用户名: 密码: 验证码:
电厂磨机返料在稀相振动气固流化床中的颗粒分离行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固流化床分选技术已成为干法选煤研究的热点,细粒煤流化床分选技术及理论也得到了快速发展。本论文在综述了国内外流化床分选技术及相关文献的基础上,从节能减排的目的出发,将流化床干法分选技术引入电厂磨煤制粉过程,围绕燃煤电厂磨煤机返料中黄铁矿等高密度、高硬度矿物质组分的去除,开展了振动流化床分选0.5mm以下粒级物料的相关基础研究。论文研究了在无外加重介质条件下颗粒在流化床中的受力情况,研究了颗粒在不同雷诺数下运动时的阻力系数差异,并加入振动作用在颗粒上的正弦力,建立了振动流化床不同区域内颗粒运动动力学模型,得到颗粒加速度公式。解释了颗粒在振动流化床中的分离机理,设计了振动流化床连续分选装置并进行了连续分选试验,为细粒物料在无外加重介质条件下的振动流化床分选提供了研究基础。
     对颗粒运动动力学模型的数值模拟结果表明该模型适用于计算和描述颗粒在振动流化床中的运动速度和轨迹。计算流体力学模拟结果表明,在稀相和密相两种流化状态的作用下,不同颗粒在流化床中的不同区域运动、聚集,最终按密度进行了分层。
     磨煤机返料粒度较细,主要集中在0.125~0.25mm,属Geldart B类颗粒。模拟物料和实际物料流化特性试验结果表明,振动可显著降低流化床起始流化速度和床层膨胀率,分选特性实验结果表明,模拟物料和实际物料均存在按粒度分级现象,并按密度进行了分层。在流化数为3,振动频率为55Hz时,物料分选效率较高,各层产物粒度、密度分布较均匀,其中实际物料的重产物灰分为78.46%,轻、重产品灰分差值为37.39%,分选效率为51.14%,可燃体回收率达到了94.05%。扫描电镜背散射成像和能谱仪元素面分布研究表明,返料中的粘土矿物,黄铁矿等高密度组分得到分离。研究还表明,磨机返料中微细粒级煤粉的存在,使流化床层粒度和密度分布更稳定。
     研究了振动力场的加入对分选过程的影响,高速动态摄像分析结果表明振动促进了气泡的兼并,并在流化床径向截面形成向上做规律周期的运动气塞,尽管气塞的运动对床层的稳定性有影响,但对颗粒按密度分离有利。颗粒在振动流化床中的分离机理表明,颗粒通过气泡稀相和粒群密相的协同作用,最终在干扰沉降过程中通过沉降末速的不同而得到分离。
     进行了磨机返料连续分选试验,研究了轻、重产物灰分值、分选效率和可燃体回收率与操作气速、振动频率和给料速度之间的关系,结果表明,操作气速为13.2cm/s,振动频率为55Hz、给料速度为1.5kg/min时,综合分选效果最好,轻、重产物灰分分别为45.37%和75.67%,分选效率和可燃体回收率最高,分别为58.33%和88.64%。试验结果证明了磨机返料振动流化床分选的可行性。
The gas-solid fluidized bed separation technology is the research focus on drycoal preparation. The fluidized bed separation technology for fine coal cleaning hasbeen developed rapidly. Based on the review of the fluidized bed study and relevantliterature, in order to save energy and reduce emission,the gas-solid fluidized bedseparation technology is introduced into the pulverizing process of power plant in thispaper. Therefore, the vibrated fluidized bed applied to separate materials blow0.5mmwas researched basically. The forces in the fluidized bed without external mediumwere analyzed and the difference of drag coefficient among particles with differentReynolds number was studied. Besides, the sine force was exerted on the particles soas to establish dynamic models of motion particles in the different areas of thevibrated fluidized bed. The separation mechanism was explained and the continuousseparation apparatus and experiments were designed, which offered a research basisfor the separation by the fluidized bed without additional dense medium.
     The numeric simulation of the dynamic models are suitable to calculate anddescribe the velocities and tracks of particles in the vibrated fluidized bed. The resultsof computational fluid mechanics showed that different particles move and gather inthe different areas of the fluidized bed, and finally are stratified by density under thedilute and dense phase.
     Most particle sizes of the recirculating loads in the pulverizer are fine and theyare mainly between0.125~0.25mm which belong to Geldart B particles. The resultsof fluidization characteristic experiments of the simulated materials showed that thevibration could reduce the bed expansion and minimum fluidization velocitysignificantly. The results of separation characteristic experiments showed that thesimulated materials were separated by size and density. When the fluidization numberwas3and the vibrational frequency was55Hz, the separation efficiency was at itsmaximum level and the particle size and density distribution were uniform. The ash ofthe heavy product of actual material is78.46%. The difference between the heavy andlight product is37.39%. The separation efficiency is51.14%. The recovery ofcombustible matter amounts to94.05%. The backscattered electron imaging andspectrometer element distribution indicate that clay mineral, pyrite and other highdensity components are removed. Besides, fine coal existed in the recirculating loadof the pulverizer render the density and size distribution of fluidized bed more stable.
     The influence of vibration force field on the separation was studied and the images shooted by a high speed digital camera showed that the induced vibrationpromotes the merge of bubbles and forms the periodic upward air lock in the radialcross section of the fluidized bed. Though the motion of air lock influences thestability of bed, it is beneficial to the separation of particles by density. The separationmechanism of particles in the vibrated fluidized bed showed that the particles wereseparated by different terminal settling velocity in the process of hindered settling bythe synergistic effect between the dilute-phase and dense-phase.
     The continuous separation to the recirculating load of the pulverizer was carriedout in order to study the relation between ash of heavy and light product, separationefficiency, combustible matter recovery and the air speed, vibration frequency,feeding speed. The results showed that when the air speed was at13.2cm/s, vibrationfrequency was at55Hz and the feeding speed was at1.5kg/min, the comprehensiveseparation effect was the best with the45.37%and75.67%ash content of lightproduct and heavy product respectively. The separation efficiency and combustiblematter recovery reach to the peaks which were58.33%and88.64%respectively. Theresults validate the feasibility to separate the recirculating load of the pulverizer by thevibrated fluidized bed.
引文
[1]2010BP Statistical Review of World Energy June.2011[R]. http://www. bp.com/statisticalreview.
    [2]2010年供电煤耗达世界先进水平. http://www.cec.org.cn/yaowenkuaidi/2011-10-25/72655.html
    [3]王志轩,潘荔,张晶杰,扬帆.我国燃煤电厂“十二五”大气污染物控制规划的思考[J].环境工程技术学报.2011,1(1):63-71.
    [4]金维强.大型锅炉运行[M].北京:中国电力出版社,2004.
    [5]许传凯,袁颖.大型燃煤电厂锅炉运行现状分析[J].中国电力,2003,36(1):1-5.
    [6]徐宪斌,吴炬,吴会文,冷杰,梁明文,张晟.改进粗粉分离器提高锅炉机组经济性[J].中国电力,1999,32(7):16-17.
    [7]陈洁.现代发电设备[M].北京:国电力出版社,2007.
    [8]中国动力工程学会主编.火力发电设备技术手册(第4卷):火电站系统与辅机[M].北京:机械工业出版社,2004.
    [9]崔丽敏,郝振彤,杨利民,王雪梅.改进粗粉分离器提高制粉系统经济性[J].黑龙江电力技术,1996,18(1):36-40.
    [10]李文亮,杨涛,于向军,杜齐喜,李志波,李春然.国外大型球磨机发展现状[J].矿山机械,2007,35(1):13-15.
    [11]范玉勤.煤质变化对火电厂生产运行的影响[J].沿海企业与科技,2008,8:93-95.
    [12]张会娟.煤质变化对火电厂经济性影响分析[J].华北电力技术,2009,8:19-26.
    [13]郭晓冬.煤质差对火电厂锅炉运行的影响[J].山西科技,2006,6:107-108.
    [14]刘孜.我国二氧化硫和酸雨污染防治工作取得阶段性成果[J],电力需求侧管理.2001,3(3):5-6.
    [15]黎在时,刘卫平.德国WULF公司的干法脱硫技术[J],中国环保产业,2002(2):74-76.
    [16]容銮恩.燃煤锅炉机组[M].北京:中国电力出版社,1998.
    [17]郝吉明,王书恩.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    [18]杨云松.复合式干法选煤技术的开发和应用[J].煤矿机械,2009,30(8):54-56.
    [19]赵跃民,李功民,骆振福等.一种新型的高效干法选煤设备[J].中国煤炭,2009,35(10):90-92.
    [20] Luo Z F, Fan M M, Zhao Y M, Tao X X, Chen Q R, Chen Z Q. Density dependent separationof dry fine coal in a vibrated fluidized bed [J]. Powder Technology,2008,187(2):119-123.
    [21]宋树磊,赵跃民,骆振福,唐利刚.气固磁稳定流化床屈服应力的实验研究[J].中国矿业大学学报,2011,40(6):908-911.
    [22] Song S L, Zhao Y M, He Y Q, Wang H F, Duan C L, Hao J. Basic research on the separationof electronic scraps with an active-pulsed airflow classifier[J]. The2nd internationalconference on bioinformatics and biomedical engineering, Shanghai, China, May,2008:808-813.
    [23] Zhang X X, Bian B X, Duan C H, Xiong J J. Triboelect rostatic separation: an efficientmethod of producing low ash clean coal[J]. Journal of China University of Mining&Technology,2002,12(1):35-37.
    [24] Geldart D. Types of gas fluidization[J]. Powder Technol.1973,7(5):285-292.
    [25] Li J, Kwauk M. Particle-Fluid Two-Phase Flow[M]. Beijing: Metallurgical Industry Press,1994.
    [26] Johnson P C, Jackson R. Frictional-Collisional Constitutive Relations for Granular Materialswith Application to Plane Shearing[J]. J Fluid Mech,1987,176:67-93.
    [27] Nieuwland J J, Van Annaland M, Kuipers J A M, Van Swaaij W P M. HydrodynamicModeling of Gas/Particle Flows in Riser Reactors[J]. AICHE J,1996,42(6):1569-1582.
    [28]欧阳洁,李静海.鼓泡流化床中动态行为的离散模拟[J].自然科学进展:国家重点实验室通讯,2000,10(2):154-160.
    [29] Wang W, Li Y. Hydrodynamic simulation of fluidization by using a modified kinetic theory[J].Ind&Eng Chem Res,2001,40(23):5066-5073.
    [30]李泽普,秦建华.俄罗斯风力选煤现状及发展趋势[J].中国煤炭,1998,24(5):53-55.
    [31]任尚锦,徐永生,卢连永,薛守军,石燕峰,朱晓建. FX型和FGX型干法分选机在我国的应用[J].选煤技术,2001,5:4-6.
    [32] Chan E W, Beeckmans J M. Pneumatic beneficiation of coal fines using the counter-currentfluidized cascade[J]. International Journal of Mineral Processing,1982,9(2):157-165.
    [33] Beeckmans J M, Minh T. Separation of mixed granular solids using the fluidized countercurrent cascade principle[J]. The Canada Journal of Chemical Engineering,1977,55(5):493-496.
    [34] Beeckmans J M, Stahl B. Mixing and segragation kinetics in a strongly segregatedgas-fluidized bed[J]. Powder Technology,1987,53(1):31-38.
    [35] Beeckmans J M, Jeffs A. Taylor dispersion in fluidized channel flow[J]. ChemicalEngineering Science,1982,37(6):863-867.
    [36] Sahu A K, Biswal S K, Parida A. Development of Air Dense Medium Fluidized BedTechnology For Dry Beneficiation of Coal-A Review[J]. International Journal of CoalPreparation and Utilization,2009,29(4):216-241.
    [37] Luo Z F, Zhao Y M, Fan M M, Tao X X, Chen Q R. Density Calculation of a CompoundMedium Solids Fluidized Bed for Coal Separation[J]. The Journal of The Southern AfricanInstitute of Mining and Metallurgy,2006,106(11):749-752.
    [38] Luo Z F, Zhao Y M, Tao X X, Fan M M, Chen Q R, Wei L B. Progress in Dry Coal CleaningUsing Air-dense Medium Fluidized Beds[J]. Coal Preparation,2003,23(1/2):13-20.
    [39] Luo Z F, Zhu J F, Fan M M, Zhao Y M, Tao X X. Low density dry coal beneficiation using anair dense medium fluidized bed[J]. Journal of China University of Mining&Technology,2007,17(3):0306-0309.
    [40] Chen Q R, Luo Z F, Wang H F, Zhao Y M, Wei L B. Theory and practice of dry beneficiationtechnology in China[C]//Proceedings of XXIV International Mineral Processing Congress,Beijing, China,2008:1900-1907.
    [41] Zhao Y M, Luo Z F, Chen Q R, He Y Q, Chen Z Q, Liang C C, Duan C L. Development ofDry Cleaning With Fluidized Beds in China[C]//Proceedings of the11th international mineralprocessing symposium, Belek-Antalya, Turkey,2008:639-646.
    [42]骆振福,陈清如.振动流化床的分选特性[J].中国矿业大学学报,2000,29(6):566-569.
    [43]骆振福, Mao ming FAN,赵跃民,陶秀祥,陈增强.物料在振动力场流化床中的分离[J].中国矿业大学学报,2007,36(1):27-32.
    [44]骆振福,赵跃民.流态化分选理论[M].徐州:中国矿业大学出版社,2002.
    [45]张厦,章新喜.振动逆流干法分选机的试验研究[J].选煤技术,2011,1:1-3.
    [46] Wotruba H, Weitkaemper L, Steinberg M. Development of a New Dry Density Separator forFine-grained Materials[C]. XXV INTERNATIONAL MINERAL PROCESSINGCONGRESS (IMPC)2010PROCEEDINGS/BRISBANE, QLD, AUSTRALIA/6-10SEPTEMBER2010:1393-1398.
    [47] Weitkaemper L, Wotruba H. Effective Dry Density Benefication of Coal[C]. XXVINTERNATIONAL MINERAL PROCESSING CONGRESS (IMPC)2010PROCEEDINGS/BRISBANE, QLD, AUSTRALIA/6-10SEPTEMBER.2010:3687-3693.
    [48]骆振福, Fan M M,陈清如,赵跃民,梁春成,陶秀祥,陈增强.振动参数对流化床分选性能的影响[J].中国矿业大学学报,2006,35(2):209-213.
    [49]郭慕孙,李洪钟.流态化手册[M].北京:化学工业出版社,2007.
    [50] Bratu E M, Jinescu G I. Heat Transfer in Vibrated Fluidized Layers[J]. Rev Roum Chim,1972,17:49-56.
    [51]陈建平,汪展文,金涌,俞芷青.不同类型颗粒的流态化[J].高校化学工程学报,1995,9(4):352-357.
    [52]靳海波,张济宇,张碧江.单组分颗粒振动流化床的流体力学研究(2)—床层膨胀和起始流化速度[J].化学工业与工程.1996,13(4):20-24.
    [53] Mushtaev V I, Korotkov B M. Study on Hydrodynamic of a Vibrated Fluidized Bed in DryingDispersal Material[J]. Chem&Petrol Engg,1973,12:13-14.
    [54] Law-Kwet-Cheong L, Malhotra K, Mujumdar A S. Some aerodynamic and solids circulationmeasurements in a slotted spouted bed of grains[J]. Powder Technology,1986,46:167.
    [55]陈建平.振动流化床中的流体力学行为的研究(D).清华大学硕士学位论文,1992.
    [56]李秀芹,顾延安.振动流化床空气动力学研究[J].化学工程,1993,21(4):28-32.
    [57]俞书宏,马宝娇,翁颐庆.振动流化床中流体力学的研究[J].化学工程,1995,23(6):51-53.
    [58]靳海波,张济宇,张碧江.单组分颗粒振动流化床的流体力学研究(1)—起始流化时床层压降[J].化学工业与工程.1996,13(3):15-21.
    [59]靳海波,赵增立,张济宇,张碧江.振动流化床中床层空隙率的分布[J].高校化学工程学报,1998,12(2):130-135.
    [60]王亭杰,汪展文,金涌,俞芷青.振动波在流化床中的传播行为[J].化工学报,1996,47(6):718-726.
    [61] Mujumdar A S,陆乃宸译.世界化学反应过程新进展[M].北京:烃加工出版社,1989:223-230.
    [62] Rowe P N, Nienow A W, Agbim A J. The Mechanism by which Particles Segregate in GasFluidized Beds: Binary System of Near-spherical Particles[J]. Trans Inst Chem Eng,1972,50:310-324.
    [63] Nienow A W, Rowe P N, Chiba T. Mixing and Segregation of a Small Proportion of LargeParticles in Gas Fluidized Beds of Considerably Smaller Ones[J]. AICHE Symp Ser,1978,74(176):45.
    [64] Kwauk M. Fluidization Idealized and Bubbleless, with Applications[M]. Beijing/New York:Science Press/Ellis Horwood,1992:73.
    [65] Davidson J F. Symposium on fluidization-discussion[J]. Trans Inst Chem Eng,1961,39:230-232.
    [66] Grace J R, Clift R. On the two-phase theory of fluidization[J]. Chem Eng Sci,1974,29(2):327-334.
    [67]李静海.两相流多尺度作用模型和能量最小方法[D].北京中国科学院化工冶金研究所博士学位论文,1987.
    [68] Li J, Tung Y, Kwauk M. Axial Voidage Profiles of Fast Fluidized Beds in Different OperatingRegions[A]. In Circulating Fluidized Bed Technology Ⅱ[C]. Basu P, Large J F(eds.). Oxford:Pergamon Press,1988:193-203.
    [69] Harteg E-U, Rensner D, Werther J. Solid concentration and velocity in circulating fluidizedbed[A]. In Circulating Fluidized Bed Technology Ⅱ[C]. Basu P, large J F(eds.). Oxford:Pergamon Press,1988:165.
    [70] Richardson J F, Zaki W N. Sedimentation and fluidization[J]. Trans Inst Chem Eng,1954,32:35.
    [71] Li J, Kwauk M, Reh L. In FLUIDIZATION Ⅶ. Poter O E, Nicklin D J(eds.). New York:United Engineering Foundation,1992:83.
    [72] Li J, Kwauk M. Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-ScaleMethod[M]. Beijing: Metallurgical Industry Press,1994.
    [73] Li J, Reh L, Kwauk M. In Circulating Fluidized Bed Technology Ⅲ[C]. Basu P, Horio M,Hasatani M(eds.), Oxford: Pergamon Press,1991:105.
    [74]程从礼,高士秋,张忠东.气固循环流化床能量最小多尺度环核(EMMS/CA)模型[J].化工学报,2002,53(8):804-809.
    [75]刘亚妮.循环流化床锅炉数学模型及数值模拟研究[D].武汉大学博士论文,2005.
    [76] Pugsley T S, Berruti F. A predictive hydrodynamic model for circulating fluidized bedrisers[J].Powder Technology,1996,89(1):57-69.
    [77] Ng B H, Ding Y L, Ghadiri M. Modelling of dense and complex granular flow in high shearmixer granulator-A CFD approach[J]. Chemical Engineering Science,2009,64(16):3622-3632.
    [78] Sau D C, Biswal K C. Computational fluid dynamics and experimental study of thehydrodynamics of a gas-solid tapered fluidized bed[J]. Applied Mathematical Modelling,2010,11(037):1-33.
    [79] Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputer modeling[J].Appl Mech Rev,1986,39(1):1-23.
    [80] Tsuo Y P, Gidaspow D. Computation of Flow Patterns in Circulating Fluidized Beds[J].AICHE J,1990,36(6):885-896.
    [81] Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J].AIChE Journal,1990,36(4):523-538.
    [82] Harten A, Engquist B, Osher S, et al. Unifomrly high-order accurate essentiallynon-oscillatory schemes III. Journal of Computational Physics,1987,71:231-303.
    [83]徐振礼,刘儒勋,邱建贤.双曲守恒律方程的加权本质无振荡格式新进展[J].力学进展,2004,34(1):9-22.
    [84] Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal ofComputational Physics,1994,115:200-212.
    [85] Jiang G S, Shu C W. Effcient implementation of weighted ENO schemes[J]. Journal ofComputational Physics,1996,126:202-228.
    [86] Friedrichs O. Weighted essentially non-oscillatory schemes for the interpolation of meanvalues on unstructred grids[J]. Journal of Computational Physics,1998,144:194-212.
    [87]张涵信.差分计算中激波上、下游出现波动的探讨[J].空气动力学学报,1984,2:12-19.
    [88] Harten A. High resolution schemes for hypersonic conservation laws[J]. Journal ofComputational Physics,1983,49:357-393.
    [89] Yee H C, Warming R F, Harten A. Implicit total variation diminishing (TVD) schemes forsteady-state calculations[J]. Journal of Computational Physics,1985,57(3):327-360.
    [90] Harten A, Osher S, Engquist B, Chakravarthy S R. Some results on uniformly high-orderaccurate essentially nonoscillatory schemes[J]. Applied Numerical Mathematics,1986,2(3-5):347-377.
    [91] Roe P L. Some contributions to the modeling of discontinuous flows[J]. Lectures in AppliedMathematics,1985,22:163-193.
    [92] Osher S. Shock modeling in transonic and supersonic flow[J]. Advanced in ComputationalTransonics,1985,4:607-644.
    [93] Yee H C. Construction of explicit and implicit symmetric TVD schemes and theirapplications[J]. Journal of Computational Physics,1987,68:151-179.
    [94]柳建新,郭荣文,童孝忠,邓小康,郭振威.基于多重网格法的MT正演模型边界截取[J].中南大学学报,2011,42(11):3429-3434.
    [95]吴文权,任孝安.随机对流扩散方程的数值仿真[J].工程热物理学报,2011,32(11):1833-1837.
    [96]刘金魁,王开荣,杜祥林,贾松芳.一种新的非线性共轭梯度法及收敛性[J].数值计算与计算机应用,2009,30(4):247-254.
    [97] Li Z F, Chen J, Deng N Y. A new conjugate gr adient method and its global conver gence properties[J]. Systems Science and Mathematical Sciences,1998,11:53-60.
    [98]陈元媛,曹兴涛,杜守强.一种新的非线性共轭梯度法的全局收敛性[J].2004,17(2):22-24.
    [99] Dai Y H, Yuan Y X. A nonlinear conjugate gradient method with a strong global convergenceproperty [J]. SIAM J. OPTIM,1999,10:177-182.
    [100] Dai Y H. Conjugate gradient methods with Armijo2type line search[J]. Acta MathematicalApplicate Sinica, English Series,2002,18(1):123-130.
    [101]陶秀祥,陈清如,骆振福,梁春城,杨国华.煤炭外水分布规律及其对流化床分选的影响[J].中国矿业大学学报,1999,28(4):326-330.
    [102]陶秀祥,杨玉芬,骆振福,陈增强.水分对空气重介流化床选煤过程影响的综合分析与研究[J].选煤技术,1995,(2):10-13.
    [103]宋树磊.空气重介磁稳定流化床分选细粒煤的基础研究[D].中国矿业大学博士论文,2009.
    [104]岑可法,樊建人.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1990.
    [105]刘大有.两相流体动力学[M].北京:高等教育出版社,1993:25.
    [106] Soo S L. Particulates and Continuum: Multiphase Fluid Dynamics[M]. London: HemispherePublishing Corporation,1989:4.
    [107] Soo S L. Multiphase Fluid Dynamics[M]. Beijing: Science Press,1990:17.
    [108]章梓雄,董曾南.粘性流体力学[M].清华大学出版社,2004.
    [109] Happel J, Brenner H. Low Reynolds Number Hydrodynamics[M].2nd ed. Leyden:Noordhoff,1973.
    [110]李响.外场作用下流化床中气固两相流动数值模拟[D].哈尔滨工业大学博士论文,2010.
    [111]叶世超,李川娜.通气振动流化床干燥器振动参数的制定[J].四川联合大学学报,1999,3(4):1-6.
    [112] Basset A B. Hydrodynamics[M]. Vol.2. New York: Dover,1961:285.
    [113] Finnemore E J, Franzini J B.流体力学及其工程应用[M].钱翼稷,周玉文等译.机械工业出版社,2009.
    [114] Tsuji Y, Morikawan Y, Mizuno O. Experimental Measurement of the Magnus Force on aReynolds Numbers[J]. Fluid Engineering,1985,107:484-488.
    [115] Leva M.流态化[M].郭天民,谢舜韶译.北京:科学出版社,1963.
    [116] Bratu E M, Jinescu G I. Heat Transfer in Vibrated Fluidized Layers[J]. Rev Roum Chim,1972,17:49-56.
    [117]蒙以正. MATLAB5.X应用与技巧[M].科学出版社,1999.
    [118]崔怡. MATLAB5.3实例详解[M].航空航天工业出版社,1999.
    [119]王尊正.数值分析基本教程[M].哈尔滨工业大学出版社,1993.
    [120]何亚群.主动脉动气流分选机理及其在电子废弃物处理中的应用研究[D].中国矿业大学博士论文,2007.
    [121]易大为,陈道琦.数值分析引论[M].浙江大学出版社,2000.
    [122]董文辉,夏露.一种基于N-S方程的CFD/CSD藕合计算方法[J].航空工程进展,2011,2(4):409-414.
    [123]阎超,于剑,徐晶磊,范晶晶,高瑞泽,姜振华. CFD模拟方法的发展成就与展望[J].力学进展,2011,41(5):562-589.
    [124] Chen X Z, Shi D P, Gao X, Luo Z H. A fundamental CFD study of the gas–solid flow fieldin fluidized bed polymerization reactors[J]. Powder Technology,2011,205:276-288.
    [125] Coroneo M, Montante G, Baschetti M G, Paglianti A. CFD modelling of inorganicmembrane modules for gas mixture separation[J]. Chemical Engineering Science,2009,64(5):1085-1094.
    [126] Dawes J E, Hanspal N S, Family O A, Turan A.Three-dimensional CFD modelling of PEMfuel cells: An investigation into the effects of water flooding[J]. Chemical EngineeringScience,2009,26(12):2781-2794.
    [127] Balaji S, Du J, White C M, Ydstie B E. Multi-scale modeling and control of fluidized bedsfor the production of solar grade silicon[J]. Powder Technology,2010,199:23-31.
    [128]王伟文,周忠涛,陈光辉,李建隆.流态化过程模拟的研究进展[M].化工进展,2011,30(1):58-65.
    [129]徐文胜,马志刚,方梦祥.流化床内气固流体动力学的数值模拟[J].电站系统工程,2011,27(6):6-15.
    [130]曹昊,缪正清,肖峰.循环流化床二次风射流相关影响因素的数值模拟研究[J].锅炉技术,2011,42(5):32-37.
    [131]王书福,马军军,王天宇,何玉荣.进口边界条件对边壁进风鼓泡床流动的影响研究[J].动力工程学报,2011,31(11):855-860.
    [132]傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993
    [133]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006
    [134]李松波.耗散守恒格式[M].北京:高等教育出版社,1997
    [135] Ergun S. Fluid flow through packed columns[J]. Chem Eng Prog,1952,48(2):89.
    [136]张政,谢灼利.流体气-固两相流的数值模拟[J],化工学报,2001,52(1):1.
    [137] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transferin three-dimensional parabolic flows[J]. Int J Heat and Mass Transfer,1972,15(10):1787-1806.
    [138] Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. New York: Hemisphere,1980.
    [139]赵智峰,欧阳洁,杨继业.基于SIMPLER算法的多重网格方法研究[J].应用力学学报,2007,24(4):609-614.
    [140]李斌,陈听宽,崔凝. SIMPLEX算法与其它算法收敛特性的比较[J].华北电力大学学报,2004,31:51-55.
    [141]宋道云,刘洪来,方波,江体乾.动量插值与完全压力校正算法及交错网格SIMPLE算法的比较[J].华东理工大学学报,2003,29(2):124-143.
    [142]佟桂芳,徐德龙,张强,褚开维.一种新改进的SIMPLE算法[J].2001,33(3):221-224.
    [143] Batina J T. Three-dimensional flux-split Euler schemes involving unstructured dynamicmeshes[J]. AIAA paper,1990:1990-1649.
    [144] Barth T J, Frederickson P O. Higher order solution of the Euler equations on unstructuredgrids using quadratic reconstruction[J]. AIAA paper,1990:1990-0013.
    [145] Frink N T, Parikh P, Pirzadeh S. A fast upwind solver for the Euler equations on threedimensional unstructured meshes[J]. AIAA paper,1991:1991-0102.
    [146] Luo H, Baum J D. High-Reynolds number viscous flow computations using anunstructured-grid method[J]. AIAA paper,2004:2004-1103.
    [147] Mani M, Cary A. A structured and hybrid unstructured grid Euler and Navier-Stokes solverfor general geometry[J]. AIAA paper,2004:2004-2524.
    [148] Marcum D L, Gaither J A. Mixed element type unstructured grid generation for viscous flowapplications[J]. AIAA paper,1999:1999-3252.
    [149] Benek J A, Steger J, Dougherty F. A flexible grid embedding technique with applications tothe Euler equations[J]. AIAA paper,1983:1983-1944.
    [150]李亭鹤.重叠网格自动生成方法研究[D].北京航空航天大学博士论文,2004.
    [151] Chen X Z, Shi D P, Gao X, Luo Z H. A fundamental CFD study of the gas–solid flow fieldin fluidized bed polymerization reactors[J]. Powder Technology,2011,205:276-288.
    [152] Redemann K. Hartge E U, Werther J. A particle population balancing model for a circulatingfluidized bed combustion system[J]. Powder Technology,2009,191:78-90.
    [153] Craig H, Cedric B, Franco B, Edward W. Chan. Effect of a shroud on entrainment into asubmerged jet within a fluidized bed[J].2008,47:1435-1450.
    [154]贺靖峰,何亚群,段晨龙,赵跃民,王帅.脉动气流回收蛭石的实验研究与数值模拟[J].中国矿业大学学报,2010,39(4):557-562.
    [155]唐利刚,朱庆山,段晨龙,徐承焱.干扰流化床中细粒煤散式流化特性数值模拟研究[J].中国矿业大学学报,2012,41(1):86-90.
    [156]唐利刚,赵跃民,骆振福,陈增强,梁春成,邢洪波.宽粒级加重质的流化特性[J].中国矿业大学学报,2009,38(4):509-514.
    [157] Patricia B C, Peirce J J. Particle Density and Air-Classifier Performance[J]. Journal ofEnvironmental Engineering, Vol.114, No.2,1988:382-399.
    [158] Jackson C R. An Investigation of Passive Pulsed Air Classification[D]. Master Thesis ofDuke University, Department of Environmental Engineering, Duke University,1985:5-6.
    [159]唐立刚.宽粒级加重质流化床的数值模拟及分选特性[D].中国矿业大学博士论文,2010.
    [160]王海锋.摩擦电选过程动力学及微粉煤强化分选研究[D].中国矿业大学博士论文,2010.
    [161] Yang W C. Chapter26: Particle Segregation in Gas-Fluidized Beds.//Cheremisinoff N P ed.Encyclopedia of Fluid Mechanics, Vol.4, Solids and Gas-Solids Flows[M]. Houston: GulfPublishing Company,1986:817.
    [162]代宁宁,骆振福,赵跃民,李海宾,杨旭亮,王宁.次生床层对气固流化床密度分布的影响[J].煤炭工程,2011,4:99-101.
    [163]何亚群,赵跃民.脉动气流分选[M].北京:化学工业出版社,2009.
    [164]何亚群,王海锋,段晨龙,宋树磊.阻尼式脉动气流分选装置的流场分析[J].中国矿业大学学报,2005,34(5):574-578.
    [165]王培铭,丰曙霞,刘贤萍.背散射电子图像分析在水泥基材料微观结构研究中的应用[J].硅酸盐学报,2011,39(10):1659-1665.
    [166]叶涛,杨海伦,叶先贤.利用背散射电子图像法定量分析水泥组分含量[J].水泥,2011,4:14-15.
    [167] Fmmy C, Scrivner K L, Atkinson A, Brough A R. Effects of an early or a late heat treatmenton the microstructure and composition of inner C-S-H products of Portland cementmortars[J]. Cem Concr Res,2002,32:269–278.
    [168] Head M K, Buenfeld N R. Measurement of aggregate interfacial porosity in complex,multi-phase aggregate concrete: Binary mask production using backscattered electron, andenergy dispersive X-ray images [J]. Cem Concr Res,2006,36:337–345.
    [169] Horne A T, Richardson I G, Brydson R M D. Quantitative analysis of the microstructure ofinterfaces in steel reinforced concrete[J]. Cem Concr Res,2007,37:1613–1623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700