用户名: 密码: 验证码:
煤层采场力学行为演化特征及瓦斯治理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯是煤矿安全生产的主要灾害源,开采保护层是高瓦斯突出煤层群区域瓦斯治理最有效的技术,但保护层开采过程中采场力学行为演化特征及其对瓦斯三维流动影响机制缺乏系统的理论研究,尤其是薄上保护层采高小、通风排放瓦斯能力差、卸压范围小,区域瓦斯治理盲目性大。该论文采用理论分析、数值模拟和现场测试相结合的研究方法,以三向应力对瓦斯三维流动及突出危险性的影响机制为基础,以薄上保护层为研究对象,以采场三向应力场时空演化规律为主线,建立了采场空间分布模型,构建了煤层群安全高效开采模式,破解了近距离煤层群卸压瓦斯治理难和远距离煤层群卸压难等技术难题。主要创新成果如下:
     统计分析了原岩应力分布特征,指出最大和最小应力倾向于沿水平方向,中间应力倾向于沿纵向,且最大应力为最小应力2倍以上;发现了最大应力方向是控制煤层巷道掘进突出危险性的关键因素,将防治煤与瓦斯突出理念推至新的高度。研究发现:在同一应力场下,当巷道沿垂直于最大应力方向掘进时,掘进头前方产生显著的应力集中,突出危险性较大;而当巷道沿最大应力方向掘进时,掘进头前方无应力集中,突出危险性较小。同时发现,煤层强度差异是导致局部应力集中的关键因素,当巷道从一种强度的煤体掘向另一种强度的煤体时,不论巷道沿何种方向掘进,突出危险性都较大。
     通过分析采场围岩破坏特征,建立了适用于峰前阶段的“应力-裂隙-渗透率”本构模型,并采用数值模拟和现场试验相验证的方法,研究了采场三向应力分布及其对瓦斯三维流动的控制作用,同时研究得出了超前支撑压力、卸压角、“O”形圈等随煤层开采的时空演化机制,在此基础上提出了下覆围岩“三带五区”划分和采场“四层空间”分布模型,最终首次从力学角度进行远近距离煤层群划分。
     现场测试了近距离煤层群薄上保护层采场瓦斯流动富集规律,验证了采场划分理论模型的正确性,并针对其特点发明了采动区强扰动瓦斯抽采钻孔护孔技术和“三位立体”分源瓦斯治理技术,提高了钻孔抗采动破坏能力,实现了区域瓦斯分源协同抽采,防治瓦斯超限。
     开创了基于最大应力方向的区域防突设计新方法,并得到现场试验的验证。根据最大应力方向对煤巷突出危险性的控制机理,通过将突出煤巷沿平行于最大应力方向布置,避免掘进头应力集中,降低突出危险性,该技术为除开采保护层和区域瓦斯预抽之外的另一种新的区域瓦斯治理技术。
     主要研究成果体现在以第一作者发表学术论文11篇,其中被SCI收录3篇,EI收录5篇,ISTP收录1篇,授权发明专利12项,主体内容获得陕西省、中国煤炭工业协会等科技进步一等奖6项。
     研究结果为高瓦斯煤层群保护层开采区域瓦斯治理奠定了重要理论和技术基础,对今后矿井瓦斯治理和防突设计有着重要的理论意义和现实价值。
Mining protective coal seam is the most efficient method for regional gas controlunder the condition of coal seam group. But the mechanical behavior evolutioncharacteristics of the stope and the influence mechanism on gas three dimensionalflow had no system theoretically studies all the time, especially the thin protectivecoal seam, which makes the regional gas control to be lack of guidance. Thedissertation studied how the three dimensional stress affects the three dimensional gasflow and the outburst riks by the method of numerical simulation, field experimentand theoretical analysis. The dissertation also built the spatial distribution model ofthe stope and divided the coal seam group to be far and close coal seam groups bystudying the three dimensional stress evolution with space and time of mining theupper thin protective coal seam. At last the efficient exploitation mode of coal seamgroup was built, and the problem of gas control under close coal seam group and theproblem of stress relief under far coal seam group were solved. The main conclusionsare as follows:
     The statistical analysis of in-situ stress distribution characteristics pointed outthat the maximum and minimum principal stresses are tend to be along the horizontaldirection, the intermediate principal stress is tend to be along the longitudinaldirection, and the maximum principal stress is2times of the minimum principal stress.It was found that the direction of the maximum stress is the key factor to control theoutburst risk when driving a roadway in an outburst risk coal seam, which highlightsthe coal and gas outburst prevention concept to a new heights. The study found thatsignificant stress concentration appears in front of the roadway face when the drivingroadway is perpendicular to the direction of the maximum stress, while there is nostress concentration in front of the roadway face when the roadway drives along thedirection of the maximum stress. The outburst risk is much higher when the roadwayis perpendicular to the maximum stress than parallel to. It was also found that thedifference of coal seam strength is the key factor to generate stress concentration, theoutburst are higher when the roadway drives from one strength coal seam to anotherno matter what direction the roadway drive along.
     The “stress-fracture–permeability” constitutive model was established for theformer stress peak stage, and then the three dimensional stresses differences of thestope surrounding rock mass and how they control the gas three-dimensional flow atdifferent positions was studied by the numerical simulation and field experiment. At the same time, the space time evolution mechanism of the abutment stress, pressurerelief angle, O-shaped stress relief area during the thin coal seam mining process wereinvestigate. Then the rock mass under the mined coal seam was divided into threebelts and five zones, and the stope surrounding rock mass was divided into fourspaces. At last the coal seam group was firstly divided into far and near groups fromthe perspective of mechanics, which is the theoretical basis for regional gas control ofthe coal group.
     The gas flow characteristics of mining the upper thin coal seam under close coalseam condition was investigated, which proved the stope division to be crrect. Inorder to prevent the pressure relief gas of the close coal seam group from flowing intothe thin coal seam and cause the gas overrun, the gas drainage hole sealing technologyfor strong disturbed mining area and gas three dimensional drainage technology areinvented according to the stope surrounding rock mass migration and gas flowenrichment regularity. The technologies enhanced the drilling damage resistanceability and efficiently control the relieved gas of the closed coal seam group.
     A new technology of regional gas control was initiated based on the stressdirection. Most of the roadway should be designed parallel to the direction of themaximum stress in order to reduce the stress concentration and then reduce theoutburst risk, which was proofed to be right by the field experiment. The technologyis a new regional gas control technology beside the two technologies of protectivecoal seam and regional gas pre-drainage.
     The main results published3papers in SCI journals,5papers in EI journals and1journal in ISTP journals, authorized12patents, and6first prizes about progress ofscience and technology including the Shaanxi Province, China Coal IndustryAssociation.
     The results lay an important foundation of theory and technology for gas controlwhen mining the protective coal seam, and have the important theory significance andpractical value for future mine gas control and prevention design.
引文
[1]杨玉峰.2010年全球煤炭市场形势及2011年展望[J].中国能源,2010,32(10):5-8.
    [2]王显政.中国煤炭工业面临的机遇与挑战[J].山西能源与节能,2010(5):4-6.
    [3]郭金童,赵光明.我国工业能源消费与工业经济动态关系研究[J].统计与决策,2010(18):113-115.
    [4]林柏泉,常建华,翟成.我国煤矿安全现状及应当采取的对策分析[J].中国安全科学学报,2006,16(5):42-46.
    [5]冬越.煤炭何时不再滴血[J].法制与社会,2009(16):9-11.
    [6]张其仔.我国煤炭工业布局和结构的现状、问题及对策[J].中国经贸导刊,2005(14):20-21.
    [7]崔兆华.2001-2008年我国煤矿瓦斯事故统计及原因分析[J].科技情报开发与经济,2009,19(21):139-141.
    [8]李运强,黄海辉.世界主要产煤国家煤矿安全生产现状及发展趋势[J].中国安全科学学报,2010,20(6):158-165.
    [9]文新."三全管理"提升安全生产水平——2009年"两会"期间全国人大代表、政协委员热议安全生产[J].湖南安全与防灾,2009(4):9-10.
    [10]王显政.安全生产与经济社会发展报告[M].北京:煤炭工业出版社,2006.
    [11]安全监管总局办公厅.国家安全监管总局国家煤矿安监局关于吉林省吉煤集团通化矿业公司八宝煤业公司连续发生两起重大瓦斯爆炸事故的通报[EB/OL].[2013年4月2日].http://www.chinasafety.gov.cn/newpage/Contents/Channel_5330/2013/0402/200750/content_200750.htm.
    [12]曲庆峰.黑龙江省超薄煤层可采性评价[D].辽宁工程技术大学,2006.
    [13]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-8.
    [14]赵志刚,谭云亮,程国强.煤巷掘进迎头煤与瓦斯突出的突变机制分析[J].岩土力学,2008,29(6):1644-1648.
    [15]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995(2):17-25.
    [16] Gale W J, Blackwood R L. Stress distributions and rock failure around coal mine roadway.[J].International journal of rock mechanics and mining sciences& geomechanics abstracts,1987,24(3):165-173.
    [17]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].煤矿安全,1991(10):1-7.
    [18]蒋承林,郭立稳,王凯.抑制突出的增压揭煤法研究[J].中国矿业大学学报(自然科学版),2000,29(4):381-384.
    [19]陈裕佳,蒋承林,唐俊,等.石门揭煤突出危险性预测方法新探[J].煤矿安全,2009,40(10):78-80.
    [20]蒋承林.突出危险性的线性判别法及临界值研究[J].中国矿业大学学报(自然科学版),2000,29(1):63-66.
    [21]蒋承林.煤壁突出孔洞的形成机理研究[J].岩石力学与工程学报,2000,19(2):225-228.
    [22]唐俊,蒋承林,陈松立.煤与瓦斯突出强度预测的研究[J].煤矿安全,2009,40(2):1-3.
    [23]杨威,林柏泉,吴海进,等.“强弱强”结构石门揭煤消突机理研究[J].中国矿业大学学报,2011,40(4):519-522.
    [24] Beamish B B, Crosdale P J. Instantaneous outbursts in underground coal mines: an overviewand association with coal type[J]. International Journal of Coal Geology,1998,35(1-4):27-55.
    [25] Williams R J, Weissmann J J. Gas Emission and Outburst Assessment in Mixed CO2andCH4Environments[J].1995:1-13.
    [26] Kang H, Zhang X, Si L, et al. In-situ stress measurements and stress distributioncharacteristics in underground coal mines in China[J]. Engineering Geology,2010,116(3-4):333-345.
    [27] Diessel C, Gammidge L. Isometamorphic variations in the reflectance and fluorescence ofvitrinite—a key to depositional environment[J]. International Journal of Coal Geology,1998,36(3-4):167-222.
    [28] Smyth M, Buckley M J. Statistical analysis of the microlithotype sequences in the Bulli Seam,Australia, and relevance to permeability for coal gas[J]. International Journal of CoalGeology,1993,22(3-4):167-187.
    [29] Karacan C O, Okandan E. Adsorption and gas transport in coal microstructure: investigationand evaluation by quantitative X-ray CT imaging[J]. Fuel,2001,80(4):509-520.
    [30] zgen K C, Okandan E. Assessment of energetic heterogeneity of coals for gas adsorptionand its effect on mixture predictions for coalbed methane studies[J]. Fuel,2000,79(15):1963-1974.
    [31] Hall F E, Zhou C H, Gasem K, et al. Adsorption of pure methane, nitrogen, and carbondioxide and their binary mixtures on wet fruitland coal: Proceedings-SPE Eastern RegionalConference and Exhibition, Charleston, WV, USA,1994[C].
    [32] Harpalani S, McPherson M J. Effect of gas evacuation on coal permeability test specimens.[J].International Journal of Rock Mechanics and Mining Sciences,1984,21(3):161-164.
    [33] Alehossein H, Poulsen B A. Stress analysis of longwall top coal caving[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2010,47(1):30-41.
    [34] Simsir F, Ozfirat M K. Efficiency of single pass longwall (SPL) method in Cayirhan colliery,Ankara/Turkey[J]. Journal of Mining Science,2010,46(4):404-410.
    [35] Durucan S, Edwards J S. Effects of stress and fracturing on permeability of coal.[J]. Miningscience& technology,1986,3(3):205-216.
    [36] Johnson R L, Glassborow B, Scott M P, et al. Utilizing current technologies to understandpermeability, stress azimuths and magnitudes and their impact on hydraulic fracturingsuccess in a coal seam gas reservoir: Society of Petroleum Engineers-SPE Asia Pacific Oiland Gas Conference and Exhibition2010, APOGCE2010, Brisbane, QLD, Australia,2010[C].
    [37] Gamson P D, Beamish B B, Johnson D P. Coal microstructure and micropermeability andtheir effects on natural gas recovery[J]. Fuel,1993,72(1):87-99.
    [38] Gray I. Reservoir engineering in coal seams. Part1. The physical process of gas storage andmovement in coal seams[M]//SPE Reprint Series.1992:7.
    [39] Kranz R L, Frankel A D, Engelder T, et al. Permeability of whole and jointed barre granite.[J].International Journal of Rock Mechanics and Mining Sciences,1979,16(4):225-234.
    [40]孙培德,鲜学福.煤层气越流的固气耦合理论及其应用[J].煤炭学报,1999,24(1):60-64.
    [41]孙培德,鲜学福.上保护层保护范围的固气耦合分析[J].煤,1999,8(1):36-39.
    [42]梁运培.邻近层卸压瓦斯越流规律的研究[J].矿业安全与环保,2000,27(1):32-33.
    [43]张玉卓.长壁开采覆岩离层产生条件[J].煤炭学报,1996,21(6):576-581.
    [44]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报,2009,26(1):1-14.
    [45]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):380-385.
    [46]屈庆栋,许家林,钱鸣高.关键层运动对邻近层瓦斯涌出影响的研究[J].岩石力学与工程学报,2007,26(7):1478-1484.
    [47]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(5):787-791.
    [48]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [49]王魁华.煤层瓦斯含量测定仪的改进[J].煤矿安全,1984(10).
    [50]王佑安,朴春杰.用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究[J].煤矿安全,1981(11).
    [51]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986(03).
    [52]王佑安,朴春杰.井下煤的解吸指标及其与煤层区域突出危险性的关系[J].煤矿安全,1982(7).
    [53]杨其銮.关于煤屑瓦斯扩散规律的试验研究[J].煤矿安全,1987(2):9-16.
    [54]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466-469.
    [55]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):97-106.
    [56]钱鸣高,缪协兴,许家林.岩层控制的关键层理论[M].徐州:中国矿业大学出版,2003.
    [57]宋振骐.实用矿山压力与控制[M].徐州:中国矿业大学出版社,1988.
    [58]孙茂远,黄盛初.煤层气开发与利用手册[M].北京:煤炭工业出版社,1998.
    [59]刘泽功.卸压瓦斯储集与采场围岩裂隙演化关系研究[D].中国科学技术大学,2004.
    [60]刘天泉,仲维林,焦传武.煤矿地表移动与覆岩破坏规律及应用[M].北京:煤炭工业出版社,1981.
    [61]康永华,赵国玺.覆岩性质对“两带”高度的影响[J].煤矿开采,1998(1):52-54.
    [62]隋旺华.开采覆岩破坏工程地质预测的理论与实践[J].工程地质学报,1994,2(2):29-37.
    [63]李树刚.含瓦斯特厚软煤层顶煤运移特征观测[J].西安矿业学院学报,1998,18(2):103-106.
    [64]谢和平,于广明.采动岩体分形裂隙网络研究[J].岩石力学与工程学报,1999,18(2):147-151.
    [65] Xie H P, Sun H Q, Ju Y, et al. Study on generation of rock fracture surfaces by using fractalinterpolation[J]. International Journal of Solids and Structures,2001,38(32-33):5765-5787.
    [66] Xie H P. Fractals in Rock Mechanics[M]. Netherlands: A. A. Balkema Publishers,1993.
    [67]张金才.采动岩体破坏与渗流特征研究[D].煤炭科学研究总院煤炭科学研究总院采矿工程,1998.
    [68]王鲁明,赵坚,万德连.巷道裂隙围岩稳定性影响因素的数值分析[J].岩土力学,2005,26(10):1565-1569.
    [69]唐春安,刘红元.石门揭煤突出过程的数值模拟研究[J].岩石力学与工程学报,2002,21(10):1467-1472.
    [70]任强,刘伟韬.覆岩采动裂隙带发育规律的数值模拟分析[J].安全与环境学报,2006,6(B07):75-78.
    [71]黄志安,张英华,李示波,等. FLAC在确定沙曲矿裂隙带上下界中的应用[J].矿业研究与开发,2006,26(1):20-21.
    [72]向晓辉,王俐.三峡库区高阳段库岸岩体裂隙网络模拟研究[J].矿业研究与开发,2006,26(2):31-34.
    [73] Yang W, Lin B Q, Wu H J. Study of the stress relief and gas drainage limitation of a drillingand the solving mechanism[J]. Procedia Earth and Planetary Science,2009,1(1):371-376.
    [74]林柏泉,杨威,吴海进,等.影响割缝钻孔卸压效果因素的数值分析[J].中国矿业大学学报,2010,39(2):153-157.
    [75]吴海进,林柏泉,杨威,等.初始应力对缝槽卸压效果影响的数值分析[J].采矿与安全工程学报,2009,26(2):194-197.
    [76] Tang C A, Liu H, Lee P K K, et al. Numerical studies of the influence of microstructure onrock failure in uniaxial compression-Part I: effect of heterogeneity[J]. International Journalof Rock Mechanics and Mining Sciences,2000,37(4):555-569.
    [77] Tang C A, Tham L G, Lee P K K, et al. Numerical studies of the influence of microstructureon rock failure in uniaxial compression-Part II: constraint, slenderness and size effect[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(4):571-583.
    [78] Tang G, Shing J, Chen H, et al. Effects of microstructure on thermal and mechanicalproperties of PBGA substrates:2006International Conference on Electronic Materials andPackaging, EMAP, Kowloon, China,2006[C].
    [79]赵阳升,文再明,冯增朝.岩体裂隙面数量的三维分形分布仿真理论与技术[J].岩石力学与工程学报,2005,24(6):994-998.
    [80]柴贺军,黄地龙,等.岩体结构三维可视化及其工程应用研究[J].岩土工程学报,2001,23(2):217-220.
    [81] Diaz Aguado M B, Gonzalez C. Influence of the stress state in a coal bump-prone deepcoalbed: A case study[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(2):333-345.
    [82]何满潮,王晓义,刘文涛,等.孔庄矿深部软岩巷道非对称变形数值模拟与控制对策研究[J].岩石力学与工程学报,2008,27(4):673-678.
    [83] Islam M R, Shinjo R. Mining-induced fault reactivation associated with the main conveyorbelt roadway and safety of the Barapukuria Coal Mine in Bangladesh: Constraints from BEMsimulations[J]. International Journal of Coal Geology,2009,79(4):115-130.
    [84]李伟,万志军,姜福兴,等.大倾角综放面端面顶煤稳定性控制数值模拟及应用[J].中国矿业大学学报,2008,37(6):797-801.
    [85]石必明,刘泽功.保护层开采上覆煤层变形特性数值模拟[J].煤炭学报,2008,33(1):17-22.
    [86] Wang L G, Wu Y, Sun J. Three-dimensional numerical simulation on deformation and failureof deep stope floor[J]. Procedia Earth and Planetary Science,2009,1(1):577-584.
    [87] Islam M R, Shinjo R. Numerical simulation of stress distributions and displacements aroundan entry roadway with igneous intrusion and potential sources of seam gas emission of theBarapukuria coal mine, NW Bangladesh[J]. International Journal of Coal Geology,2009,78(4):249-262.
    [88] Ndlovu X, Stacey T R. Observations and analyses of roof guttering in a coal mine[J]. Journalof The South African Institute of Mining and Metallurgy,2007,107(8):477-492.
    [89]国家安全生产监督管理局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [90]国家安全生产监督管理总局.防治煤与瓦斯突出规定读本[M].北京:煤炭工业出版社,2009.
    [91]夏红春,程远平.覆岩移动特性的数值模拟及其在煤矿安全中的应用[J].西安科技大学学报,2005,25(4):420-424.
    [92]夏红春,程远平,柳继平.利用覆岩移动特性实现煤与瓦斯安全高效共采[J].辽宁工程技术大学学报:自然科学版,2006,25(2):168-171.
    [93]夏红春,程远平,柳继平.远程覆岩卸压变形及其渗透性研究[J].西安科技大学学报,2006,26(1):10-14.
    [94]刘海波,程远平,宋建成,等.极薄保护层钻采上覆煤层透气性变化及分布规律[J].煤炭学报,2010,35(3):411-416.
    [95] Liu H B, Cheng Y P, Song J C, et al. Pressure relief, gas drainage and deformation effects onan overlying coal seam induced by drilling an extra-thin protective coal seam[J]. MiningScience and Technology (China),2009,19(6):724-729.
    [96]国家煤矿安全监察局.瓦斯治理经验五十条[M].北京:煤炭工业出版社,2005.
    [97]于不凡.开采保护层的认识与实践[M].北京:煤炭工业出版社,1986.
    [98]程远平,周德永,俞启香,等.保护层卸压瓦斯抽采及涌出规律研究[J].采矿与安全工程学报,2006,23(1):12-18.
    [99]翟成.近距离煤层群采动裂隙场与瓦斯流动场耦合规律及防治技术研究[D].中国矿业大学,2008.
    [100]姜华.煤矿绿色开采技术研究的理论新平台——评《岩层控制的关键层理论》[J].中国矿业大学学报,2004,33(5):610.
    [101]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):561-564.
    [102]钱鸣高,许家林,缪协兴.煤矿绿色开采技术的研究与实践[J].能源技术与管理,2004(1):1-4.
    [103]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [104]武强,王志强,郭周克,等.创新的煤矿绿色开采技术——矿井水地面管井深部回灌的技术方法与应用[J].科技创新与品牌,2010(2):55-57.
    [105]岳宗洪,张明清,周锡德,等.煤矿绿色开采技术及煤层气资源化[J].煤炭工程,2008(3):64-65.
    [106]许家林.支护质量监控方法在朱仙庄煤矿的应用研究[D].中国矿业大学中国矿业大学,1990.
    [107]许家林.岩层移动与控制的关键层理论及其应用[D].中国矿业大学中国矿业大学采矿工程,1999.
    [108]许家林,钱鸣高,金宏伟.基于岩层移动的“煤与煤层气共采”技术研究[J].煤炭学报,2004,29(2):129-132.
    [109]袁亮.松软低透气性煤层瓦斯综合治理技术[M].北京:煤炭工业出版社,2004.
    [110]程远平,俞启香,袁亮,等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [111]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报,2003,32(5):471-475.
    [112]蒋曙光,王省身.综放采场流场及瓦斯运移三维模型试验[J].中国矿业大学学报,1995,24(4):85-91.
    [113]梁冰,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [114]于不凡.我国预防煤和瓦斯突出的主要措施[J].工业安全与防尘,1990(4):15-19.
    [115]林柏泉,崔恒性.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社,1998.
    [116]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学,1992.
    [117]俞启香,王凯.中国采煤工作面瓦斯涌出规律及其控制研究[J].中国矿业大学学报,2000,29(1):9-14.
    [118]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001.
    [119]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [120]郭玉森,林柏泉,吴海进,等.回采工作面瓦斯涌出分布规律的研究[J].华北科技学院学报,2007,4(1):5-7.
    [121]郭玉森,林柏泉,周业彬,等.回采工作面瓦斯涌出分布规律[J].煤矿安全,2007,38(12):66-68.
    [122]张志刚,王晋海,刘建兵.采空区上覆岩层瓦斯富集区域的形成与识别[J].矿业安全与环保,2007,34(2):38-40.
    [123]袁亮,刘泽功.淮南矿区开采煤层顶板抽放瓦斯技术的研究[J].煤炭学报,2003,28(2):149-152.
    [124]袁亮.复杂特困条件下煤层群瓦斯抽放技术研究[J].煤炭科学技术,2003,31(11):1-4.
    [125]王应德.近距离上保护层开采瓦斯治理技术[J].煤炭科学技术,2008,36(7):48-50,100.
    [126]赵文启.下保护层解突在绿塘煤矿的应用[J].山东煤炭科技,2011(4):17-18.
    [127]苏祖来,沈强,李彬.张集矿B组煤层深部采区瓦斯综合治理技术研究[J].科技信息,2009(23):1116-1117.
    [128]李伟.淮北矿业集团瓦斯灾害治理综述[J].煤炭科学技术,2008,36(1):31-34.
    [129]袁亮.留巷钻孔法煤与瓦斯共采技术[J].煤炭学报,2008,33(8):898-902.
    [130]袁亮.远松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2004.
    [131]袁亮.淮南矿区现代采矿关键技术[J].煤炭学报,2007,32(1):8-12.
    [132]袁亮.淮南矿区煤矿煤层气抽采技术[J].中国煤层气,2006,3(1):7-9.
    [133]袁亮.高瓦斯矿区复杂地质条件安全高效开采关键技术[J].煤炭学报,2006,31(2):174-178.
    [134]袁亮.创新瓦斯治理理念,实现煤与瓦斯共采[R].徐州:2010.
    [135]惠功领.煤矿深部近距低采高上保护层开采瓦斯灾害协同控制技术[D].徐州:中国矿业大学,2011.
    [136]百度百科.地应力[EB/OL].(2010-06-25)http://baike.baidu.com/view/43631.htm.
    [137]张篷,蒋校.中国大地构造理论研究的进程及现状[J].吉林地质,2010,29(1):18-20.
    [138]王启志,赵云龙.中国大地构造理论的进程及现状[J].科技创新导报,2011(14):221.
    [139]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2004.
    [140] Nazimko V V, Peng S S, Lapteev A, et al. Damage mechanics around a tunnel due toincremental ground pressure[J]. International journal of rock mechanics and mining sciences& geomechanics abstracts,1997,34(3-4):655.
    [141] Kontogianni V A, Stiros S C. Induced deformation during tunnel excavation: Evidence fromgeodetic monitoring[J]. Engineering Geology,2005,79(1-2):115-126.
    [142] Islam M R, Shinjo R. Numerical simulation of stress distributions and displacements aroundan entry roadway with igneous intrusion and potential sources of seam gas emission of theBarapukuria coal mine, NW Bangladesh[J]. International Journal of Coal Geology,2009,78(4):249-262.
    [143] Zhang H L, Wang L G, Gao F, et al. Numerical simulation study on the influence of theground stress field on the stability of roadways[J]. Mining Science and Technology (China),2010,20(5):707-711.
    [144]黄润秋,王贤能.深埋长隧道工程开挖的主要地质灾害问题研究[J].地质灾害与环境保护,1997,8(1):50-68.
    [145]李攀峰,张倬元,刘宏,等.某水电站地下厂房硐室群岩爆预测与防治研究[J].中国地质灾害与防治学报,2004,15(2):39-43.
    [146]谷明成,何发亮,等.秦岭隧道岩爆的研究[J].岩石力学与工程学报,2002,21(9):1324-1329.
    [147]李树森,聂德新,任光明.岩芯饼裂机制及其对工程地质特性影响的分析[J].地球科学进展,2004(S1).
    [148]缪晓军,吴继敏,等.圆形洞室岩爆成因分析及其地质灾害研究[J].河海大学学报:自然科学版,2002,30(5):37-40.
    [149]刘允芳,肖本职.西部地区地震活动与地应力研究[J].岩石力学与工程学报,2005,24(24):4502-4508.
    [150]徐林生,唐伯明,等.高地应力与岩爆有关问题的研究现状[J].公路交通技术,2002(4):48-51.
    [151]赵自强,王学潮,等.南水北调西线工程深埋隧洞岩爆与地应力研究[J].华北水利水电学院学报,2002,23(1):48-50.
    [152]徐则民,黄润秋,等.河谷应力集中及岩体响应[J].工程勘察,2003(1):4-7.
    [153]王广德,石豫川,葛华,等.岩爆与围岩分类[J].工程地质学报,2006,14(1):83-89.
    [154]许东俊,谭国焕.岩爆应力状态研究[J].岩石力学与工程学报,2000,19(2):169-172.
    [155]汪波,何川,吴德兴,等.基于岩爆破坏形迹修正隧道区地应力及岩爆预测的研究[J].岩石力学与工程学报,2007,26(4):811-817.
    [156]何思为,向贤礼,等.高应力区应力与岩爆的关系[J].广东工业大学学报,2002,19(3):1-6.
    [157]吕庆,孙红月,尚岳全,等.深埋特长公路隧道岩爆预测综合研究[J].岩石力学与工程学报,2005,24(16):2982-2988.
    [158]高峰.地应力分布规律及其对巷道围岩稳定性影响研究[D].徐州:中国矿业大学,2009.
    [159]孙守增.煤矿开采中的地应力特点及其应用研究[D].山东科技大学山东科技大学采矿工程,2003.
    [160]石永生,张宏伟,郭守泉.空芯包体测量方法的应用及巷道稳定性分析[J].煤炭科学技术,2006,34(2):90-92.
    [161]王连国,陆银龙,杨新华,等.霍州矿区地应力分布规律实测研究[J].岩石力学与工程学报,2010,29(A01):2768-2774.
    [162]景锋.岩质高边坡稳定性研究[D].武汉大学武汉大学岩土工程,2004.
    [163]景锋.中国大陆浅层地壳地应力场分布规律及工程扰动特征研究[D].中国科学院武汉岩土力学研究所中国科学院武汉岩土力学研究所岩土工程,2009.
    [164]林柏泉,周世宁.煤样瓦斯渗透率的试验研究[J].中国矿业大学学报,1987,16(1):21-28.
    [165]卫修君,林柏泉.煤岩瓦斯动力灾害发生机理及综合治理技术[M].北京:科学出版社,2009.
    [166]尹光志,黄启翔,张东明,等.地应力场中含瓦斯煤岩变形破坏过程中瓦斯渗透特性的试验研究[J].岩石力学与工程学报,2010,29(2):336-343.
    [167]尹光志,李晓泉,赵洪宝,等.地应力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2008,27(12).
    [168] Baghbanan A, Jing L. Stress effects on permeability in a fractured rock mass with correlatedfracture length and aperture[J]. International Journal of Rock Mechanics and MiningSciences,2008,45(8):1320-1334.
    [169] Ki Bok M, Rutqvist J, Tsang C F, et al. Stress-dependent permeability of fractured rockmasses: A numerical study[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(7):1191-1210.
    [170]缪协兴,陈占清,茅献彪,等.峰后岩石非Darcy渗流的分岔行为研究[J].力学学报,2003,35(6):660-667.
    [171]孙培德.煤层气越流的固气耦合理论及其计算机模拟研究[D].重庆大学采矿工程,1998.
    [172]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报(自然科学版),2001,20(3):161-167.
    [173] Peide S. New method to calculate coal-seam gas permeability[J]. Mining science&technology,1990,11(1):101-105.
    [174] Peide S. New method for calculating the gas permeability of a coal seam[J]. Internationaljournal of rock mechanics and mining sciences& geomechanics abstracts,1990,27(4):325-327.
    [175] Zhang J, Standifird W B, Roegiers J C, et al. Stress-Dependent Fluid Flow and Permeabilityin Fractured Media: from Lab Experiments to Engineering Applications[J]. Rock Mechanicsand Rock Engineering,2007,40(1):3-21.
    [176] Cai M, Kaiser P K, Tasaka Y, et al. Determination of residual strength parameters of jointedrock masses using the GSI system[J]. International Journal of Rock Mechanics and MiningSciences,2007,44:247-265.
    [177]杨威,林柏泉,屈永安,等.煤层采动应力场空间分布的数值模拟研究: Proceedings of2010(Shenyang) International Colloquium on Safety Science and Technology,沈阳,2010[C].
    [178] Bandis S, Lumsden A C, Barton N R. Experimental studys of scale effects on the shearbehaviour of rock joints.[J]. International Journal of Rock Mechanics and Mining Sciences,1981,18(1):1-21.
    [179] Bandis S C. Experimental studies of scale effects on shear strength and deformation of rockjoints[D]. UK: University of Leeds,1980.
    [180] Goodman R E, Karaca M, Hatzor Y. Rock structure in relation to concrete dams on granite:Geotechnical Special Publication, Raleigh, NC, USA,1993[C].
    [181] Goodman R E. Methods of geological engineering in discontinues rocks[M]. New York:West Publication,1976.
    [182] Vilks P, Miller N H, Jensen M. In-situ diffusion experiment in sparsely fractured granite:Materials Research Society Symposium Proceedings, San Francisco, CA, United states,2004[C].
    [183] Mathias S A, Tsang C F, van Reeuwijk M. Investigation of hydromechanical processesduring cyclic extraction recovery testing of a deformable rock fracture[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2010,47(3):517-522.
    [184]郭文兵,邓喀中,邹友峰.条带开采下沉系数计算与优化设计的神经网络模型[J].中国安全科学学报,2006,16(6):40-45.
    [185]郭文兵,邓喀中,邹友峰.条带煤柱的突变破坏失稳理论研究[J].中国矿业大学学报,2005,34(1):77-81.
    [186]郭文兵,邓喀中,邹友峰.岩层与地表移动控制技术的研究现状及展望[J].中国安全科学学报,2005,15(1):6-10.
    [187]郭文兵,邓喀中,邹友峰.概率积分法预计参数选取的神经网络模型[J].中国矿业大学学报,2004,33(3):322-326.
    [188]郭文兵,吴财芳,邓喀中.开采影响下建筑物损害程度的人工神经网络预测模型[J].岩石力学与工程学报,2004,23(4):583-587.
    [189]郭文兵,邹友峰,邓喀中.煤层底板采动导水破坏深度计算的神经网络方法[J].中国安全科学学报,2003,13(3):34-37.
    [190] Baghbanan A, Jing L. Stress effects on permeability in a fractured rock mass with correlatedfracture length and aperture[J]. International Journal of Rock Mechanics and MiningSciences,2008,45(8):1320-1334.
    [191] Liu J, Elsworth D, Brady B H. Linking stress-dependent effective porosity and hydraulicconductivity fields to RMR[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(5):581-596.
    [192] Zhang J C, Roegiers J C, Spetzler H A. Influence of stress on permeability around aborehole in fractured porous media[J]. International Journal of Rock Mechanics and MiningSciences,2004,41(SUPPL.1):2B-61B.
    [193] Itasca Consulting Group I. FLAC3D User’s Guide[M].2005.
    [194]蔡美峰.地应力测量原理和方法的评述[J].岩石力学与工程学报,1993,12(3):275-283.
    [195]张宜虎,卢轶然,周火明,等.围岩破坏特征与地应力方向关系研究[J].岩石力学与工程学报,2010,29(s2):3526-3535.
    [196]肖明,刘志明.锦屏二级水电站三维地应力场反演回归分析[J].人民长江,2000,31(9):42-44.
    [197]杨林德.初始地应力与围岩时间效应性态参数粘弹性反演计算的边界单元法[J].地下空间,1990,10(2):96-102.
    [198]李守巨,刘迎曦,等.基于遗传算法的岩体初始应力场反演[J].煤炭学报,2001,26(1):13-17.
    [199]梅松华,盛谦,冯夏庭,等.龙滩水电站左岸地下厂房区三维地应力场反演分析[J].岩石力学与工程学报,2004,23(23):4006-4011.
    [200]胡斌,冯夏庭,黄小华,等.龙滩水电站左岸高边坡区初始地应力场反演回归分析[J].岩石力学与工程学报,2005,24(22):4055-4064.
    [201]金长宇,马震岳,张运良,等.神经网络在岩体力学参数和地应力场反演中的应用[J].岩土力学,2006,27(8):1263-1266.
    [202]余卫平,杨健,汪小刚,等.峡谷地区大型地下洞室群岩体初始地应力场反演分析[J].水文地质工程地质,2007,34(2):20-24.
    [203]李渝生,王士天.中国西南地区挽近期地壳构造应力场的演化历史及成因机制[J].地质灾害与环境保护,2002,13(1):9-12.
    [204]钟继茂,程万正.由多个地震震源机制解求川滇地区平均应力场方向[J].地震学报,2006,28(4):337-346.
    [205] Flores R M. Coalbed methane: from hazard to resource[J]. International Journal of CoalGeology,1998,35(1-4):3-26.
    [206] Yang W, Lin B Q, Qu Y A, et al. Coal Bed Methane Resources: Hazard and Exploitation[J].Advanced Materials Research,2011,225:315-318.
    [207]缪启龙.地球科学概论(第二版)[M].北京:气象出版社,2001.
    [208]刘金海,冯涛,谢东海,等.煤与瓦斯突出预测的距离判别分析方法[J].煤田地质与勘探,2009,37(1):26-28.
    [209]王超,宋大钊,杜学胜,等.煤与瓦斯突出预测的距离判别分析法及应用[J].采矿与安全工程学报,2009,26(4):470-474.
    [210] Wang C, Wang E Y, Xu J K, et al. Bayesian discriminant analysis for prediction of coal andgas outbursts and applicatio[J]. Mining Science and Technology (China),2010,20(4):520-523.
    [211] Lee Y K, Pietruszczak S. A new numerical procedure for elasto-plastic analysis of a circularopening excavated in a strain-softening rock mass[J]. Tunnelling and Underground SpaceTechnology,2008,23(5):588-599.
    [212] Park K H, Tontavanich B, Lee J G. A simple procedure for ground response curve ofcircular tunnel in elastic-strain softening rock masses[J]. Tunnelling and Underground SpaceTechnology,2008,23(2):151-159.
    [213] Edelbro C. Numerical modelling of observed fallouts in hard rock masses using aninstantaneous cohesion-softening friction-hardening model[J]. Tunnelling and UndergroundSpace Technology,2009,24(4):398-409.
    [214] Chapter1O Rock classification[J].1995,Volume77:449-466.
    [215] Volume contents and author index volume30,1993[J]. International Journal of Solids andStructures,1993,30(24):i-xviii.
    [216] Corkum A G, Martin C D. The mechanical behaviour of weak mudstone (Opalinus Clay) atlow stresses[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(2):196-209.
    [217] Corthésy R, Leite M H. A strain-softening numerical model of core discing and damage[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(3):329-350.
    [218] Obara Y, Sugawara K. Updating the use of the CCBO cell in Japan: overcoring casestudies[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(7-8):1189-1203.
    [219] Yang W, Lin B Q, Qu Y A, et al. Stress evolution with time and space during mining of acoal seam[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(7):1145-1152.
    [220] Yang W, Lin B Q, Qu Y A, et al. Mechanism of strata deformation under protective seamand its application for relieved methane control[J]. International Journal of Coal Geology,2011,85(3-4):300-306.
    [221] Zhou D W, Stronge W J. Ballistic limit for oblique impact of thin sandwich panels andspaced plates[J]. International Journal of Impact Engineering,2008,35(11):1339-1354.
    [222] Yasitli N E, Unver B.3D numerical modeling of longwall mining with top-coal caving[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2):219-235.
    [223] Damjanac B, Fairhurst C, Brandshaug T. Numerical simulation of the effects of heating onthe permeability of a jointed rock mass: Proceedings of the ninth ISRM Congress, Paris,1999[C].
    [224]范晓刚,王宏图,胡国忠,等.急倾斜煤层俯伪斜下保护层开采的卸压范围[J].中国矿业大学学报,2010,39(3):380-385.
    [225]胡国忠,王宏图,李晓红,等.急倾斜俯伪斜上保护层开采的卸压瓦斯抽采优化设计[J].煤炭学报,2009,34(1):9-14.
    [226]贾剑青,王宏图,胡国忠,等.急倾斜工作面防水煤柱留设方法及其稳定性分析[J].煤炭学报,2009,34(3):315-319.
    [227]袁志刚,王宏图,胡国忠,等.急倾斜多煤层上保护层保护范围的数值模拟[J].煤炭学报,2009,34(5):594-598.
    [228]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [229] Yang M S, Xie Q, Zhang J, et al. Effects of coal rank, Fe3O4amounts and activationtemperature on the preparation and characteristics of magnetic activated carbon[J]. MiningScience and Technology (China),2010,20(6):872-876.
    [230] Bae J S, Bhatia S K. High-pressure adsorption of methane and carbon dioxide on coal[J].Energy and Fuels,2006,20(6):2599-2607.
    [231]谢广祥,王磊.采场围岩应力壳力学特征的工作面长度效应[J].煤炭学报,2008,33(12):1336-1340.
    [232]谢广祥.采高对工作面及围岩应力壳的力学特征影响[J].煤炭学报,2006,31(1):6-10.
    [233]谢广祥.综放工作面及其围岩宏观应力壳力学特征[J].煤炭学报,2005,30(3):309-313.
    [234]谢广祥,杨科.采场围岩宏观应力壳演化特征[J].岩石力学与工程学报,2010,29(z1):2676-2680.
    [235]钱鸣高.资源与环境协调(绿色)开采[J].煤炭科技,2006(1):1-4.
    [236]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究[J].中国矿业大学学报(自然科学版),2000,29(1):78-81.
    [237]许家林,钱鸣高.岩层采动裂隙分布在绿色开采中的应用[J].中国矿业大学学报,2004,33(2):141-144,149.
    [238]国家安全生产监督管理总局.保护层开采技术规范[S].2009.
    [239]刘洪永,程远平,赵长春,等.保护层的分类及判定方法研究[J].采矿与安全工程学报,2010,27(4):468-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700