用户名: 密码: 验证码:
纳米Al_2O_3p/2024铝基复合材料的制备及往复镦—挤变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于纳米颗粒具有大的比表面积和强的界面相互作用力,较传统的微米颗粒增强铝基复合材料,纳米颗粒增强铝基复合材料的比强度、比模量、耐蚀性、导电及导热性能等均有大幅度的提高,使其在航空航天、汽车工业以及其它领域具有更广阔的应用前景。然而,纳米颗粒增强铝基复合材料的制备比一般铝基复合材料更复杂和困难,这与纳米颗粒固有的物理、化学特性有关。制备纳米颗粒增强铝基复合材料的主要难点在于纳米增强相的均匀分散性和纳米增强相与基体之间的浸润性。迄今为止,适用于块体铝基纳米复合材料规模制备的技术仍然较少。
     本文采用固液混合工艺制备纳米Al2O3p/2024铝基复合材料,较好地解决了金属基纳米复合材料制备过程中存在的由于外加纳米陶瓷颗粒润湿性差而难以加入金属熔体以及纳米颗粒在熔体中难以分散等关键问题。研究高能超声作用下固液混合纳米Al2O3p/2024铝基复合材料熔体的凝固组织及纳米A1203颗粒的再分布行为。采用往复镦-挤变形为主要变形方式,研究纳米Al2O3p/2024铝基复合材料在往复镦-挤变形过程中组织结构的演变规律及力学性能,揭示往复镦-挤变形特征及其组织细化机制,分析往复镦-挤纳米Al2O3p/2024铝基复合材料的强韧化机制。获得以下结果:
     (1)利用有限元数值模拟方法分析了桨轮结构及混合工艺参数对固液混合过程中坩埚内熔体流动循环特征的影响。结果表明,桨轮结构及混合工艺参数对固液混合过程中坩埚内熔体流动行为影响显著。增加桨轮级数和桨轮直径以及减小桨叶倾斜角度均能有效地减少固液混合过程中坩埚内的搅拌低效区和“死区”。多级桨轮搅拌作用下,在坩埚中心区域形成强烈的湍流。桨叶倾斜角为30°时,各级桨轮所产生的强烈湍流犹如“螺旋”涡流。提高转速,坩埚内流体的流动行为逐渐由各级桨轮所形成的“自循环”特征向“整体大循环”特征转变,且在各级桨轮上下区域形成强烈的剪切区。
     (2)中间纳米Al2O3p/Al复合粉体制备过程中,随着球磨时间的延长,纳米A1203颗粒在纯铝粉表面的均匀分散性显著提高;随着纳米A1203颗粒含量的增加,颗粒团聚现象明显。当纳米A1203颗粒含量为4wt.%,球磨12h,纳米A1203颗粒较为均匀地分散于纯铝粉表面。固液混合过程中,纳米A1203颗粒在润湿性较好的铝粉“载体”作用下顺利地进入铝熔液中,并在基体熔体中具有良好的颗粒分散性。基于显微组织的分析,建立了固液混合过程纳米A1203颗粒在基体熔体中的分散模型。
     (3)将高能超声作用于固液混合纳米Al2O3p/2024复合材料熔体,其凝固组织显著细化。在超声场作用下,熔体温度过高、过低均减弱组织细化效果。随着超声时间的延长,组织细化程度逐渐下降。当熔体温度区间为650~670℃、超声功率300W、超声60s时,1.0wt.%纳米Al2O3p/2024铝基复合材料平均晶粒尺寸约为25μm。组织细化机制为过冷生核机制和空化活化机制。在常规模铸条件下,纳米Al2O3颗粒在基体晶界处和最后凝固区域偏聚;施加超声处理后,超声空化效应有利于改善Al2O3颗粒与熔体之间的润湿性,提高固液凝固界面对颗粒的“捕获”能力,在超声组织细化的协同作用下,从而有效地改善Al2O3颗粒在基体中的均匀分散性。
     (4)利用往复镦-挤工艺对纳米Al2O3p/2024铝基复合材料进行大塑性变形时,首先采用有限元数值模拟技术分析了往复镦-挤变形过程中流场、温度场、应力场及应变场等相关场量的分布特征及其变化规律,接着进行相应的实验研究。结果表明,传统往复镦-挤变形过程中,变形试样易于形成镦粗“折皱”和挤压“中心孔”缺陷,材料内部等效应变分布较不均匀。采用改进的往复镦-挤变形方式能有效地避免上述缺陷,且材料内部等效应变均匀区域随着试样长度的延长而增加。增大模具过渡圆角半径及减小摩擦系数均能有效地改善试样内部等效应变分布的均匀性。往复镦-挤变形过程中,在镦粗变形段和挤压变形段各形成一对剪切变形区。改进的镦-挤变形流场模拟结果表明,镦-挤变形奇数道次后,试样表层流线网格由于摩擦阻碍而向后流动;偶数道次变形后,流线网格回复至初始状态特征;随着奇、偶数变形道次数的增加,其对应的流线网格特征均无显著变化。
     (5)利用金相显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和X射线衍射(XRD)等手段研究了改进的往复镦-挤变形对纳米Al2O3p/2024铝基复合材料组织结构的影响规律。结果表明,改进的往复镦-挤变形工艺对纳米Al2O3p/2024铝基复合材料基体具有强烈的组织细化能力,细化效率随着变形道次的增加而逐渐下降。变形温度越低或道次越多,组织越细小、均匀。经350℃往复镦-挤变形6道次后,基体平均晶粒尺寸约为5μm。基体晶粒细化机制为再结晶细化机制和交替剪切细化机制,第二相的细化机制为机械破碎。
     (6)室温力学性能测试结果表明,T6态往复镦-挤纳米Al2O3p/2024铝基复合材料的抗拉强度和屈服强度随着镦-挤变形道次的增加呈先增后减,最后趋于平稳趋势。热挤压态1.0wt.%纳米Al2O3p/2024铝基复合材料T6处理后的抗拉强度为485MPa,屈服强度为382MPa; T6态往复镦-挤变形1道次复合材料的抗拉强度为492MPa,屈服强度为391MPa; T6态往复镦-挤变形4道次复合材料的抗拉强度降至477MPa,屈服强度为375MPa;此后拉伸强度无明显变化。随着变形道次的增加,复合材料塑性逐渐改善。初始态复合材料的延伸率仅为8.5%;镦-挤变形5道次复合材料延伸率增至13.5%。往复镦-挤纳米Al2O3p/2024复合材料综合力学性的提高是细晶强韧化、时效析出相强化和纳米Al2O3颗粒强化协同作用的结果。
Nano-size particle reinforced aluminum matrix composite, compared with the traditional micron particles reinforced aluminum matrix composite, presents the higher specific strength and specific modulus, corrosion and wear resistance, electrical conductivity, thermal conductivity due to the larger specific surface area and strong interface interaction of nanoparticles, which make them have a broader application prospects in the aerospace, automotive industry and other fields. However, the preparation of nano-particle reinforced aluminum matrix composite is more complex and difficult than the traditional aluminum composites due to the inherent physical and chemical properties of nanoparticles. The main difficulties of the preparation of nano-particle reinforced aluminum matrix composite lies in the uniform distribution of nanoparticle and the wetting bettwen the matrix and ceramic nanoparticle. Up to now, the technology is still less for the scaled-up preparation of bulk aluminum matrix nanocomposite.
     In this dissertation, nano-Al2O3p/2024aluminum matrix composite was prepared by solid-liquid mixed casting process, which effectively solve the key problems associated with poor wettability between the nanoparticle reinforcement and the matrix melt, and nanoparticle clustering in the melt during the preparation of metal matrix nanocomposite. The solidified microstructure and particle re-distribution behavior of nano-Al2O3p/2024aluminum matrix composite melt processed by the high-intensity ultrasonic were investigated. The main deformation process performed on the nanocomposite was repeated upsetting and extrusion (RUE), and the microstructure evolution and tensile properties during the multi-pass upsetting and extrusion process were studied, and the refinement mechanism of the microstructure and the deformation mechanism of RUE process were indicated. The strengthening mechanism of as-RUE processed nano-Al2O3p/2024aluminum matrix composite was analyzed. The main conclusions were drawn as follows:
     The flowing field of the fluid in the crucible during solid-liquid mixed process was simulated using finite element method (FEM). The effects of the stirrer geometry and some stirring process parameters on the flowing characteristics of the fluid were analyzed. The results showed that the stirrer geometry and processing parameters had significant effects on the flowing behavior of the fluid in the crucible. The multistage stirrer, lower blade angle and bigger diameter of the impeller were beneficial to reduce the mixing inefficient zone and "dead" zone in the crucible. Under the mixing action of multistage stirrer, a strong turbulence formed in the central region of the crucible. When the blade angle was30°, the turbulences generated by each impeller were like a "spiral" vortex. Increasing in the rotating speed, the flowing characteristics of the fluid in the crucible was gradually changing from "self-feeding" generated by each impeller to "the whole cycle", and the strong shear zone formed in the upper and lower regions of each impeller.
     During the preparation of nano-Al2O3p/Al composite powders, with the extension of ball time, the distribution homogeneity of Al2O3nanoparticle on the surface of Al powder was obviously improved. With the increase of the content of Al2O3nanoparticle, the clustering tendency of Al2O3particles in the composite powder gradually increased. When the content of Al2O3nanoparticle was4wt.%, the as-received nanopowder of Al2O3particle was uniformly distributed on the surface of Al powder after the ball time of12h. During the solid-liquid mixed process, Al2O3nanoparticles were effectively incorporated into the matrix melt and well dispersed in the melt under the action of the Al powders carrier. Based on the microstructure analysis, a model about the dispersion of Al2O3nanoparticles in the melt during the solid-liquid mixed process was established.
     When nano-Al2O3p/2024aluminum matrix composite melt prepared by the solid-liquid mixed process was processed by high-intensity ultrasonic, the solidified microstructure was obviously refined. The refinement efficiency was weaken on the too high or too low ultrasonic temperature. With the extension of ultrasonic time, the refinement efficiency gradually decreased. When the ultrasonic temperature was650~670℃, ultrasonic power was300W, and ultrasonic time was60s, the composite presented a fine uniform microstructure, which was composed of fine grains with an average size of25μm The Al2O3nanoparticles were pushed to grain boundary and final solidification regions in the normal casting condition. Under the condition of ultrasonic treatment, the transient cavitations could remove the gas layer from the nanoparticle surface, improving the wettability between nanoparticles and the matrix melt. Some Al2O3nanoparticulates were captured by the growing grain. As a result, the resulting distribution of Al2O3nanoparticles within the matrix was improved with the cooperation of ultrasound refinement of the microstructure.
     Before the RUE deformation of nano-Al2O3p/2024aluminum matrix composite, the distribution characteristics and their evolution laws of flowing field, strain field, temperature field and stress field during RUE process were analyzed using FEM. And the releated experiments were carried out to further verify the simulation. The results indicated that the traditional RUE process easily led to the processing defects, such as the axile hole and the fold, and the strain distribution inside the material was very uneven. The processing defects were effectively avoided using the modified RUE, and the uniform region of equivalent strain inside the processed sample increased with the increase of the billet length. A bigger corner radius and smaller friction were helpful to improve the strain homogeneity inside the processed sample. The strong shear region formed in the each stage of modified RUE process. Flowing fields of modified RUE showed that the grid flow line on the surface of as-processed sample flowed backward due to the friction after the odd number pass, and after the even pass RUE deformation, the grid characteristics reverted to the initial state. With the increase of the odd and even deformation passes, the relevant flowing characteristics of the grid lines presented no significant change.
     The microstructure evolution of nano-Al2O3p/2024aluminum matrix composite during modified RUE process was investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that the matrix was effectively refined after modified RUE processing, and the grain refining efficiency decreased with the increase of RUE pass number. Lower deformation temperature and more deformation pass, the microstructure was more refine and homogeneous. After6pass RUE deformation at350℃, the average grain size of the matrix was5μm. The grain refining mechanisms of the matrix were consist of recrystallization refining mechanism and alternate shear refining mechanism. For the second phase, its refining mechanism was the mechanical cracking mechanism.
     Room-temperature tensile test results showed that after T6heat treatment, the tensile strength of as-RUE processed nano-Al2O3p/2024aluminum matrix composite increased initially, reached a peak and there after decreased to attain a constant value with the increase of the RUE pass. The ultimate tensile strength (UTS) and yield strength (YS) of as-extruded nano-Al2O3p/2024aluminum matrix composite processed by T6heat treatment was485MPa,382MPa and8.5%, respectively. The UTS and YS of as-T6nano-Al2O3p/2024aluminum matrix composite processed after1RUE pass was492MPa and391MPa, respectively. The UTS and YS of as-T6nano-Al2O3p/2024aluminum matrix composite processed after4RUE pass was477MPa and375MPa, respectively. After that, the tensile property presented no significant change with the increase of RUE pass. With the increase of RUE pass, the elongation (δ) was obviously improved. After5RUE pass, the8increased from8.5%to13.5%. The improvement on the comprehensive tensile properties of as-processed nano-Al2O3p/2024aluminum matrix composite resulted from the combined action of grain refinement strengthening mechanism, the strengthening mechanism of the matrix precipitated phase and Al2O3nanoparticle.
引文
[I]Williams J C, Starke E A. Progress in structural materials for aerospace systemsl. Acta Materialia,2003,51(19):5775-5799
    [2]Cole G, Sherman A. Light weight materials for automotive applications. Materials Characterization,1995,35(1):3-9
    [3]Corum J, Battiste R, Ruggles-Wrenn M. Low-energy impact effects on candidate automotive structural composites. Composites Science and Technology,2003, 63(6):755-769
    [4]蒋幼夫,杨亲民,赵安中.新材料与功能材料的战略地位,研发概况与发展趋势.功能材料,2004,35(z1):44-49
    [5]杜善义.先进复合材料与航空航天.复合材料学报,2007,24(1):1-12
    [6]龚荣洲,沈翔,张磊等.金属基纳米复合材料的研究现状和展望.中国有色金属学报,2003,13(5):1131-1320
    [7]何春年,赵乃勤.纳米相增强铝基复合材料制备技术的研究进展.兵器材料科学与工程,2005,28(3):53-57
    [8]周衡志,李子全,曾光等.纳米CeO2/Zn-4.5Al-RE-Mg-Ti的复合搅拌制备工艺研究.稀有金属材料与工程,2010,39(3):534-537
    [9]Tjong S C. Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties. Advanced Engineering Materials,2007,9(8): 639-652
    [10]MAZAHERY A, SHABANI M O. Characterization of cast A356 alloy reinforced with nano SiC composites. Transactions of Nonferrous Metals Society of China, 2012,22(2):275-280
    [11]Amirkhanlou S, Niroumand B. Development of A1356/SiCp cast composites by injection of SiCp containing composite powders. Materials and Design,2011, 32(4):1895-1902
    [12]Yang Y, Li X. Ultrasonic cavitation-based nanomanufacturing of bulk aluminum matrix nanocomposites. Journal of Manufacturing Science and Engineering,2007, 129(2):497-501
    [13]严有为,魏伯康,傅正义.原位TiC颗粒增强铁基复合材料及其组织形成机理.金属学报,1999,35(10):1117-1120
    [14]李玉桐,董治中.纳米A1203增强铜基复合材料的组织及性能.天津大学学报, 1996,29(1):123-129
    [15]张雪囡,耿林,郑镇洙等.SiCw和纳米SiCp混杂增强铝基复合材料的制备与评价.中国有色金属学报,2004,14(7):1101-1105
    [16]张廷杰,曾泉浦.TiC颗粒强化钛基复合材料的高温拉伸特性.稀有金属材料与工程,2001,30(2):85-88
    [17]Jiang Q, Li X, Wang H. Fabrication of TiC particulate reinforced magnesium matrix composites. Scripta Materialia,2003,48(6):713-717
    [18]陈振华,严红革,陈刚.合金和复合材料的固液混合铸造技术.中国专利.ZL00113221,2000-01-13
    [19]陈振华,何建军,刘劲松等.Al-10%Cr,Al-20%Mn合金的固液混合铸造.湖南大学学报:自然科学版,2004,31(5):13-17
    [20]陈振华Al-Si合金固液混合铸造.中国有色金属学报,2000,10(3):349-352
    [21]陈振华,陈鼎.固液混合铸造的研究.湖南大学学报:自然科学版,2002,29(4):20-26
    [22]Valiev R Z, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM Journal of the Minerals, Metals and Materials Society,2006,58(4):33-39
    [23]Zhu Y T, Lowe T C, Langdon T G. Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Materialia,2004,51(8):825-830
    [24]陈勇军,王渠东,彭建国等.大塑性变形制备细晶材料的研究,开发与展望.材料导报,2005,19(4):77-80
    [25]Aizawa T, Tokumitsu K. Bulk mechanical alloying for productive processing of functional alloys. Journal of Metastable and Nanocrystalline Materials,1999,2: 13-22
    [26]Yabe H, Kuji T. Thermal stability and hydrogen absorption/desorption properties of Mg17Al12 produced by bulk mechanical alloying. Journal of Alloys and Compounds,2007,433(1):241-245
    [27]Aizawa T, Kuji T, Nakano H. Synthesis of Mg2/Ni alloy by bulk mechanical alloying. Journal of Alloys and Compounds,1999,291(1):248-253
    [28]黄赞军,胡敦芫,杨滨等.原位A1203颗粒强化铝基复合材料的研究.金属学报,2002,38(6):568-574
    [29]陈洪美,于化顺,张静等.原位反应法制备Al2O3-TiC/Al复合材料.特种铸造及有色合金,2006,26(10):674-675
    [30]崔春翔,吴人洁.原位AIN-TiC粒子增强铝基复合材料.金属学报,1996, 32(1):101-104
    [31]刘慧敏,王洪斌,杨滨等.原位TiC颗粒对喷射成形铝合金组织的影响.北京科技大学学报,2003,25(4):337-340
    [32]黄赞军,杨滨,崔华等.原位铝基复合材料的制备及微观组织.材料研究学报,2001,15(4):432-432
    [33]李桂荣,戴起勋,赵玉涛等.Al-Zr-OB体系原位合成颗粒增强铝基复合材料及其性能.中国有色金属学报,2005,15(4):572-577
    [34]Ramesh C, Ahamed A. Friction and wear behaviour of cast Al 6063 based in situ metal matrix composites. Wear,2011,271(9-10):1928-1939
    [35]魏霖,陈哲,严有为.块体金属基纳米复合材料的制备技术.特种铸造及有色合金,2006,26(7):420-423
    [36]Sherif El-Eskandarany M. Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites. Journal of Alloys and Compounds,1998,279(2): 263-271
    [37]谷万里.机械球磨法制备Ti3SiC2/Al纳米复合材料.复合材料学报,2006,23(6):134-137
    [38]Barlow I, Jones H, Rainforth W. Coarsening kinetics at 600℃ of A12O3 dispersoids in a mechanically alloyed aluminium alloy. Scripta Materialia,2002, 47(5):331-335
    [39]贺春林,刘常升,孙旭东等.纳米SiC颗粒增强铝基复合材料的拉伸性能.东北大学学报:自然科学版,2005,26(6):554-557
    [40]骆心怡,朱正吼,卢翔等.高能球磨制备纳米CeO2/Al复合粉末.热加工工艺,2003,2:14-16
    [41]周衡志.纳米CeO2p/Zn-4.5%Al-RE-Mg-Ti复合材料的高能超声制备及耐蚀性研究:[南京航空航天大学博士论文].南京:南京航空航天大学,2007,2
    [42]王斌,易丹青,李洪武等.半固态挤压亚微米SiCp/2014复合材料的组织性能研究.热加工工艺,2005,7:26-28
    [43]李洪武.亚微米颗粒增强铝基复合材料的制备、组织与性能研究:[中南大学硕士论文].长沙:中南大学,2004,34-48
    [44]郝斌,崔华,余志勇等.纳米SiC颗粒增强铝基复合材料制备工艺研究.材料工程,2008,z1:489-491
    [45]田晓风,肖伯律,樊建中等.纳米SiC颗粒增强2024铝基复合材料的力学性能研究.稀有金属,2008,29(4):521-524
    [46]Srinivasan D, Chattopadhyay K. Hardness of high strength nanocomposite Al-X-Zr (X= Si, Cu, Ni) alloys. Materials Science and Engineering:A,2004, 375-377(15):1228-1234
    [47]Choi G, Kim Y, Cho H, et al. Ultrahigh tensile strength of amorphous Al-Ni-(Nd, Gd)-Fe alloys containing nanocrystalline Al particles. Scripta Metallurgica Metall Materialia,1995,33(8):1301-1306
    [48]仝兴存,方鸿生,柳百成.快速凝固Al-TiC自生复合材料的显组织和力学性能.金属学报,1996,32(10):1111-1115
    [49]Mazahery A, Ostadshabani M. Investigation on mechanical properties of nano-Al2O3 reinforced aluminum matrix composites. Journal of Composite Materials,2011,45(24):2579-2586
    [50]Mazahery A, Abdizadeh H, Baharvandi H. Development of high-performance A356/nano-Al2O3 composites. Materials Science and Engineering:A,2009,518(1): 61-64
    [51]Yar A A, Montazerian M, Abdizadeh H, et al. Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. Journal of Alloys and Compounds,2009,484(1):400-404
    [52]应崇福.超声学.北京:科技出版社,1990,507-511
    [53]冯若.李化茂声化学及其应用.合肥:安徽科学技术出版社,1992,1-26
    [54]Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry,2004,11(2):47-55
    [55]Eskin G. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrasonics Sonochemistry,2001,8(3):319-325
    [56]Eskin G. Cavitation mechanism of ultrasonic melt degassing. Ultrasonics Sonochemistry,1995,2(2):S137-S141
    [57]Eskin G, Eskin D. Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt. Ultrasonics Sonochemistry,2003,10(4):297-301
    [58]李晓谦,李开哗,陈铭等.超声振动对7050铝合金熔体冷却时间及凝固组织的影响.粉末冶金材料科学与工程,2011,16(2):249-254
    [59]李晓谦,陈铭,赵世琏等.功率超声对7050铝合金除气净化作用的试验研究木.机械工程学报,2010,46(18):41-46
    [60]郄喜望,李捷,马晓东等.超声场作用下Al-Si合金的除气效果及晶粒细化.金属学报,2008,44(4):414-418
    [61]石婷,张忠涛,张宇博等.功率超声对A356合金除气效果的影响.铸造,2010,59(6):546-548
    [62]马倩倩,吴树森,毛有武等.超声振动对半固态铝合金浆料含气量的影响.热 加工工艺,2010,39(19):19-23
    [63]李军文,桃野正,付莹.超声波功率对铸锭内的气孔及组织细化的影响.铸造,2007,56(2):152-154
    [64]Abramov O. Action of high intensity ultrasound on solidifying metal. Ultrasonics, 1987,25(2):73-82
    [65]胡化文.7055铝合金熔体超声处理与凝固研究:[中南大学硕士论文].长沙:中南大学,2004,27-35
    [66]胡化文,陈康华,黄兰萍等.超声熔体处理对Al-Zn-Mg-Cu合金显微组织和性能的影响.金属热处理,2005,30(5):43-46
    [67]Kozhemyakin G. Influence of ultrasonic vibrations on the growth of InSb crystals. Journal of Crystal Growth,1995,149(3):266-268
    [68]Jian X, Xu H, Meek T, et al. Effect of power ultrasound on solidification of aluminum A356 alloy. Materials Letters,2005,59(2):190-193
    [69]周衡志,李子全,杨继年.纳米CeO2/Galfan复合材料的制备工艺.南京航空航天大学学报,2006,37(5):603-606
    [70]Yang Y, Lan J, Li X. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering:A,2004,380(1):378-383
    [71]Li X, Yang Y, Cheng X. Ultrasonic-assisted fabrication of metal matrix nanocomposites. Journal of Materials Science,2004,39(9):3211-3212
    [72]潘进,杨德明.功率超声在金属基复合材料和超细粉制备中的应用.稀有金属材料与工程,1996,25(6):50-53
    [73]高飞鹏,刘世英,张琼元等.纳米SiC颗粒增强ADC12铝基复合材料的制备及性能.特种铸造及有色合金,2009,29(12):1 140-1143
    [74]王俊,陈锋.高能超声在制备颗粒增强金属基复合材料中的作用.上海交通大学学报,1999,33(7):813-816
    [75]王俊,陈锋,孙宝德等.微细颗粒对复合材料熔体表观粘度的影响.复合材料学报,2001,18(1):58-61
    [76]陈锋,舒光冀,马立群等.高能超声作用下数种金属基复合材料的制备及机制.复合材料学报,1998,15(3):12-16
    [77]潘蕾,陶杰,陈照峰等.高能超声在颗粒/金属熔体体系中的声学效应.材料工程,2006,1:35-37
    [78]凌李石保,闫洪,胡志.SiCp/AZ61镁基纳米复合材料高能超声制备及阻尼性能研究.特种铸造及有色合金,2010,30(2):170-172
    [79]Liu Z, Han Q, Li J. Ultrasound assisted in situ technique for the synthesis of particulate reinforced aluminum matrix composites. Composites Part B: Engineering,2011,42(7):2080-2084
    [80]刘咏,唐志宏,周科朝等.纯铝等径角挤技术(Ⅱ)—变形行为模拟.中国有色金属学报,2003,13(2):294-299
    [81]刘咏,唐志宏,周科朝等.纯铝等径角挤技术(Ⅰ)—显微组织演化.中国有色金属学报,2003,13(1):21-26
    [82]Yoon S, Quang P, Hong S, et al. Die design for homogeneous plastic deformation during equal channel angular pressing. Journal of Materials Processing Technology,2007,187:46-50
    [83]Lee S W, Yeh J W. Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion. Materials Science and Engineering:A,2007, 460:409-419
    [84]刘礼,徐春杰,张忠明等.往复挤压L2纯铝的组织与性能.材料热处理学报,2006,27(3):50-53
    [85]Lin J, Wang Q, Peng L, et al. Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression. Journal of Alloys and Compounds,2009,476(1-2):441-445
    [86]Yoon S C, Horita Z, Kim H S. Finite element analysis of plastic deformation behavior during high pressure torsion processing. Journal of Materials Processing Technology,2008,201(1-3):32-36
    [87]Kim H S. Finite element analysis of high pressure torsion processing. Journal of Materials Processing Technology,2001,113(1):617-621
    [88]Vorhauer A, Pippan R. On the homogeneity of deformation by high pressure torsion. Scripta Materialia,2004,51(9):921-925
    [89]Yazdani A, Salahinejad E. Evolution of reinforcement distribution in Al-B4C composites during accumulative roll bonding. Materials and Design,2011,32(6): 3137-3142
    [90]Eizadjou M, Kazemi Talachi A, Danesh Manesh H, et al. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Composites Science and Technology, 2008,68(9):2003-2009
    [91]Amirkhanlou S, Rezaei M R, Niroumand B, et al. Refinement of microstructure and improvement of mechanical properties of AI/Al2O3 cast composite by accumulative roll bonding process. Materials Science and Engineering:A,2011, 528(6):2548-2553
    [92]Lin H, Huang J. High strain rate and low temperature superplasticity in AZ31 Mg alloys processed by simple high-ratio extrusion methods. Materials Transactions(Japan),2002,43(10):2424-2432
    [93]陈勇军,王渠东,李德江等.往复挤压工艺制备超细晶材料的研究与发展.材料科学与工程学报,2006,24(1):152-155
    [94]林金保.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究:[上海交通大学博士论文].上海:上海交通大学,2008,12
    [95]Wei W, Nagasekhar A, Chen G, et al. Origin of inhomogenous behavior during equal channel angular pressing. Scripta Materialia,2006,54(11):1865-1869
    [96]Zuyan L, Zhongjin W. Finite-element analysis of the load of equal-cross-section lateral extrusion. Journal of Materials Processing Technology,,1999,94(2): 193-196
    [97]DeLo D, Semiatin S. Finite-element modeling of nonisothermal equal-channel angular extrusion. Metallurgical and Materials Transactions A,1999,30(5): 1391-1402
    [98]Fatemi-Varzaneh S, Zarei-Hanzaki A. Accumulative back extrusion (ABE) processing as a novel bulk deformation method. Materials Science and Engineering:A,2009,504(1-2):104-106
    [99]Fatemi-Varzaneh S, Zarei-Hanzaki A, Naderi M, et al. Deformation homogeneity in accumulative back extrusion processing of AZ31 magnesium alloy. Journal of Alloys and Compounds,2010,507(1):207-214
    [100]Lin J, Wang Q, Peng L, et al. Study on deformation behavior and strain homogeneity during cyclic extrusion and compression. Journal of Materials Science,2008,43(21):6920-6924
    [101]Iwahashi Y, Horita Z, Nemoto M, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Materialia, 1996,35(2):143-146
    [102]Chen L, Ma C, Stoica G, et al. Mechanical behavior of a 6061 Al alloy and an Al2O3/6061 Al composite after equal-channel angular processing. Materials Science and Engineering:A,2005,410-411:472-475
    [103]Han B Q, Langdon T G. Achieving enhanced tensile ductility in an Al-6061 composite processed by severe plastic deformation. Materials Science and Engineering:A,2005,410-411:430-434
    [104]孙有平,严红革,陈振华等.Bc路径等径角挤压7090/SiCp的显微组织及性能.中国有色金属学报,2008,18(11):1964-1970
    [105]Ruslan Z. Valiev, Igor V. Alxandrov. Development of severe plastic deformation techneques for the fabrication of bulk nanostructured materials, Ann. Chim. Sci. Mat,2002,27(3):3-14
    [106]Valiev R Z, Islamgaliev R K, I V Alexandrov. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science,2000,45(2): 103-189
    [107]Tokunaga T, Kaneko K, Sato K, et al. Microstructure and mechanical properties of aluminum-fullerene composite fabricated by high pressure torsion. Scripta Materialia,2008,58(9):735-738
    [108]Mishra R, McFadden S, Mukherjee A, et al. Severe plastic deformation processing and high strain rate superplasticity in an aluminum matrix composite. Scripta Materialia,1999,40(10):1151-1155
    [109]Sabirov I, Kolednik O, Pippan R. Homogenization of metal matrix composites by high-pressure torsion. Metallurgical and Materials Transactions A,2005,36(10): 2861-2870.
    [110]詹美燕,李元元,陈维平等.累积叠轧工艺对AZ31镁合金板材组织和性能的影响.材料工程,2008,3:22-27
    [111]Alizadeh M, Paydar M. Fabrication of nanostructure Al/SiCp composite by accumulative roll-bonding (ARB) process. Journal of Alloys and Compounds, 2010,492(1-2):231-235
    [112]Yeh J W, Yuan S Y, Peng C H. Microstructures and tensile properties of an A1-12 wt pct Si alloy produced by reciprocating extrusion. Metallurgical and Materials Transactions A,1999,30(9):2503-2512
    [113]Yeh J W, Yuan S Y, Peng C H. A reciprocating extrusion process for producing hypereutectic Al-20wt.%Si wrought alloys. Materials Science and Engineering:A, 1998,252(2):212-221
    [114]Lee S W, Chen Y L, Wang H Y, et al. On mechanical properties and superplasticity of Mg-15Al-1Zn alloys processed by reciprocating extrusion. Materials Science and Engineering:A,2007,464(1-2):76-84
    [115]王艳伟.往复挤压法制备SiCp/Al复合材料的组织与性能:[西安理工大学硕士论文].西安:西安理工大学,2009,45-61
    [116]Kihara J, Aizawa T. Productive mechanical alloying by repeated powder forging. Metal Powder Report,1997,52(4):47-47
    [117]Lianxi H, Yuping L, Erde W, et al. Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion. Materials Science and Engineering:A,2006,422(1):327-332
    [118]李小强,李元元,胡连喜等.多道次镦-挤大变形对2024铝合金组织性能的影响.金属成形工艺,2003,21(5):37-39
    [119]邓春锋.碳纳米管增强铝基复合材料的制备及组织性能研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2007,23
    [120]陈葵,高文理,黄雅妮等.Al-20Cu合金的固液混合铸造.特种铸造及有色合金,2006,26(2):93-95
    [121]孙亦,陈振华.Al-30Si合金的固液混合铸造.兵器材料科学与工程,2005,28(2):27-30
    [122]何建军,陈振华,严红革等.固液混合铸造Al-20%Mn合金显微组织的研究.铸造技术,2004,25(12):930-932
    [123]孙亦,陈振华.固液混合铸造Al-40Si合金的显微组织和力学性能.稀有金属材料与工程,2006,35(5):795-797
    [124]程相飞,严红革,陈振华等.固液混合铸造制备Al-10Cr合金的研究.特种铸造及有色合金,2005,25(2):85-87
    [125]樊建中,左涛,肖伯律等.高能球磨粉末冶金制备工艺对15%SiCp/2009Al复合材料性能的影响.复合材料学报,2004,21(4):92-96
    [126]孙旭炜,曾苏民,陈志谦等.制备工艺对铝基复合材料增强体颗粒分布均匀性的影响.材料工程,2006,9:27-30
    [127]张国娟,闵健,高正明等.涡轮桨搅拌槽内混合过程的数值模拟.北京化工大学学报,2004,31(6):24-27
    [128]冯忠绪,赵利军,姚运仕等.搅拌机低效区及其消除方法.长安大学学报(自然科学版),2005,25(6):82-85
    [129]Hashim J, Looney L, Hashmi M. Particle distribution in cast metal matrix composites —Part Ⅱ. Journal of Materials Processing Technology,2002,123(2): 258-263
    [130]Hashim J, Looney L, Hashmi M. Particle distribution in cast metal matrix composites—Part Ⅰ. Journal of Materials Processing Technology,2002,123(2): 251-257
    [131]马青山,聂毅强,包雨云等.搅拌槽内三维流场的数值模拟.化工学报,2003,54(5):612-618
    [132]侯拴弟,张政.涡轮桨搅拌槽流动场数值模拟.化工学报,2001,52(3):241-246
    [133]稀土萃取搅拌反应器结构参数的研究与优化:[江西理工大学硕士论文].南昌:江西理工大学,2009,3
    [134]黄雄斌,祝铃钰.固液搅拌槽内液相速度的分布.化工学报,2002,53(7):717-722
    [135]Hua J, Wu M, Kumar K. Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers part II:CFD analysis for a micro-combustor. Chemical Engineering Science,2005,60(13):3507-3515
    [136]张雷.玻璃/铝基废弃物复合材料的搅拌工艺及流场模拟研究:[昆明理工大学博士论文].昆明:昆明理工大学.2005,95
    [137]何建军.固液混合铸造铝合金和高铬铸铁的研究:[湖南大学博士论文].长沙:湖南大学,2006,108
    [138]Hirai M, Takebayashi K, Yoshikawa Y, et al. Apparent Viscosity of A1--10 mass% Cu Semi-Solid Alloy[Previously Titled:Apparent Viscosity of Semi-Solid Metals]. ISIJ International (Japan),1993,33(3):405-412
    [139]Launder B, Spalding D. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289
    [140]Alliet-Gaubert M, Sardeing R, Xuereb C, et al. CFD analysis of industrial multi-staged stirred vessels. Chemical Engineering and Processing:Process Intensification,2006,45(5):415-427
    [141]苏海,高文理,毛成等.搅拌铸造SiCp/2024复合材料的研究.湖南大学学报:自然科学版,2009,36(8):54-58
    [142]苏海,高文理,毛成等.搅拌铸造SiCp/2024铝基复合材料的显微组织与力学性能.中国有色金属学报,2010,20(2):217-225
    [143]周国华.碳纳米管/AZ31镁基复合材料的制备与等径角挤压研究:[南昌大学博士论文].南昌:南昌大学,2010,40-41
    [144]陈健.葡萄糖载体蛋白与脑缺血.国外医学:神经病学.神经外科学分册,2002,29(2):109-112
    [145]陈振华,严红革.Al-8.7Fe-1.6V-1.3Si耐热铝合金的固液混合铸造.中国有色金属学报,2002,12(3):422-425
    [146]邬京利,肖文丰,季代杰等.旋转喷吹铝液净化工艺研究.特种铸造及有色合金,2005,25(2):120-121
    [147]桂满昌,王殿斌.碳化硅颗粒增强铝基复合材料的重熔和铸造工艺特征.铸造,2002,51(1):27-31
    [148]桂满昌,陈彩中.铸造ZL101A/SiCp复合材料的研究.铸造,2001,50(6):332-336
    [149]许显华.铝合金熔体超声除气关键参数的理论及实验研究:[中南大学硕士论文].长沙:中南大学.2011,14-19
    [150]Li J, Momono T, Tayu Y, et al. Application of ultrasonic treating to degassing of metal ingots. Materials letters,2008,62(25):4152-4154
    [151]Xu H, Jian X, Meek T T, et al. Degassing of molten aluminum A356 alloy using ultrasonic vibration. Materials letters,2004,58(29):3669-3673
    [152]王香,曾松岩.颗粒被凝固前沿排斥的临界速度模型.哈尔滨理工大学学报,2000,5(4):70-74
    [153]吴树森,中江秀雄.铝基复合材料中颗粒在凝固界面的行为.金属学报,1998,34(9):939-944
    [154]Dutta B, Surappa M. Directional dendritic solidification of a composite slurry: Part I. Dendrite morphology. Metallurgical and Materials Transactions A,1998, 29(4):1319-1327
    [155]Shangguan D, Ahuja S, Stefanescu D. An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface. Metallurgical and Materials Transactions A,1992,23(2):669-680
    [156]Yanagida H. The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles:Differences between vacuum degassing and ultrasound degassing. Ultrasonics Sonochemistry,2008,15(4):492-496
    [157]Xu Z, Yan J, Chen W, et al. Effect of ultrasonic vibration on the grain refinement and SiC particle distribution in Zn-based composite filler metal. Materials Letters, 2008,62(17-18):2615-2618
    [158]Xu Z, Yan J, Wu G, et al. Interface structure and strength of ultrasonic vibration liquid phase bonded joints of Al2O3P/6061 Al composites. Scripta Materialia,2005, 53(7):835-839
    [159]Yasuda K, Saiki Y, Kubo T, et al. Influence of high-power ultrasonic irradiation on primary nucleation process during solidification. Japanese Journal of Applied Physics,2007,46:4939
    [160]王乐酉,吴文祥,马科等.超声振动对7055铝合金组织及力学性能的影响.材料科学与工艺,2011,18(6):838-842
    [161]李克,王倩,周耐根等.A206/1%Al2O3铝基纳米复合材料的热裂行为.航空材料学报,2011,31(2):89-94
    [162]钱祖文.非线性声学.北京:科学出版社,1992,350-370
    [163]薛喜才.高能超声场下合成TiB2p/AZ91D复合材料的微观组织和性能:[江苏大学硕士论文].镇江:江苏大学,2009,36-38
    [164]Oh S, Cornie J, Russell K, Wetting of ceramic particulates with liquid aluminum alloys:Part Ⅰ. Experimental techniques. Metallurgical and Materials Transactions A,1989,20(3):527-532
    [165]Oh S, Cornie J, Russell K. Wetting of ceramic particulates with liquid aluminum alloys:Part Ⅱ. Study of wettability. Metallurgical and Materials Transactions A, 1989,20(3):533-541
    [166]周衡志,李子全,陈建康等.纳米CeO2p/Zn-4.5%Al复合材料的高能超声制备及其力学性能.中国有色金属学报,2007,17(5):757-762
    [167]魏伟,陈光.大塑性变形制备块体纳米材料.机械工程学报,2002,38(7):1-5
    [168]Nie K, Wang X, Hu X, et al. Effect of multidirectional forging on microstructures and tensile properties of a particulate reinforced magnesium matrix composite. Materials Science and Engineering:A,2011,528(24): 7133-7139
    [169]Nie K, Wu K, Wang X, et al. Multidirectional forging of magnesium matrix composites:Effect on microstructures and tensile properties. Materials Science and Engineering:A,2010,527(27-28):7364-7368
    [170]Alkorta J, Gil Sevillano J. A comparison of FEM and upper-bound type analysis of equal-channel angular pressing (ECAP). Journal of Materials Processing Technology,2003,141(3):313-318
    [171]Ramu G, Bauri R. Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-SiCp composites. Materials and Design,2009, 30(9):3554-3559
    [172]Srinivasan R. Computer simulation of the equichannel angular extrusion (ECAE) process. Scripta Materialia,2001,44(1):91-96
    [173]Djavanroodi F, Ebrahimi M. Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Materials Science and Engineering:A,2010,527(4-5):1230-1235
    [174]Weronski W, Gontarz A, Pater Z. Research of upsetting ratio in forming processes on a three-slides forging press. Journal of Achievements in Materials and Manufacturing Engineering,2006,17(1/2):409-412
    [175]权高峰,柴东朗,宋余九等.增强体种类及含量对金属基复合材料力学性能的影响.复合材料学报,1999,16(2):62-66
    [176]黄伯云,李成功,石力开等.中国材料工程大典.第4卷,有色金属材料工程(上).北京:化学工业出版社,2005,126-132
    [177]Balasundar I, Raghu T. Investigations on the extrusion defect-Axial hole or funnel. Materials and Design,2010,31(6):2994-3001
    [178]张振亚.粉末热挤压制备高性能镁合金研究:[山东大学博士论文],济南:山 东大学,2010,55
    [179]胡小荣,俞茂宏.材料三剪屈服准则研究.工程力学,2006,23(4):6-11
    [180]毕见强,孙康宁,范润华等.2A12铝块体超细晶材料的ECAP制备.人工晶体学报,2006,35(2):221-223
    [181]孙有平.塑性变形对喷射沉积7090Al/SiCp复合材料SiC分布及组织性能影响:[湖南大学博士论文].长沙:湖南大学,2009,74-82
    [182]Lee S W, Yeh J W, Liao Y S. Premium 7075 aluminium alloys produced by reciprocating extrusion. Advanced Engineering Materials,2004,6(12):936-943
    [183]Yuan S Y, Yeh J W, Tsau C H. Improved microstructures and mechanical properties of 2024 aluminum alloy produced by a reciprocating extrusion method. Materials Transactions-JIM,1999,40(3):233-241
    [184]金泉林,吴慧英.LC4超硬铝合金大变形热扭转时微观组织的演变机制.材料热处理学报,2002,23(2):12-15
    [185]万菊林,孙新军,顾家琳等.Al-Cu-Mg-Zn-Cr合金热扭转变形中连续动态再结晶机理.金属学报,1999,36(10):1031-1035
    [186]毕见强,孙康宁,刘睿等.等效应变量对等径角挤压的2A12铝合金力学性能的影响.塑性工程学报,2006,12(6):42-44
    [187]张陆军.往复挤压制备超细晶AZ61镁合金的研究:[上海交通大学硕士论文].上海:上海交通大学,2007,50-64
    [188]孙有平,严红革,何江美等.等径角挤压道次对SiCp/Al复合材料显微组织的影响.材料科学与工艺,2011,19(3):117-121
    [189]栾佰峰,姜龙涛,孔海宽等.热挤压变形对亚微米Al2O3p/Al复合材料组织性能的影响.中国有色金属学报,2003,13(2):373-376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700