用户名: 密码: 验证码:
煤自燃倾向性氧化动力学测试系统及自动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤自燃是我国煤炭行业生产中的重要灾害之一,不仅造成国家能源的严重浪费,同时还会引发煤尘瓦斯爆炸,给煤炭行业的安全生产带来恶劣的影响。因此,煤炭行业相关部门对煤自燃的防治一直高度重视。煤的自燃倾向性测试又是煤自燃防治的基础和依据。我国煤自燃倾向性测试的研究水平较国外先进水平还很薄弱,在测试方法及测试技术手段上还有不足之处。为此,本论文对煤自燃倾向性的氧化动力学测试系统的关键技术展开研究。
     首先,对不同物理尺寸的煤样反应罐内气体流场的分布特性进行了深入的理论分析,并运用Fluent软件研究了煤样反应罐内煤样的耗氧特性。通过对比研究得出结论:反应罐内直径越小,煤样罐出口的氧气浓度和流速越小。其次,测试三种典型煤样在煤样罐直径和氧化动力学测试指标之一的交叉点温度之间的关系,通过实验得知,直径越小,交叉点温度越高,最终确定了直径为45mm的圆柱体煤样罐为最佳的物理尺寸。然后,分析了煤样反应罐在测试炉的不同摆放位置对测试炉内部温度场分布的影响,从而确定其相对较优的摆放位置。
     在煤自燃倾向性的氧化动力学测试系统的研制过程中,高分辨率温度测量是整个测试系统的关键点和难点,要想自动精确控制测试炉的温度,必须首先解决温度测量的高分辨率的问题。通过对温度测量的理论计算和相关的误差因素分析,该测试系统的测温范围在0—400℃范围内,测温分辨率达到0.0067℃。这些指标能达到了国外先进公司(日本岛津公司)的同类仪器的性能指标。整个测试系统的自动精确控制,是另一个关键点和难点,就整个测试系统而言,涉及到的控制问题很多,本文选择了测试炉的温度控制作为研究对象,首先用工程整定法和解方程法分别对控制系统进行数学建模分析,通过对比研究,作者选用了后者。但是本文的控制对象的控制范围跨度大、控制精度要求很高,要建立该控制对象的非常准确的数学模型是非常困难的。鉴于此,选用PID控制算法并优化控制参数P、I、D等,满足控制指标需要,在理论验证可行的基础上,成功实现了相关PID控制器并应用于测试系统。在实验过程中,尤其是温度控制的高温段时,发现控制算法的控制性能下降很多,已经不能满足系统在此时的控制需求,需要研究并优化新的控制算法。通过对比研究,本文选择了更加智能的模糊控制算法,它的最大优点是在缺乏控制系统数学模型的情况下,达到较优的控制效果。通过对模糊控制器的控制规则和相关控制参数的优化,克服了控制性能严重下降的问题,同时也较好地满足了测试系统的控制需求。就控制指标而言,控温精度可达0.1℃,能够达到国内同类仪器的先进水平。
     本文研发的测试系统,不仅可以测量交叉点温度和70℃煤样反应罐出口处的耗氧这两个关键指标,还可以对煤与氧气反应气体产物进行快速分析测试,自动取样、进样。测试气体的种类包括:O2、N2、CO、CO2、CH4、C2H4、C2H6、C2H2、C3H8等。测试周期小于8分钟,测试精度高,O2、N2常量气体最小检测浓度≤0.01%,其他种类的微量气体检测精度可达0.1ppm。上位机测试软件可以实时记录系统的各种测试数据,并实时动态曲线显示。并进行相关数据的处理形成给出煤自燃倾向性的氧化动力学测试评价结果。除此之外,该测试系统还可用于煤的绝热氧化实验和煤层标志性气体分析测试等相关实验研究。
Coal spontaneous combustion is one of the important disasters in China coal industry. It will not only cause a serious waste of energy, but also evoke coal dust and gas explosion which brought bad influence to the safety production of the coal industry. Therefore, the relevant departments of the coal industry have always attached great importance to the prevention and control of coal spontaneous combustion. The identification of the propensity to spontaneous combustion is the basis for determination of coal spontaneous combustion prevention. Its importance is self-evident. But, our research on coal spontaneous combustion which compared with foreign advanced level is still relatively weak. Therefore, The paper will study on the key technical problems of testing system for identifying the propensity of coal spontaneous combustion.
     Firstly, the paper makes a deep analysis of the distribution characteristics of the gas flow in coal samples of different physical dimension of the reaction tank, and study the coal sample reaction tank oxygen consumption characteristics by using Fluent simulation technology. Through the above research, we determine the cylinder coal sample tank of45mm diameter for the best physical size. In addition, also analyze the influence of different location of coal sample reaction tank in the test furnace for testing the distribution of furnace temperature field. Ultimately, we determine the relative optimal placement.
     In the development process of oxidation kinetics testing system of coal spontaneous combustion, high resolution temperature measurement is the key point of the whole system. Because it is a scientific analysis instrument, the measuring accuracy is very high, And the temperature measurement is the basis of accurate automatic control of follow-up. Through the analysis of the temperature measurement of the theoretical calculation and the error, we design the test system of temperature resolution of0.0067℃in the range of0-400℃。Some indicators meet the foreign progressive Corp(Shimadzu Corporation) performance of similar instruments. Automatic control of the whole testing system is another key point and the difficulty. Speaking of the entire test system, many control problems involved. In the paper, the choice of test furnace temperature control as the object of study. Firstly, we use the engineering tuning method and equation method respectively to the control system mathematical modeling analysis. Through the comparative study, we choose the latter method. But the control objects of the paper, its control range span, control of high precision. It is very difficult to establish an accurate mathematical model of the control object. We use the PID algorithm and the optimization of control parameters P,I,D etc to design controller. Through the theoretical calculation and simulation, the relevant control indicators meet the needs. Based on theoretical verification, we have achieved the PID controller and its application in test system. During the experiment, especially at high temperature range(250-400℃), we found that the control performance of the control algorithm is decreased a lot, it has been unable to meet the demand of the system in the control respect. In order to overcome these defects, we need to study and optimize the new control algorithm. Through the comparative study, we chose the fuzzy control algorithm which has a significant advantage that can achieve better control effect in the circumstances of indistinct mathematical model.
     The oxidation kinetics method of coal spontaneous combustion tendency is a relatively new method. But the shortest coal spontaneous combustion period and the parameters used more widely. Through the study of the relation between the test data and the shortest coal spontaneous combustion period, the paper can more accurately estimate the shortest coal spontaneous combustion period, and integrate it into the test software which developed by author. It is very good to expand the application field of the test system and shorten the time of test period and the complexity of the shortest coal spontaneous combustion.
引文
[1]秦书玉,赵书田,张永吉等.煤矿井下内因火灾防治技术[M].东北大学出版社,1993.
    [2]王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990:9-10.
    [3]邓军,徐精彩,阮国强等,.国内外煤炭自然发火预测预报技术综述.西安矿业学院学报,1999.12.
    [4]B Basil Beamishl, Modher A Barakat, Andrew L Cooperl etc. Sensitivity of adiabatic self-heating rates[C]. Proceedings of2000Queensland Mining Industry Health and Safety Conference. Townsville, Queensland, Australia, August,2000.
    [5]罗海珠.煤低温氧化自热热物理特性研究.中国矿业大学[D].中国矿业大学图书馆,2001.
    [6]Beamish, B.B., Barakat, M.A., St. George, J.D., Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects. Thermochim. Acta,2000(362),79-87.
    [7]Chen, X.D., Stott, J.B.,. The effect of moisture content on the oxidation rate of coal during near-equilibrium drying and wetting at50℃. Fuel.1993(72)787-792.
    [8]Chen, X.D. and Stott, J.B. Calorimetric study of the heat of drying of a sub-bituminous coal. Journal of Fire Sciences,1992(10),352-361.
    [9]Ren, T.X., Edwards, J.S., Clarke, D.. Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion. Fuel,1999(78),1611-1620.
    [10]Vance, W.E., Chen, X.D., Scott, S.C.. The rate of temperature rise of a subbituminous coal during spontaneous combustion in an adiabatic device:the effect of moisture content and drying methods. Combust. Flame,1996(106),261-270.
    [11]Jones J.C.'Steady beh aviour of long du ration in the spontaneous heating of a bitum inous coal' Journal of Fire Sciences,1996(14),159-166.
    [12]Jones, J.C. A new and more reliable test for propensity of coals and carbons to spontaneous heating. Journal of Loss Prevention in the Process Industries,2000(13),69-71.
    [13]Jones J.C.'An examination and assessment of basket heating tests to determine propensity to spontaneous combustion'(invited paper) Proceedings of the24th International Conference on Fire Safety179~190Product Safety Corporation, Sissonville, West Virginia,1997.
    [14]徐精彩,葛岭梅.煤炭低温自燃过程的研究[J].煤炭工程师.1989(5),7-13.
    [15]B Basil Beamishl, Modher A Barakat, Andrew L Cooperl etc. Sensitivity of adiabatic self-heating rates[C]. Proceedings of2000Queensland Mining Industry Health and Safety Conference. Townsville, Queensland, Australia, August,2000.
    [16]中华人民共和国国家标准.GB23561.4-2009,煤和岩石物理力学性质测定方法[S].
    [17]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2008.
    [18]邓军,徐精彩,李莉等.煤的粒度与耗氧速度关系的实验研究[J].西安交通大学学报.1999(33)12,106-107.
    [19]王惠民.流体力学[M].南京:河海大学出版社,2010.
    [20]徐精彩,许满贵,文虎等.煤氧复合速率变化规律研究.煤炭转化,2000,23(3):63~66.
    [21]张衍国,李清海等.炉内传热原理与计算[M].清华大学出版社,2008.
    [22]张萌,和湘,姜斌等.单片机应用系统开发[M].清华大学出版社,2007.
    [23]秦泓江等,AD7714可编程模数转换器及其应用[J].石油仪器.2005,19(4)37-38
    [24]李灵华,具有四通道差分输入功能的ADS1224型24位△-∑模/数转换器的原理及应用[J].电子元器件应用2005,5(5)51-54
    [25]NXP2214Datasheet[DB/OL].http://www.zlgmcu.com
    [26]曾永红等,AD7714在高精度测量系统中的应用[J].电子技术.2001,11.29-32
    [27]刁文兴等,AD7714在温度测量中的使用要点[J].南京工业职业技术学院学报2005,5(4)31-32
    [28]邵文威等,基于AD7714的高精度数字化称重传感器设计[J].电气电子教学学报2009,31(5)64-67
    [29]王龙,基于铂电阻的数字温度测量系统设计[J].吉首大学学报.2009,30(3)71-73
    [30]张烂熳,一种优化的精密温度测量方法[J].机电工程.2009,26(9)57-80
    [31]孙云霞等,提高温度传感器测试准确性的方法[J].计测技术2009,29(3)27-29
    [32]刘同召等,Pt100铂热电阻在雨花茶精揉机温度控制中的应用[J].江西农业学报2009,21(5)94-96
    [33]刁文兴等,AD7714在温度测量中的使用要点[J].南京工业职业技术学院学报2005,5(4)31-32
    [34]杨高波等,24位A/D转换器AD7714与80C51的接口及编程[J].华东交通大学学报2000,17(3)29-32
    [35]曾永红等,AD7714在高精度测量系统中的应用[J].电子技术.2001,11.29-32
    [36]李海港王德明.煤自燃倾向性的氧化动力学测定中的温度测量电路的设计[J].工矿自动化.2013年第5期
    [37]黄大勉等,一种新的校正铂电阻传感器非线性的数学方法[J].传感器技术.2004,23(6)44-46
    [38]任殿慧等,一种铂电阻测温电路的非线性校正方法[J].电子器件.2010,33(5).603-606
    [39]黄巧燕等,基于比例法的高准确度测温电路及非线性校正[J].传感器技术.2003,22(6)17-19
    [40]黄大勉等,基于函数变换原理的铂电阻传感器非线性校正方法[J].传感技术学报.2006,196)2457-2459
    [41]汪晓东,RBF神经网络在传感器校正中的应用[J].仪器仪表学报.2003,24(1)96-98
    [42]方益民等,RBF神经网络在压力校验台数据非线性校正中的应用[J].自动化仪表.2005,26(10)28-30
    [43]黄大勉等,基于RBF神经网络的传感器非线性误差校正方法[J].传感技术学报.2006,196)2457-2459
    [44]候立群等,基于RBF神经网络的传感器静态误差综合校正方法[J].传感器技术.2004,23(3).43-45
    [45]韦国勋等,利用CPSO_RBF神经网络的电流互感器自动测试校正研究[J].测控技术.2010,29(4)82-86
    [47]王德明.矿井火灾[M].徐州:中国矿业大学出版社,2008.
    [48]王德明.矿井通风与安全[M].徐州:中国矿业大学出版社,2007.
    [49]仲晓星.煤自燃倾向性的氧化动力学测试系统研究[D].中国矿业大学,2008.
    [50]中华人民共和国国家标准.GB/T20104-2006,煤自燃倾向性色谱吸氧鉴定法[S].
    [51]中华人民共和国国家标准.GB212-2001,煤的工业分析方法[S].
    [52]文虎,徐精彩,葛岭梅等.煤自燃性测试技术及数值分析[J].北京科技大学学报.2001,23(6)499~501.
    [53]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2008.
    [54](美)伊曼纽尔(Emanuel,G.)著;周其兴,周静华译.气体动力学的理论与应用[M].北京:宇航出版社,1992.
    [55]马汉鹏,陆伟,王德明等.煤自燃过程物理吸附氧的研究[J].煤炭科学技术,2006,34(7):26-29.
    [56]唐明云,张国枢,戴广龙等.空气流量对煤升温氧化影响的实验研究.煤矿安全,2008,23(5):12-14.
    [57]梁运涛,罗海珠.中国煤矿火灾防治技术现状与趋势[J].煤炭学报.2008.33(2)126-130.
    [58]秦波涛,王德明,李增华等.以活化能的观点研究煤炭自燃机理.中国安全科学学报.2005.15(1)11~13.
    [59]张建文,杨振亚等.流体流动与传热过程的数值模拟基础与应用[M].化学工业出版社,2009.
    [60]陶永华,新型PID控制及其应用[M].北京:机械工业出版社,1998
    [61]廖任秀,高精度恒温水浴控制器的研制[J].宁波大红鹰职业技术学院学报.2004,12(2)53-55
    [62]何频等,高精度温度控制算法及温控器系统[J]仪表技术.199,6(6)18-20
    [63]李小平等,工业色谱仪温度测控系统的研究与设计[J]兰州交通大学学报.2008,2(27)110-113
    [64]肖亚明等,气相色谱控温冲量大的原因及改进措施[J]仪表技术.1994(6)39-40
    [65]付贵华等,用单片机实现气相色谱仪温度控制[J].分析仪器.1992(1)39-40
    [66]张作庆等,用单片机实现气相色谱仪温度控制[J].山东电子.2000(4)18-20
    [67]朱彤等,PID—模糊控制的应用探讨[J].电气传动自动化.200224(3)11-13
    [68]涂承宇,涂承媛,模糊控制理论与实践[M].北京:地震出版社.1998.
    [69]韩启纲,吴锡祺,模糊控制技术与仪表装置[M].北京:中国计量出版社.1999
    [70]李士勇等,模糊控制和智能控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社.1990
    [71]诸静,模糊控制原理与应用[M].北京:机械工业出版社.1995
    [72]朱彤,PID-模糊控制的应用探讨[J].电气传动自动化.2002,24(3):11-13
    [73]吕剑虹,模糊PID控制器及在汽温控制系统中的应用研究[J].中国电机工程学报.1995,15(1)16-18
    [74]韦巍,智能控制技术[M].北京:机械工业出版社.2003
    [75]邱志雄,模糊PID控制器[J].电气自动化.1994
    [76]薛定宇,反馈控制系统设计与分析——MATLAB语言应用[M].北京:清华大学出版社.2000
    [77]窦振中,模糊逻辑控制技术及其应用[M].北京:北京航天航空大学出版社.1995
    [78]肖位枢,模糊数学基础及其应用[M].北京:航空工业出版社.1992
    [79]张国良,模糊控制及其MATLAB应用[M].西安:西安交通大学出版社.2002
    [80]曲建岭,水温模糊控制系统的设计[J].自动化仪表.2002,21(2)8-11
    [81]杨庆芬,基于MATLAB模糊逻辑工具箱的模糊控制系统仿真[J].电子技术应用.2002(,2)43-44
    [82]李人厚,智能控制理论和方法[M].西安:西安电子科技大学出版社,1999
    [83]李友善,模糊控制理论及其在过程控制中的应用[M].北京:北京国防工业出版社,1993
    [84]吕剑虹等,模糊PID控制器及在汽温控制系统中的应用研究[J].中国电机工程学报1995,15(1)13-21
    [85]亢海伟等,基于MATLAB模糊逻辑工具箱的模糊控制系统仿真[J].电子技术应用.2002,2.43-44
    [86]邓军等,煤自然发火期预测模型研究[J].煤炭学报,2004,29(5)568-571
    [87]余明高等,煤最短自然发火期解算数学模型[J].煤炭学报.2001,26(5)516-519
    [88]余明高等,煤层自然发火期预测的研究[J].中国矿业大学学报.2001,30(4)384-387
    [89]徐精彩等,基于煤氧复合过程分析的自然发火期预测技术研究[J].火灾科学.2000,9(3)21-27
    [90]何启林.煤低温氧化性与自燃过程的实验及模拟的研究[D].徐州:中国矿业大学,2004.
    [91]陆伟,王德明,仲晓星等.基于绝热氧化的煤自燃倾向性鉴定研究[J].工程热物理学报,2006,27(5):875-878.
    [92]戴广龙,王德明,陆伟等.煤的绝热低温自热氧化试验研究[J].辽宁工程技术大学学报,2005,24(4):485-488.
    [93]陆伟,王德明,周福宝等.绝热氧化法研究煤的自燃特性[J].中国矿业大学学报,2005,34(2):213-217.
    [94]陆伟.煤自燃逐步自活化反应过程研究[D].徐州:中国矿业大学,2006.
    [95]李增华,位爱竹,杨永良.煤炭自燃自由基反应的电子自旋共振实验研究[J].中国矿业大学学报,2006,9.
    [96]Vance, W.E., Chen, X.D., Scott, S.C.. The rate of temperature rise of a subbituminous coal during spontaneous combustion in an adiabatic device:the effect of moisture content and drying methods[J]. Combust. Flame,1996(106):261-270.
    [97]Jones, J.C. A new and more reliable test for propensity of coals and carbons to spontaneous heating[J]. Journal of Loss Prevention in the Process Industries,2000(13):69-71.
    [98]Jones J.C.'Steady behavior of long duration in the spontaneous heating of a bituminous coal[J] Journal of Fire Sciences,1996(14):159-166.
    [99]CHEN, X.D., Safer estimate of time-to-ignition of reactive porous solid slab based on a simplified heat conduction term in Frank-Kamnetskii theory of thermal ignition [J]. Chemical Engineering and Processing,1997(36):195-200.
    [100]Chen, X.D. and Stott, J.B. Calorimetric study of the heat of drying of a sub-bituminous coal[J]. Journal of Fire Sciences,1992(10):352-361.
    [101]Ren, T.X., Edwards, J.S., Clarke, D.. Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion[J]. Fuel,1999(78):1611-1620.
    [102]David Cliff, Fiona Clarkson, Ray Davis and Tony Bennett. The implications of large scale tests for the detection and monitoring of spontaneous combustion in underground coal[C]. Proceedings of2000Queensland Mining Industry Health and Safety Conference. Townsville, Queensland, Australia,2000.
    [103]Frank-Kamenetskii D A. Diffusion and heat exchange in chemical kinetics[C].2nd ed. New York:Plenum Press,1969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700