过现场勘察、室内外大量试验,对典型尾矿坝在地震、渗流作用下稳定性进行研究,主要研究工作如下:
     1、通过对者拉母箐尾矿坝现场勘察、试验、取样、室内土工试验、室内动三轴试验等一系列测试,深入系统地研究了尾矿的物理力学特性,对尾矿的沉积规律和浸润线特征进行了研究。
     2、通过对尾矿坝稳定性计算评价方法研究,并以毕肖普(Bishop)法、简布(Janbu)法为代表的极限平衡法对者拉母箐尾矿坝分别在考虑渗流作用与不考虑渗流作用条件下进行稳定性计算评价,研究了渗流力对尾矿坝稳定性的影响,探讨了尾矿坝稳定性的影响因素。
     3、阐述了尾矿坝的渗流场与应力场耦合作用的基本理论,采用FLAC3D内嵌FISH程序语言对尾矿坝模型的初始孔压进行编程设置,并对尾矿坝进行渗流场数值模拟分析,通过渗流场孔压云图的分布,近似得到尾矿坝内部的浸润线位置,与工程勘察时实测浸润线位置一致。对尾矿坝的渗流场与应力场耦合作用进行了研究。运用FLAC3D对尾矿坝进行渗流场与应力场耦合作用数值模拟分析,研究了孔隙水压力、有效应力、位移场与渗流时步的关系。
     4、详细介绍了标准贯入法、静力触探试验法、剪切波速试验法及剪应力对比法等尾矿坝液化可能性的判别方法的原理,并运用这些方法对者拉母箐尾矿坝液化可能性进行判别,根据各判别方法的原理及判别结果,讨论分析了各判别方法的适用条件和精度。并在此基础上,提出了尾矿液化的影响因素。
     5、通过对尾矿动力特性试验,对动模量阻尼试验结果进行了分析,运用FLAC3D软件对尾矿坝的动力响应进行数值模拟分析,研究了尾矿坝坝体变形与坝体孔压的变化情况,揭示了孔隙水压力、有效应力、位移时程曲线及其相互关系。
     通过以上内容的研究,获得了以下几个方面的创新性研究成果:
     1、对渗流作用在尾矿坝稳定性计算中的影响进行了研究,且当浸润线提高1m时,稳定系数Fs就降低0.01~0.043,百分比在0.5%-2.6%;同时也给出了尾矿坝物理力学性质与安全系数的敏感性关系,并给出了其排序关系。
     2、通过对尾矿坝渗流场与应力场耦合作用数值模拟分析,揭示了孔隙水压力、有效应力、位移场与渗流时步的关系,并提出了流固耦合作用是尾矿坝稳定性影响的一个重要控制因素。
     3、通过对尾矿坝稳定性评价研究,提出了尾矿坝稳定性计算时须要考虑流固耦合作用,给出了考虑流固耦合作用的尾矿坝稳定性有限差分数值模拟分析计算模型,也为尾矿坝稳定性评价提供了一个新的思路。
Tailings at tailings dam generally contain heavy metal material, and if the tailings dam has break, it will cause casualties, environmental pollution and other serious consequences. Main causes of the tailings dam break are the seepage effect and earthquake effect, so the study about the typical tailings dam stability with a considerati on of seepage effect and earthquake effect has important theoretical and practical value. Taking the typical Zhelamujing tailing dam project as an example, this paper focuses on the typical seepage behavior and analyzes the stability of typical tailing dam subject to earthquake and seepage through scene investigations and a number of outdoor tests. The main researches conducted in this paper are as follows:
     1.Through a series of tests including on-the-spot investigation, experiments, sampling and indoor soil tests and indoor dynamic triaxial tests on Zhelamujing Tailing Dam, this paper researches in depth and systematically into physical and mechanical properties and also researches into the deposition law and seepage line characteristics of tailings.
     2. This paperstudies the calculation and evaluation methods of tailing dams' stability, calculates and evaluates Zhelamujing Tailing Dam's stability with and without taking the influence of seepage into account respectively by use of the limit equilibrium method, especially the Bishop method and Janbu method, researches into the influence of seepage force on tailing dams'stability and discusses influence factors of tailing dams'stability.
     3. This paper explains the basic theory of the coupling of the seepage field and the stress field of tailing dams, performs programming on the initial pore pressure of the tailing dam model by using the built-in FISH programming language in FLAC3D, and analyzes the seepage field numerical modeling of tailing dams. According to the distribution of pore pressure nephogram, location of the seepage line inside the tailing dam is obtained approximately, which is consistent with that of the measured seepage line during engineering investigation.This paper also researches into the coupling of the seepage field and stress field. Besides, it researches into the relationship between pore water pressure, effective stress, displacement field and seepage time step by using FLAC3D for numerical modeling analysis on the coupling of the seepage field and stress field of tailing dams.
     4. This paper introduces in detail the principle of discriminant methods for liquefaction potential of tailing dams such as standard penetration method, static cone penetration test method, shear wave velocity test method and shear stress contrast method, discriminates liquefaction potential of Zhelamujing Tailing Dam by using these methods, and according to the principle and discriminant results of each discriminant method, discusses the applicable conditions and precision of each discriminant method. Based on that, the paper puts forward the influence factors of tailing dams'liquefaction.
     5. This paper, by a test on the dynamic propertiesof tailings and analysis on the dynamic modulus damping test results, performs numerical modeling analysis on tailing dams'dynamic response by using FLAC3D software, researches into changes in dam deformation and pore pressure of tailing dams and reveals pore water pressure, effective stress, displacement time step curves and their interrelations.
     Through the above researches, the innovative research results obtained are as follows:
     1. the effects of seepage action in stability caculation of tailing dams were discussed, and the results shows that when the seepage line increases by lm, the stability factor Fs decreases by0.01-0.043or0.5%-2.6%; meanwhile, this paper also puts forward the sensitive relationship between physical and mechanical properties of tailing dams and safety coefficient.
     2. By numerical modeling analysis on the coupling of the seepage field and stressfield of tailing dams, this paper reveals the relationship between pore water pressure, effective stress, displacement field and seepage time step.this paper presents the idea that fluid-solid coupling is an important influence factor of tailing dams' stability.
     3. By the evaluation research on tailing dams'stability, this paper suggests that seepage force must be taken in account while calculating tailing dams'stability and gives finite difference numerical modeling analysis calculation model for tailing dams' stability when influence of fluid-solid coupling is considered. This opens new ways of thinking about the stability evaluation of tailing dams
引文
[1]徐宏达.我国尾矿坝病害事故统计分析[J].工业建筑,2001,1(31):69-71
    [2]魏作安,尹光志,沈楼燕等.探讨尾矿坝设计领域中存在的问题[J]有色金属(矿山部分),2002,4:44-45
    [3]Anon.A.Review of tailings damfailures[J]. International Water Power and Dam Construction, 2001,53(5):40-42
    [4]Mittal H, Morgenstern N.Parameters for the Deign of Tailings Dams.Canadian Geotechnical Journal,1975,12:235-261
    [5]王文星.尾矿坝稳定性分析及安全对策的研究[D].长沙:中南大学,2007:1-18
    [6]印万忠,尾矿库安全技术[M].冶金工业出版社,2009
    [7]Prevost J H, etal.Nonlinear Dynamic Analysis of an Earth Dam. J.Geotech.Engrg. Div.,ASCE,1985,111 (7):882-897
    [8]GB 50547-2010,尾矿堆积坝岩土工程技术规范[s]
    [9]Babae yan KooPaei K,Valentine EM,Ervine DA.Case study on hydraulic Performanece of Brent reservoir siphon spillway [J].Joural of Hydraulic Engineering,2002,128(6):562-567
    [10]Blight GE.Destructive mudflowsasa consequence of tailings Dykefailures[J].Proceedings Of the Institution of Civil Engineers Geotechnical Engineering,1997,125(1):9-181
    [11]Moxon S.Failing again[J].international Water Power and Dam Construction,1999,51(5): 16-21
    [12]Shakes by R A, Whitlow J.Richard.Failure of a mine waste dump in Zimbabwe:Causes and consequences[J].Environmental Geology and Water Sciences,1991,8(2):14-153
    [13]Strachan C.Tailings dam Performance from USCOD incident-survey data[J].Mining Engineering,2001,53(3):49-53
    [14]HarperTGS McLeod HN,Davies MP.Seismic assessment of tailings dams[J].Civil Engineering,1992,62(12):64-66
    [15]Hughes HE. Warm SpringsPonds:Super found success[J].Mining Engineering,1996, 48(11):27-30
    [16]Scott MD,Lo RC.Optimal tailings management an Highland Valley Copper[J].CIM Bulletin,1992,85(962):85-88
    [17]Sorrell S.The Value of good observation[J].International Water Power and Dam Construction,2000,52(5):15-19
    [18]Buselli GS Lu K.Ground water contamination monitoring with multichannel electrical and electromagnetic methods[J].Journal of Applied GeoPhysics,2001,48(1):11-13
    [19]Blight GE.Measuring evaporation from soil surfaces for environmental and geotechnical Purposes[J].Water SA,2002,28(4):381-394
    [20]Ghomshei MM, Allen DM.Hydro chemical and stable isotope assessment of tailings pond leakage,Nickel Plate Mine,British Columbia[J].Environmental Geology,2000,39(8):937-944
    [21]Brawner C. Design construction and repair of tailings dams for metal mines waste disposal, Current Geotechnical Practice in Mine Waste Disposal, ASCE,1979
    [22]A. D. M Penman. Tailings dams-some aspects of their design and construction [J] International Journal of Rock Mechanics and Mining Sciences & Geomechanics,1995,Vol 32, 3:131
    [23]Volpe R. Physical and engineering practices of copper tailings. Current Geotechnical Practice in Mine Waste Disposal, ASCE,1979
    [24]张培安.降低金堆城栗西尾矿库坝体浸润线的技术[J].中国铝业,2002,26(3):48-50
    [25]陈津端,李仕武等.某尾矿坝体浸润线有限元模拟分析明.湖南科技大学学报,2007,22(4):23-25
    [26]尹光志等.龙都尾矿库地下渗流场的数值模拟分析[J].岩土力学,2003,24(增刊):25-28
    [27]赵学龙,祝玉学等.燕昌尾矿坝地下水位预测的一维元胞自动机模型[J].矿业快报,2001,17(22):6-7
    [28]柳厚祥,裘家葵.变分法在尾矿坝稳定性分析中的应用研究[J].工程设计与建设,2003,35(1):19-23
    [29]柳厚祥等.尾矿坝二维固结稳定渗流分析[J].矿冶工程,2002,22(4):8-14
    [30]钱家欢,殷宗泽主编.土工原理与计算(第二版).北京:中国水利电力出版社,1996
    [31]张天宝著.土坡稳定分析与土工建筑物的边坡设计.成都:成都科技大学出版社,1987
    [32]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:中国水利电力出版社,1980
    [33]Sarma, SK, Stability Analysis of Embankments and SlopesGeotechnique.10973. Vol.23(3):25
    [34]朱伯芳著.有限单元法原理与应用(第二版).北京:中国水利电力出版社,1998
    [35]交通部第二公路勘测设计院编.公路设计手册/路基(第2版).北京:人民交通出版社,1996
    [36]铁道部第一勘测设计院编.铁路工程设计技术手册/路基.北京:中国铁道出版社,1992
    [37]崔政权,李宁.边坡工程——理论与实践最新发展.北京:中国水利电力出版社,1999
    [38]吴世明,杨挺等编著.岩土工程新技术.北京:中国建筑工业出版社,2001
    [39]Mittal H,Morgenstern N.Parameters for the design of tailings dams[J],Cana Geotechnical Journal,1975,1(12):235-261
    [40]Johnson J,Kane J.Failure of the church rock tailings dam,Pro.Third Symp.On Uranium Tailings Management,Colorado State University,1980
    [41]平扬,白世伟,徐燕平.深基坑工程渗流-应力耦合分析数值模拟研究,岩土力学[J].200122(1):37-41.
    [42]柳厚祥,李宁等.考虑应力场与渗流场耦合的尾矿坝非稳定渗流分析[J].岩石力学与工程学报,2004,23(17):2870-2875
    [43]骆祖江,刘金宝等.深基坑降水与地面沉降变形三维全耦合模型及其数值模拟[J].水动力学研究与进展,2006,21(4):479-485
    [44]田东方,刘德富等.土质边坡非饱和渗流场与应力场耦合数值分析[J].岩土力学,2009,30(3):810-814
    [45]陈晓平,茜平一等.非均质土坝稳定性的渗流场和应力场耦合场分析[J].岩土力学,2004,25(6):8860-864
    [46]杨志锡,杨林德.各向异性饱和土体的渗流耦合分析和数值模拟[J].岩石力学与工程学报,2002,21(10):1447-1451
    [47]李培超,孔祥言等.饱和多孔介质流固耦合渗流的数学模型,水动力学研究与进展,200(4)
    [48]Fredlund D G,Rahardjo H.Soil Mechanics for Unsaturated Soils[M].NewYork:John Wilev and Sonslne,1993:496-502
    [49]王余庆,王治平,辛鸿博等.中国尾矿坝地震安全度(1))大石河尾矿坝1976年唐山大地震震害及有关强展观测记录.工业建筑,1994(7):38-42
    [50]王余庆,高艳平,辛鸿博.中国尾矿坝地震安全度(2)-大石河尾矿坝基岩输入地震动的确定.工业建筑,1994(8):41-7
    [51]王治平,李志林.中国尾矿坝地震安全度(3)-经受唐山大地震的大石河尾矿坝历史和现状剖析.工业建筑,1994(9):47-50
    [52]辛鸿博,王余庆.中国尾矿坝地震安全度(6)-用SPT评价大石河尾矿坝的沉积特征.工业建筑,1994(11):50-53
    [53]李万升,刘静平,王治平.中国尾矿坝地震安全度(7)-大石河尾矿坝原位密度的同位素测试方法.工业建筑,1994(12):36-1
    [54]李万升,高建平,王治平.中国尾矿坝地震安全度(8)-大石河尾矿砂的力学特性试验研究.工 业建筑,1995(1):43-48
    [55]辛鸿博,王余庆.中国尾矿坝地震安全度(9)-大石河尾矿粘性土的动力变形特性和强度特征.工业建筑,1995(2):38-42
    [56]王余庆,辛鸿博.中国尾矿坝地震安全度(10)-用单剪仪研究大石河尾矿砂的动特性.工业建筑,1995(3):37-40
    [57]王余庆,辛鸿博,李志林.中国尾矿坝地震安全度(11)-大石河尾矿砂稳态变形特性.工业建筑,1995(4):35-40
    [58]王余庆,辛鸿博.中国尾矿坝地震安全度(12)-用稳态理论评价大石河尾矿坝的液化与稳定.工业建筑,1995(5):49-52
    [59]辛鸿博,王余庆,高艳平.中国尾矿坝地展安全度(13)-1976年大石河尾矿坝—维地震反应分析.工业建筑,1995(6):49-52
    [60]高建生,李万升,王治平.中国尾矿坝地展安全度(14)-利用共振柱对尾矿砂的测试及分析.工业建筑,1995(7):48-50
    [61]辛鸿博,王余庆,高艳平.中国尾矿坝地震安全度(15)-1976年大石河尾矿坝二维地震反应分析.工业建筑,1995(8):43-46
    [62]高艳平,王余庆,辛鸿博.中国尾矿坝地震安全度(16)-大石河尾矿坝地震液化的二维简化判别.工业建筑,1995(10):43-46
    [63]辛鸿博,Finn W D L.1976年大石河尾矿坝地震反应分析.岩土工程学报,1996,18(4):48-56
    [64]高艳平,王余庆,辛鸿博.尾矿坝地震液化简化判别法.岩土工程学报,1995,17(5):72-79
    [65]张超.尾矿动力特性及坝体稳定性分析:(博士学位论文).武汉:中国科学院武汉岩土力学研究所,2005
    [66]HarPer T G,Mcleod H N,Davies M P. Seismic assessment of tailings dams.Civil Engineering,1992, Engineering,1992,62(12):64-66
    [67]刘苑茹.尾矿坝动力特性及其堆坝稳定性分析:(硕士学位论文).成都:四川大学,2006
    [68]Seid K M.Byme P M. Embankment dams and earthquakes.Hydropower & Dams,2004,2:96-102
    [69]播建平,孔宪京,邹德高.尾矿坝地震液化分析.河海大学学报,2007,35(增1):49-52
    [70]徐志英,沈珠江.高尾矿坝的地震液化和稳定分析.岩土工程学报,1981,3(4):22-32
    [71]潘建平.尾矿坝抗震设计方法及抗震措施研究:(博士学位论文).大连:大连理工大学,2007
    [72]Ishihara K.Post-earthquake failure of a tailings dam due to liquefaction of the Pond deposit. Interational Conference on Case Histories in Geotechmical Engineering,Stolouis,Geotechnical Engineering,1984,3:1129-1143
    [73]Ishihara K,Yasuda S,Yoshida Y. Liquefaction-induced flow failure of embankments and residual strength of silty sands.Soils and Foundations,1990,30(3):69-80
    [74]王武林,杨春和,阎金安.某铅锌矿尾矿坝工程勘察与稳定性分析.岩石力学与工程学报,1992,11(4):332-344
    [75]周健.尾矿坝在地震作用下的三维两相有效应力动力分析.工程抗震,1995,3:39-43
    [76]腾志国.关于尾矿坝地震稳定性的分析及评价.河北冶金,2003,133(1):16-17
    [77]腾志国.关于尾矿坝地震稳定性的分析及评价(续).河北冶金,2003,133(2):8-12
    [78]李新星.粟西沟尾矿坝地震动力反应及液化评价研究:(硕士学位论文).西安:长安大学,2004
    [79]王凤江.上游法高尾矿坝的抗震问题.冶金矿山设计与建设,2001,33(5):10-13
    [80]李再光,罗晓辉.尾矿坝地震反应的拟静力稳定分析.岩土力学,2006,27(7):1138-1142
    [81]Ministry of international trade and Industry (Bureau of Land and pollution).Specifications of Construction of Tailings and Comrnentary,JaPan,1980
    [82]Australian National Comrnittee on Large Dams Incorporated-Guidelines on Dam Safety Management.Australian,2003
    [83]USSD Committee on Earthquakes.Guidelines on Design Features of Dams to Effectively Resist Seismic Ground Motion.US,2003
    [84]Chile SuPreme Court Decree.Regulation on the Construction and Operation of Tailings Darns.Santiago,Chile,1970
    [85]ZBJI-90,选矿厂尾矿设施设计规范[s]
    [86]GB50191-93,构筑物抗震设计规范[s]
    [87]中国水利水电科学研究院主编.水工建筑物抗震设计规范(DL5073-2000).北京:中国电力出版社,2001
    [88]张超,杨春和.尾矿坝液化判别简化方法研究.岩石力学与工程学报,2006,25(增2),3730-3736
    [89]GB 50021-2001,岩土工程勘察规范[s]
    [90]GB 50011-2010,建筑抗震设计规范[s]
    [91]Fredlund D.G and H.Rahardjo著,陈仲颐,张在明,陈愈炯等译.非饱和土土力学[M],北京:中国建筑工业出版社,1997
    [92]王世梅.非饱和滑坡土体力学特性试验及其数值模拟:(硕士学位论文).武汉:武汉大学,2007
    [93]Mualem.A new model for prediction the hydraulic conductivity of unsaturated porous media. Water Resourees Res.12,197
    [94]眭素刚、徐世光、范柱国等.某渣场污染物在非饱和岩土介质中的迁移模拟研究[J].中南大 学学报(自然科学版),2013,5(44):2173-2180
    [95]宁民霞.水对尾矿坝稳定性影响研究[D]:(博士学位论文).辽宁工程技术大学,2003
    [96]R.A.Freeze,J.A.Cherry著,吴静方译.地下水[M],北京:地震出版社,1987
    [97]龚道勇.三维非稳定饱和一非饱和渗流场的有限元分析及应用:(硕士学位论文),河海大学,2001
    [98]Scott R F. Principles of Soil Mechanics. Addison Wesley Publishing Co.Inc.,1963
    [99]Abdallah I.Husein Malkawi,Mohanned AI-Sheriadeh. Evaluation and rehabilitation of dam seepage Problems.Engineering geology,2000(56):335-345
    [100]T.V.Panthulu,C.Krishnaiah, J.M.Shirke. Detection of seepage Paths in earth dams using self-potential and electrical resistivity methods.2001(59):281-295
    [101]Noorishad J.A finite element method for couple stress and flow analysis in Fractured rock mass. Int. J Rock.Min.Set. Geomech.Abstr.1982
    [102]Noorlshad J.Coupled thermal-hydraulic-mechancal Phenomena in saturated Fractured Porous.Numberical approaeh J.Geoph..Res.1989(B12)
    [103]Louis,C. Indroduction a hydrauliue des roches,Bull.du B.R.GM,(2),Ⅲ4,1974
    [104]Fredlund D G, Rahardjo H.Soil Mechanics for Unsaturated Soils[M].New York:John Wilev and Sons Inc,1993:496-502
    [105]Chang C.S.Duncan J,M.Consolidation Analysis for Partly Saturated Clay by Using An Elaslic-plastic Effctive Stress-stating Modle[J].International Joural for Numerical and Analyticaltic Methods in Geomechanies,1983,17(7):39-55
    [106]中国有色金属工业勘察设计研究院狮凤山矿者拉母箐尾矿坝堆积坝稳定性研究岩土工程勘察报告书[R],中国有色金属工业勘察设计研究院,2010
    [107]冶金工业部武汉勘察研究院云南省易门矿务局狮凤山矿选厂者拉木箐尾矿坝场地岩土工程勘察报告书(详细勘察阶段)[R],冶金工业部武汉勘察研究院,1999
    [108]云南省国土资源厅,云南省国土资源遥感综合调查[R],云南省国土资源厅,2009
    [109]GB 18306-2001,中国地震动参数区划图[s]
    [110]杨进良,土力学(第三版)[M].中国水利水电出版社
    [111]Sugang Sui, Shiguang Xun, Zhuguo Fan etc. Analysis on Accumulation Stability at Puji Slag Yard[C].Infomatics and Managemant science l,London:Springer,2013:203-211
    [112]GB/T 50123-1999,土工试验方法标准[s]
    [113]赵明阶,何光春,王多垠.边坡工程处治技术[M].人民交通出版社,2003.10.
    [114]AQ2006-2005尾矿坝安全技术规程[s]
    [115]眭素刚、徐世光、范柱国等.大砂地尾矿库岩溶问题分析[J].辽宁工程技术大学学报(自然科学版),2012,4(31):494-499
    [116]The Committee on Soil Dynamics of the Geotechnical Engineering Division. Definition of terms related to liquefaction. Journal of the Geotechnical Engineering Division,ASCE,1978, 104(9):1197-1200
    [117]Seed H B,Idriss I M,Arango I.Evaluation of liquefaction Potential using field Performance data. Joumal of Geotechnical Engineering,ASCE,1983,109(3):458-482
    [118]Castro G, Poulos J.Factors affecting liquefaction and cyclic mobility. Journal of Geotechnical EngineeringDivision, ASCE,1977,103(6):501-516
    [119]吴世明,徐枚在.土动力学现状与发展.岩土工程学报,1998,20(3):125.131
    [120]汪闻韶.土工抗震研究进展.岩土工程学报,1993,15(6):80-82
    [121]谢定义.饱和砂土体液化的若干问题.岩土工程学报,1992,14(3):90-98
    [122]Seed H B,Idriss I M.SimPlified Proeedure for evaluating soil liquefaction Potential. Journal of the soil Mechanics and Foundations Division,ASCE,1971,97(9):1249-1273
    [123]YoshimiY,Tokimatsu K,HosakaY.Evaluation of liquefaction resistance of clean sands based on high-quality undisturbed samples.soil and Foundations,1989,29(I):3-104
    [124]Yord T L,Idriss I M.Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefacation resistance of soils. Journal of Geotechnical and Geoenvironment Engineering,2001,127(4):297-313
    [125]Seed R B, Cetin K O, Moss R E S,etal. Recent advances ingineering and seismic site respons evaluation.Proceedings of Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and SymPosium in Honor of Professor W.D.L.Finn,San Diego,Califonia.March 26-31,2001
    [126]Robertson P K,Sasitharan S,Cunning J C,et al.shear-wave velocity to Evaluate in-situ state of Ottawa sand.Journal of Geotechnical Engineering,ASCE,1995(121):262-273
    [127]GB 50021-94,岩土工程勘察规范[s]
    [128]Itasca Consulting Group Inc.FLAC-3D,Version 2.00,Users Manual(Volume V)[R].USA Itasca Consulting Group Inc,1997
    [129]Itasca Consulting Group Inc-FLAC (fast Lagrangian analysis of continua in 3 dimensions) user's manual(version3.0)[R].Minneapolis, USA:Itasca Consulting Group Inc.,2005.
    [130]Kuhlemeyer R L,Lysmer J. Finite element method accuracy for Wave propagation problems[J].J.Soil Mech.&Foundations Div.,ASCE,1973,99(SMS):421-427
    [131]DowdingC.H.,RozenA.Damagetoroektunnelsfromearthquakeshaking[J].J.Geoteeh.Eng.Div.,AS CE104(GTZ),1978:175-191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700