用户名: 密码: 验证码:
相变温度可调的储能微胶囊的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变储能材料是一种非常有应用价值的热能存储材料。相变储能微胶囊的出现,使相变储能材料的应用范围更加广泛。本文运用不同的聚合方法成功制得了一系列以相变蜡/硬脂酸正丁酯二元复合体系为芯材的相变温度可调的储能微胶囊。该微胶囊相变温度的调节可以通过改变其芯材的组成来实现,通过改变相变蜡和硬脂酸正丁酯的相对比例,微胶囊的熔化峰值温度在28~35oC之间可调。
     首先,研究了相变蜡/硬脂酸正丁酯组成的二元复合体系的相变储热性能。该二元复合体系在固-液相变过程中都分别只有一个明显的熔化和结晶峰;通过改变相变蜡和硬脂酸正丁酯的相对比例,可以使二元复合体系的相变温度在相变蜡和硬脂酸正丁酯的相变温度之间调节。同时,傅立叶红外光谱结果表明,相变蜡和硬脂酸正丁酯组成的二元复合体系为物理混合物,两组分之间没有发生化学反应。
     其次,选用聚氨酯或甲基丙烯酸酯基单体,对二元复合体系进行微胶囊化,制得了一系列相变储热性能很好的微胶囊。一方面,运用界面聚合法制得了聚氨酯/聚脲双层壳包覆复合芯材的相变储能微胶囊。在该体系中,硬脂酸正丁酯本身作为储能材料不仅表现出了很好的相变储热性能,而且它还起助溶的作用,从而省去了丙酮等助溶剂的加入,使制得的微胶囊的包覆率可以进一步提高到60wt%以上。另一方面,为了提高微胶囊的热稳定性及储热可靠性,选取了四种不同种类的丙烯酸酯基交联剂参与形壳反应,对微胶囊的壳材进行优化。其中制得的性能最好微胶囊在经过了500次熔化–结晶的高低温循环热处理后,保持了很好的储热稳定性,经过上述热处理后其包覆率仅下降了约1wt%。
     最后,研究了其它不同种类的相变储能材料组成的二元或三元复合体系,及其微胶囊化后得到的相变储能微球的相变储热性能。选用了另外两种酯类的相变储能材料甲基丙烯酸月桂酯和甲基丙烯酸十八酯,分别与相变蜡和硬脂酸正丁酯复合。同时,将该复合体系微胶囊化后,制得了一系列粒径在10~80μm之间,熔化焓值在30~65J/g的相变储能微球。
     研究表明,相变蜡/硬脂酸正丁酯二元复合芯材相变储能微胶囊是很好的热能存储材料,具有很好的相变储热性能。制得相变储能微胶囊的相变温度不仅可以通过其复合芯材组成的改变来调节。而且,经过了上百次高低温循环后,大多数相变储能微胶囊依然保持了很好的储热可靠性。
Phase change materials (PCMs) have a good application value as thermalenergy storage materials. Microencapsulated phase change materials(micro-PCMs) make PCMs more widely available. Using differentpolymerization methods, a series of micro-PCMs are prepared which containingparaffin and butyl stearate as their binary cores. The phase change temperatureof these micro-PCMs could be adjusted by regulating the composition of thebinary cores, and the melting peak temperature of the micro-PCMs could beregulated from28oC to35oC.
     First, the phase change properties and chemical structures of the binarysystems are studied. The binary systems composed of paraffin and butyl stearatedisplay excellent phase change performances. The binary systems respectivelyshow one melting and freezing peak during solid-liquid phase transition process.Besides, FT-IR results indicat that paraffin and butyl stearate do not react with eachother, and the binary core materials exist as physical mixtures.
     Second, the binary cores are microencapsulated using polyurethane oracrylate-based co-polymer shells, the preparation process and phase changeproperties of these micro-PCMs are studied. Using interfacial polymerizationmethods, polyurea/polyurethane double shell micro-PCMs containing paraffinand butyl stearate are synthesized. Using butyl stearate that functionalizes as:co-solvent for improving compatibility of the paraffin and PU shell; componentof binary core for regulating phase change temperature in the range from28to35oC. The microencapsulation ratios of these as-prepared micro-PCMs are morethan60wt%. Moreover, in order to improve the thermal stabilities and thermalreliabilities of these microcapsules, four kinds of acrylate-based cross-linkingagents are respectively introduced into the microencapsulation process. After500times thermal cycling test, these as-prepared micro-PCMs keep goodstabilities that the microencapsulation ratio loss of the best-performedmicrocapsules are only about1wt%.
     In addition, octadecyl methacrylate and dodecyl2-methylacrylate are respectively introduced to form binary or ternary systems with paraffin and butyl stearate. Thermalproperties of these mixtures are investigated. Moreover, these binary or ternary systemsare microencapsulated with P(MMA-co-DVB) shells. Since different compositions ofthe core and shell materials, a series of microspheres are synthesized with the diameterranging from10μm to80μm, and the melting enthalpy is in the range of30J/g to65J/g.
     All the results reveal that the paraffin/butyl strearate micro-PCMs with different shellmaterials have good application value as thermal energy storage materials. The phasechange temperature of these as-prepared micro-PCMs not only could be adjusted byregulating the composition of their binary core, but the micro-PCMs show good thermalreliability after500times thermal cycling test.
引文
[1]夏立平.美国国际能源战略与中美能源合作.当代亚太,2005,1:14-19.
    [2]王伟军.试析日本的国际能源战略.区域与国别研究,2006,3:51104-51110.
    [3]戴德立. BP世界能源统计年鉴.2012. bp.com/statisticalreview.
    [4]柴生高.浅谈我国的能源现状及能源对策.中国外资,2011,253:134-136.
    [5]王少南.节能建材的发展方向.建材发展导向,2006,1:5-10.
    [6]肖力光,冯铄.相变材料在建筑节能及其它领域的研究与应用.吉林建筑工程学院学报,2012,29:35-41.
    [7]江亿.我国建筑耗能状况及有效的节能途径.暖通空调,2005,35:30-40.
    [8] Sharma SD, Kitano H, Sagara K, Phase change materials for low temperature solar thermalapplications. Res. Rep. Fac. Eng. Mie Univ.,2004,29:31-64.
    [9] Feldman D, Shapiro MM. Fatty acids and their mixtures as phase change materials for thermalenergy storage. Sol Energy Mater,1989,18:201-216.
    [10] Lane G. Latent heat materials. CRC Press, Boca Raton, Florida.1983,1.
    [11] Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. SolEnergy,198330:313-331.
    [12] Abhat A. Investigation of physical and chemical properties of phase change materials for spaceheating/cooling applications. International solar energy congress, New Delhi, India.1978.
    [13] Buddhi D, Sawhney RL. Thermal energy storage and energy conversion. School of energy andenvironmental studies, Devi Ahilya University, Indore, India,1994.
    [14] Mondieig D, Rajabalee F, Laprie A et al. Protection of temperature sensitive biomedicalproducts using molecular alloys as phase change material. Transfus Apher Sci,2003,28:143-148.
    [15] Nozaki K, Higashitani N, Yamamoto T, et al. Solid-solid phase transitions in n-alkanes C23H48and C25H52: X-ray power diffraction study on new layer stacking in phase V. J Chem Phys,1995,103:5762-5766.
    [16] Ksiaiczak A, Moorthi K, Nagata I. Solid-solid phase transition and solubility of even n-alkanesfulid phase equilibria.1994,95:15-29.
    [17]樊耀峰,张兴祥.有机固一固相变材料的研究进展.材料导报,2003,17:50-53.
    [18]张建玲,刘晓地,何书美等.多元醇固-固相变的变温红外光谱研究.高等学校化学学报,2000,21:937-940.
    [19]吕社辉,郭元强,姜振华.聚乙二醇单甲醚(MPEG)/聚乙烯醇(PVA)高分子固-固相变材料的合成与性能.高等学校化学学报,2004,25:1966-1968.
    [20]张兴祥,张华,胡灵等. PET-PEG共聚物及纤维的结晶及储能行为.功能高分子学报,1996,9:556-560.
    [21]张志英,杨孟林.四氯合金属(II)酸正烷铵在280K-500K间的热力学性质和相变II:四氯合锌(II)酸正十二烷铵.化学学报,1988,46:281-284.
    [22]徐瑞云,蔡渝,丁惠.四氯合钯(II)酸正十八烷铵的差示扫描量热法和红外光谱法研究.化学世界,2003,11:578-579.
    [23] Biswas DR. Thermal energy storage using sodium sulphate decahydrate and water. Sol Energy,1977,19:99-100.
    [24] Marks S. An investigation of the thermal energy storage capacity of Glauber’s salt with respectto thermal cycling. Sol Energy,1980,25:255-258.
    [25] Nagano K, Mochida T, Takeda S, et al. Thermal characteristics of manganese (II) nitratehexahydrate as a phase change material for cooling systems, Appl Therm Eng,2003,23:229-241.
    [26] Loxley A, Vincent B. Preparation of poly(methylmethacrylate) microcapsules with liquid cores.J Colloid Interf Sci,1998,208:49-62.
    [27] Fan YF, Zhang XX, Wang XC, et al. Super-cooling prevention of microencapsulated phasechange material. Thermochim Acta,2004,413:1-6.
    [28] Malfliet A, Deferme G, Stappers L, et al. Synthesis and characterization of composite coatingsfor thermal actuation. J Electrochem Soc,2007,154:50-56.
    [29]张兴祥,张华,王学晨等.聚乙二醇结晶及其低温热能储存行为研究.天津纺织工学院学报,1997,16:11-14.
    [30] Alkan C, Sari A. Fatty acid/poly(methyl methacrylate)(PMMA) blends as form-stable phasechange materials for latent heat thermal energy storage. Sol Energy,2008,82:118-124.
    [31]骆峰生.石蜡与赤藻糖醇填充石墨化泡沫炭复合储能材料的研究[硕士学位论文].哈尔滨工业大学,2011.
    [32]王为,章学来,韩中等.纳米氧化铝与赤藻酸糖醇复合相变材料的实验研究.化学工程,2012,40:21-24.
    [33]张焘,周春玉,张东等.石墨烯、超声波缓和木糖醇过冷性研究.材料开发与应用,2010,2:57-60.
    [34] Zalba B, Marín JM, Cabeza LF, et al. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications. Appl Therm Eng,2003,23:251-283.
    [35] Chen L, Xu L, Shang H, et al. Microencapsulation of butyl stearate as a phase change materialby interfacial polycondensation in a polyurea system. Energ Convers Manage,2009,50:723-729.
    [36] Wang XC, Niu JL, Li Y, et al. Heat transfer of microencapsulated PCM slurry flow in acircular tube. J AICHE,2008,54:1110-1120.
    [37] Maruoka N, Akiyama T. Thermal stress analysis of PCM encapsulation for heat recovery ofhigh temperature waste heat. J Chem Eng Jpn,2003,36:794-798.
    [38] Li J, Xue P, Ding W, et al. Micro-encapsulated paraffin/high-density polyethylene/wood flourcomposite as form-stable phase change material for thermal energy storage. Sol Energy Mat SolC,2009;93:1761-1767.
    [39]张兴祥,王馨等.相变材料微胶囊制备与应用.北京:化学工业出版社,2009: P37.
    [40] Tyagi VV, Kaushik SC, Tyagi SK, et al. Development of phase change materials basedmicroencapsulated technology for buildings: A review. Renew Sust Energ Rev,2011,15:1373-1391.
    [41] Fan YF, Zhang XX, Wu SZ, et al. Thermal stability and permeability of microencapsulatedn-octadecane and cyclohexane. Themochim Acta,2005:429:25-29.
    [42] Salaün F, Vroman I. Influence of core materials on thermal properties ofmelamine–formaldehyde microcapsules. Eur Polym J,2008,44:849-860.
    [43] Jiang M, Song X, Ye G, et al. Preparation of PVA/paraffin thermal regulating fiber by in situmicroencapsulation. Compos Sci Technol,2008,68:2231-2237.
    [44] Su J, Wang L, Ren L. Preparation and characterization of double-MF shell microPCMs used inbuilding materials. J Appl Polym Sci,2005,97:1755-1762.
    [45] Lee SH, Yoon SJ, Kim YG, et al. Development of building materials by usingmicro-encapsulated phase change material. Korean J Chem Eng,2007,24:332-335.
    [46] Su JF, Wang SB, Zhou JW, et al. Fabrication and interfacial morphologies ofmethanol–melamine–formaldehyde (MMF) shell microPCMs/epoxy composites. ColloidPolym Sci,2011,289:169-177.
    [47] Chu LY, Park SH, Yamaguchi T, et al. Preparation of micron-sized monodispersedthermoresponsive core-shell microcapsules.2002,18:1856-1864.
    [48] Soto-Portas ML, Argillier JF, Méchin F, et al. Preparation of oily core polyamide microcapsulesvia interfacial polycondensation. Polym Int,2003,52:522-527.
    [49] Yeom CK, Oh SB, Rhim JW, et al. Microencapsulation of water-soluble herbicide by interfacialreaction: I. characterization of microencapsulation. J Appl Polym Sci,2000,78:1645-1655.
    [50]陆少峰,邢建伟,吴钦等.界面聚合聚脲/聚氨酯双层微胶囊相变材料的研制与性能.高分子材料科学与工程,2011,1:17-19.
    [51] Giraud S, Bourbigot S, Rochery M, et al. Flame retarded polyurea with microencapsulatedammonium phosphate for textile coating. Polym Degrad Stabil,2005,88:106-113.
    [52] Zou GL, Tan ZC, Lan XZ, et al. Preparation and characterization of microencapsulatedhexadecane used for thermal energy storage. Chinese Chem Lett,2004,15:729-732.
    [53] Zydowicz N, Chaumont P, Soto-Portas ML. Formation of aqueous core polyamidemicrocapsules obtained via interfacial polycondensation optimization of the membraneformation through pH control. J Memberane Sci,2001,180:41-58.
    [54] Sánchez-Silva L, Rodrí guez JF, Romero A. et al. Microencapsulation of PCMs with astyrene-methyl methacrylate copolymer shell by suspension-like polymerization. Chem Eng J,2010,157:216-222.
    [55] You MY, Zhang XX, Wang X, et al. Effects of type and contents of microencapsuled n-alkaneson properties of soft polyurethane foams. Thermochi Acta,2010,500:69-75.
    [56] Sawatari N, Fukuda M, Taguchi Y, et al. Composite polymer particles with a gradated resincomposition by suspension polymerization. J Appl Polym Sci,2005,97:682-690.
    [57] Sánchez-Silva L, Rodrí guez JF, Carmona M, et al. Thermal and morphological stability ofpolystyrene microcapsules containing phase-change materials. J Appl Polym Sci,2011,120:291-297.
    [58] Sánchez-Silva L, Tsavalas J, Sundberg D, et al. Synthesis and characterization of paraffin waxmicrocapsules with acrylic-based polymer shells. Ind Eng Chem Res,2010,49:12204-12211.
    [59] Sánchez L, Lacasa E, Carmona M, et al. Applying an experimental design to improve thecharacteristics of microcapsules containing phase change materials for fabric uses. Ind EngChem Res,2008,47:9783-9790.
    [60] Petrovic LB, Sovilj VJ, Katona JM, et al. Influence of polymer–surfactant interactions on o/wemulsion properties and microcapsule formation. J Colloid Inter Sci,2010,342:333-339.
    [61] Fei B, Lu H, Qi K, et al. Multi-functional microcapsules produced by aerosol reaction. AerosolSci,2008,39:1089-1098.
    [62] Kauranen P, Peippo K, Lund, PD. An organic PCM storage system with adjustable meltingtemperature. Sol Energy,1991,46:275-278.
    [63] Heim D. Isothermal storage of solar energy in building construction. Renew Energy,2010,35:788-796.
    [64] Castellón C, Castell A, Medrano M, et al. Experimental study of pCM Inclusion in differentbuilding envelopes. J Sol Energ Eng,2009,131:410061-410065.
    [65] Castell A, Medrano M, Medrano G, et al. Experimental study of using PCM in brickconstructive solutions for passive cooling. Energ Buildings,2010,42:534-540.
    [66] Cabeza LF, Castellón C, Nogués M, et al. Use of microencapsulated PCM in concrete wallsfor energy savings. Energ Buildings,2007,39:113-119.
    [67] Zhang H, Xu Q, Zhao Z, et al. Preparation and thermal performance of gypsum boardsincorporated with microencapsulated phase change materials for thermal regulation. Sol EnergMat Sol C,2012,102:93-102.
    [68]苏小燕.相变材料微胶囊在纺织品中的研究发展.现代纺织技术,2011,1:54-56.
    [69]武松梅,田丽.相变材料在纺织上的应用与研究.轻纺工业与技术,2012,41:68-69.
    [70]黄其明,张开凌.新型服装材料-相变材料.中国校外教育,2010,9:128-129.
    [71] Shin Y, Son K, Yoo DI. Development of natural dyed textiles with thermo-regulatingproperties. Thermochim Acta,2010,511:1-7.
    [72] Sánchez P, Sànchez-Fernandez MV, Romero A, et al. Development of thermo-regulatingtextiles using paraffin wax microcapsules. Thermochim Acta,2010,498:16-21.
    [73] Bendkowska W, K onowska M, Kopias K, et al. Thermal Manikin Evaluation of PCM CoolingVests. Fibers Text East Eur,18:70-74.
    [74] Zhao CY, Zhang GH. Review on microencapsulated phase change materials (MEPCMs):fabrication, characterization and applications. Renew Sust Energy Rev,2011,15:3813-3832.
    [75]张国庆,饶中浩,吴忠杰等.采用相变材料冷却的动力电池组的散热性能.化工进展,2009,28:23-27.
    [76] Steinmann WD, Laing D, Tamme R. Development of PCM storage for process heat and powergeneration. J Sol Energ Eng,2009,131:410091-410094.
    [77] Farid MM, Khudhair AM, Razack SAK, et al. A review on phase change energy storage:materials and applications. Energ Convers Manage,2004,45:1597-1615.
    [78] Sharma A, Tyagi VV, Chen CR, et al. Renew Sust Energ Rev,2009,13:318-345.
    [79] Kuravi S, Kota KM, Du J, et al. Numerical Investigation of Flow and Heat TransferPerformance of Nano-Encapsulated Phase Change Material Slurry in Microchannels. J HeatTrans,2009,131:629011-629019.
    [80] Gschwander S, Schossig P, Henning HM. Micro-encapsulatedparaffin in phase-change slurries.Sol Energ Mat Sol C,2005,89:307-315.
    [81]张文亮,丘明,来小康.储能技术在电力系统中的应用.电网技术,2008,32:1-9.
    [82]张东,周剑敏,吴科如.相变储能复合材料及其电力调峰功能分析.华东电力,2003,27:4-7.
    [83]沈学忠,张仁元.相变储能材料的研究和应用.节能技术,2006,24:460-463.
    [84] Khudhair AM, Farid MM. A review on energy conservation in building applications withthermal storage by latent heat using phase change materials. Energ Convers Manage,2004,45:263-275.
    [85] Nagano K, Takeda S, Mochida T, et al. Study of a floor supply air conditioning system usinggranular phase change material to augment building mass thermal storage-Heat response insmall scale experiments. Energ Buildings,2006,38:436-446.
    [86]王沁芳,张朝辉,杨江金.相变储能材料在节能建筑中的应用.建筑应用,2009,1:43-45.
    [87]马芳梅.相变物质储能建筑材料性质研究的进展.新型建筑材料,1997,8:40-42.
    [88]王毅坚.相变蓄能材料在建筑节能中的应用.化学建材,2009,5:25-27.
    [89] Schossig P, Henning HM, Gschwander S, et al. Microencapsulated phase-change materialsintegrated into construction materials. Sol Energ Mat Sol C,2005,89:297-306.
    [90] Oonk HAJ, Mondieig D, Haget Y, et al. Perfect families of mixed crystals: The rotator In-alkane case. J Chem Phys,1998,108:715-723.
    [91] Mondieig D, Marbeuf A, Robles L, et al. Thermoadjustable molecular alloys for energystorage and thermal protection: fundamental aspects and applications. High Temperatures,High Pressures,2003,35:93-99.
    [92] Ventolà L, Calvet T, Cuevas-Diarte MA, et al. Solid-solid and solid-liquid equilibria in then-alkanols family: C18H37OH-C20H41OH system. Phys Chem Chem Phys,2004,6:3726-3731.
    [93] Tamarit JF, Barrio M, López DO, et al. Packing disordered molecular crystals and theirmolecular alloys. J Appl Cryst,1997,30:118-122.
    [94]张东.脂肪酸分子合金相变材料的热稳定性.建筑材料学报,2008,11:283-287.
    [95] Sar A, Sar H, nal A. Thermal properties and thermal reliability of eutectic mixtures of somefatty acids as latent heat storage materials. Energ Convers Manage,2004,45:365-376.
    [96] Ventolà L, Calvet T, Cuevas-Diarte MA, et al. From concept to application. A new phasechange material for thermal protection at-11oC. Mat Res Innovat,2002,6:284-290.
    [97] Haget Y. Molecular mixed crystals: another real of alloys. J Chim Phys,1993,90:313-324.
    [98] Asbach VGI, Killian HG, Stacke F. Isobaric binary state diagrams of n-alkanes. Colloid PolymSci,1982,260:151-163.
    [99] Kitajgorodskij AI. Lempaquetage de molecules longues. Acta Crystallogr,1957,10:802-802.
    [100] Craig SR, Hastie GP, Roberts KJ, et al. Investigation into the structures of some normalalkanes within the homologous series C13H28to C60H122using high-resolution synchrotronX-ray powder diffraction. J Mater Chem,1994,4:977-981.
    [101] Palatnik LS, Landau AI. Phase equilibria in multicomposent system. Holt, Rhinart andWiston: New York,1964.
    [102] Kravchenko V. The eutectics and solid solutions of paraffins. Acta Physicochim,1946,21:335-344.
    [103] Dirand M, Achour Z, Jouti B, et al. Binary Mixtures of n-Alkanes. Phase diagramgeneralization: intermediate solid solutions, rotator phases. Taylor Francis,275,1996:293-340.
    [104] Müller A. An X-Ray Investigation of certain long-chain compounds. J Roy Soc,1927,114:542-561.
    [105] Müller A. The crystal structure of the normal paraffins at temperatures ranging from that ofliquid air to the melting points. Roy Soc Proc A,1840,127:417-430.
    [106] Turner WR. Normal alkanes. Ind. Eng Chem Prod Res Develop,1971,10:238-260.
    [107] Heyding RD, Russell KE, Varty TL, et al. The normal paraffins revisited, Powder Diffr,1990,5:93-100.
    [108] Gerson AR, Roberts KJ, Sherwood JN. X-ray powder diffraction studies of alkanes: unit-cellparameters of the homologous series C18H38to C28H58. Acta Cryst,1991,47:280-284.
    [109] Craig SR, Hastie GP, Roberts KJ, et al. Investigation into the structures of some normalalkanes within the homologous series C13H28to C60H122using high-resolution synchrotronX-Ray powder diffraction. J Mater Chem,1994,4:977-981.
    [110] Smith AE. The crystal structure of the normal paraffin hydrocarbons. J Chem Phys,1953,21:2229-2231.
    [111] Smith AE. The structure of stable ordered phases in mixed paraffins and their relation to thestructure of pure n-paraffins. Acta Crystallogr,1957,10:802-803.
    [112] Müller A, Lonsdale K. The low-temperature form of C18H38. Acta Crystallogr,1948,1:129-134.
    [113] Nyburg SC, Lüth H. N-Octadecane: a correction and refinement of the structure given byHayashida. Acta Crystallogr,1972,28:2992-2995.
    [114] Shearer HMM, Vand V. The crystal structure of the monoclinic form of n-hexatriacontane.Acta Crystallogr,1956,9:379-384.
    [115] Boistelle R, Simon B, Pèpe G. Polytypic structures of n-C28H58(octacosane) and n-C36H74(hexatriacontane). Acta Crystallogr,1976,32:1240-1249.
    [116] Teare PW. The crystal structure of orthorhombic hexatriacontane. Acta Crystallogr,1959,12:294-301.
    [117]李会鹏,沈本贤,顾宇辉.柴油蜡晶的理论形态预测与显微实际形态比较.石油学报,2006,22:27-33.
    [118] Nyburg SC, Potworowski. Prediction of unit cells and atomic coordinates for the n-alkanes.Acta Crystallogr,1973,29:347-351.
    [119] Robles L, Mondieg D, Haget Y, et al. Non isomorphism and miscibility in the solid state:determination of the equilibrium phase diagram n-octadecane C18+n-nonadecane C19. MolCryst Liq Cryst,1996,281:279-290.
    [120] Ghogomu PM, Dellacherie J, Balesdent D. Solubility of normal paraffin hydrocarbons (C20toC24) and some of their binary mixtures (C22+C24) and (C23+C24) in ethylbenzene. J ChemThermodyn,1989,21:925-934.
    [121] Snyder RG, Maroncelli M, Qi SP, et al. Phase transitions and nonplanar conformers incrystalline n-alkanes. Sciences,1981,214:188-190.
    [122] Sullivan PK, Weeks J. The intensity as a function of temperature of the low angle X-raydiffraction maxima of the n-paraffins: hexatriacontane, tetratetracontane andtetranonacontane. J Res Natl Bur Stand,1970,74:203-214.
    [123] Piesczek W, Strobl GR, Malzahn K. Packing of paraffins chains in the four stablemodifications of n-tritriacontane. Acta Crystallogr,1974,30:1278-1288.
    [124] Kern R, Dassonville R. Growth inhibitors and promoters exemplified on solution growth ofparaffin crystals. J Cryst Growth,1992,116:191-203.
    [125] Doucet J, Denicolo I, Craievich A F. X-Ray study of the“rotator” phase of the odd-numberedparaffins: C17H36, C19H40and C21H44. J Chem Phys1981,75:1523-1529.
    [126] Denicolo I, Doucet J, Craievich AF. X-Ray study of the Rotator phase of paraffins (III):even-numbered paraffins C18H38, C20H42, C22H46, C24H50and C26H54. J Chem Phys1983,78:1465-1469.
    [127] Heyding RD, Russel KE, Varty TL. The normal paraffins revisited. Powder Diffr,1990,5:93-100.
    [128] Mnyukh YV. Laws of phase transformation in a serie of normal paraffins. J Phys Chem.Solids,1963,24:631-640.
    [129] Mcclure DW. Nature of the rotational phase transition in paraffin crystals. J Chem Phys,1968,49:1830-1841.
    [130] Sirota EB, King JR, Singer DM, et al. Rotator phases of the normal alkanes: an X-rayscattering study. J Chem Phys,1993,98:5809-5824.
    [131] Takamizawa K, Ogawa Y, Oyama T. Thermal behavior of n-alkanes from n-C32H66ton-C80H162, synthesized with attention paid to high purity.1982,14:441-456.
    [132] Oyama T, Takamizawa K, Urabe Y, et al. Synthesis of higher n-alkanes and their transitionphenomena. II. Carbon number dependence of transition temperature of odd n-alkanes.Kyushu Diagaku Kogaku Shuho,1979,52:129-133.
    [133] Oyama T, Takamizawa K, Ogawa Y. Studies on phase transitions of higher odd n-alkanes. I.Effects of purity on phase transitions of higher odd n-alkanes. Kobunshi Ronbunshu,1980,37:711-715.
    [134] Doucet J, Denicolo O, Craievich AF, et al. X-Ray study of the rotator phase of paraffins (IV):C27H56, C28H58, C29H60, C30H62and C34H70. J Chem Phys,1984,80:1647-1651.
    [135] Dirand M, Bouroukba M, Chevallier V, et al. Normal alkanes, multialkane synthetic modelmixtures, and real petroleum waxes: crystallographic structures, thermodynamic properties,and crystallization. J Chem Eng Data,2002,47:115-143.
    [136] Espeau P, Mondieig D, Haget Y, et al. Active package for thermal protection of food products.Pack Tech Sci,1997,10:253–260.
    [137] Arjona F, Calvet T, Cuevas-Diarte MA, et al. Application of the n-alkane molecular alloys tothermally protected containers for catering. Bol Soc Esp CeramVidrio,2000,19:548–551.
    [138] Rajabalee F, Metivaud V, Laprie A, Mondieig D, et al. New insights on the crystalline formsin binary systems of n-alkanes: Characterization of the solid ordered phases in the phasediagram tricosane pentacosane. J Mater Res,1999,14:2644-2654.
    [139] Métivaud V, Lefèvre A, Ventolà L, et al. Hexadecane (C16H34)+1-hexadecanol (C16H33OH)binary system: crystal structures of the components and experimental phase diagram.Application to thermal protection of liquids. Chem Mater,2005,17:3302-3310.
    [140] Métivaud V, Rajabalee F, Mondieig D, et al. Solid-solid and solid-liquid equilibria in theheneicosane-docosane binary system. Chem Mater,1999,11:117-122.
    [141] Li W, Song GL, Tang GY, et al. Morphology, structure and thermal stability ofmicroencapsulated phase change material with copolymer shell. Energ,2011,36:785-791.
    [142] You M, Zhang XX, Wang J, et al. Polyurethane foam containing microencapsulatedphase-change materials with styrene-divinybenzene co-polymer shells. J Mater Sci,2009,44:3141-3147.
    [143] Fang Y, Kuang S, Gao X, et al. Preparation and characterization of novel nanoencapsulatedphase change materials. Energ Convers Manage,2008,49:3704-3707.
    [144] Chaiyasat P, Ogino Y, Suzuki T, et al. Preparation of divinylbenzene copolymer particles withencapsulated hexadecane for heat storage application. Colloid Polym Sci,2008,286:217-223.
    [145] Ji HY, Tohidi B, Danesh A, et al. Wax phase equilibria: developing a thermodynamic modelusing a systematic approach. Fluid Phase Equiliber,2004,216:201-217.
    [146] Su J, Wang S, Huang Z. Storage Microcapsules applied as environmentaltemperature-controlling materials in building. Adv Mater Res,2010,96:81-86.
    [147] Shan XL, Wang JP, Zhang XX, et al. Formaldehyde-free and thermal resistant microcapsulescontaining n-octadecane. Thermochim Acta,2009,494:104-109.
    [148] Sar A, Alkan C, Karaipekli A. Preparation, characterization and thermal properties ofPMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energystorage. Appl Energ,2010,87:1529-1534.
    [149] Alkan C, Sar A, Alkan C, Karaipekli A, et al. Preparation, characterization, and thermalproperties of microencapsulated phase change material for thermal energy storage. Sol EnergMater Sol C,2009,93:143-147.
    [150] Alkan C, Sar A, Alkan C, Karaipekli A. Preparation, thermal properties and thermalreliability of microencapsulated n-eicosane as novel phase change material for thermalenergy storage. Energ Convers Manage,2011,52:687-692.
    [151] Dirand M, Chevallier V, Provost E, et al. Multicomponent paraffin waxes and petroleum soliddeposits: structural and thermodynamic state. Fuel,1998,77:1253-1260.
    [152] Ventolà L, Cuevas-Diarte MA, Calvet T, et al. Molecular alloys as phase change materials(MAPCM) for energy storage and thermal protection at temperatures from70to85oC. JPhys Chem Solids,2005,66:1668-1674.
    [153]田胜力,张东,肖德炎.正辛酸/月桂酸分子合金作为低温相变储能材料的实验研究.节能,2005,275:45-47.
    [154]陈中华,肖春香,冯润财. CA-SA分子合金的制备及储热性能研究.应用化工,2008,37:1-3.
    [155]张东,田胜力.制备有机分子合金相变储能材料的方法[专利].同济大学,2005,申请号:200510026226. X.
    [156] Sar A, Alkan C, Karaipekli A, et al. Microencapsulated n-octacosane as phase changematerial for thermal energy storage. Sol Energ,2009,83:1757-1763.
    [157] Ma YH, Li W, Chu XD, et al. Preparation and characterization of poly(methylmethacrylate-co-divinylbenzene) microcapsules containing phase change temperatureadjustable binary core materials. Sol Energ,2012,86:2056-2066.
    [158] Ma YH, Chu XD, Tang GY, et al. Adjusting phase change temperature of microcapsules byregulating their core compositions. Mater Lett,2012,82:39-41.
    [159] Ma YH, Chu XD, Tang GY, et al. The effect of different soft segments on the formation andproperties of binary core microencapsulated phase change materials withplyurea/polyurethane double shells. J Colloid Interf Sci,2013,392:407-414.
    [160] Ma YH, Chu XD, Tang GY, et al. Synthesis and thermal properties of acrylate-based polymershell microcapsules with binary core as phase change materials. Mater Lett,2013,91:133-135.
    [161]宋健,陈磊,李效军.微胶囊化技术及应用.北京:化学工业出版社,2001, P74.
    [162] Cho JS, Kwon A, Cho CG. Microencapsulation of octadecane as a phase-change material byinterfacial polymerization in an emulsion system. Colloid Polym Sci,2002,280:260-266.
    [163] Isaure F, Cormack PAG, Sherrington DC, et al. Synthesis of branched poly(methylmethacrylate)s: effect of the branching comonomer structure. Macromolecules,2004,37:2096-2105.
    [164] Sarier N, Onder E. The manufacture of microencapsulated phase change materials suitablefor the design of thermally enhanced fabrics. Thermochim Acta,2007,452:149-160.
    [165]张仁元.相变材料与相变储能技术.北京:科学出版社,2009.
    [166] Buddhi D, Sawhney RL, Seghal PN, et al. A simplification of the differential thermal analysismethod to determine the latent heat of fusion of phase change materials, J Physics D,1987,20:1601-1605.
    [167] Juárez D, Ferrand S, Fenollar O, et al. Improvement of thermal inertia ofstyrene-ethylene/butylenes-styrene (SEBS) polymers by addition of microencapsulatedphase change materials (PCMs). Eur Polym J,2011,47:153-161.
    [168]张兴祥,王馨,吴文健.相变材料微胶囊制备与应用.北京:化学工业出版社,2009.
    [169] Lan XZ, Tan ZC, Zou GL, et al. Microencapsulation of n-eicosane as energy storage material.Chinese J Chem,2004,22:411-414.
    [170] Kwon JY, Kim HD. Preparation and application of polyurethane-urea microcapsulescontaining phase change materials. Fibers Polym,2006,7:12-19.
    [171] Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecanewith polyureashells containing different soft segments for heat energy storage and thermal regulation. SolEnerg Mater Sol C,2009,93:1366-1376.
    [172] Yang R, Zhang Y, Wang X, et al. Preparation of n-tetradecane-containing microcapsules withdifferent shell materials by phase separation method. Sol Energ Mater Sol C,2009,93:1817-1822.
    [173] Espeau P, Robles L, Cuevas-Diarte MA, et al. Thermal cycling of molecular alloys andeutectics containing alkanes for energy storage. Mater Res Bull,1996,31:1219-1232.
    [174] Tiarks F, Landfester K, Antonietti M. One-step preparation of polyurethane dispersions byminiemulsion polyaddition. J Polym Sci A,2001,39:2520-2524.
    [175]刘玉海,赵辉,李国平等.异氰酸酯.北京:化学工业出版社,2004.
    [176] Espeau P, Mondieig D, Haget Y, et al. Perfect families of mixed crystals: the orderedcrystalline forms of n-alkanes. Phys Chem Chem Phys,2000,2:1345-1350.
    [177] Ayd n AA, Okutan H. High-chain fatty acid esters of myristyl alcohol with even carbonnumber: Novel organic phase change materials for thermal energy storage-1. Sol Energ MatSol C,2011,95:2752-2762.
    [178] Zhang H, Wang X, Wu D. Silica encapsulation of n-octadecane via sol-gel process: A novelmicroencapsulated phase-change material with enhanced thermal conductivity andperformance. J Colloid Interf Sci,2010,343:246-255.
    [179] Hong K, Park S. Preparation of polyurethane microcapsules with different soft segments andtheir characteristics. React Funct Polym,1999,42:193-200.
    [180] Su JF, WangLX, Ren L, et al. Mechanical properties and thermal stability of double-shellthermal-energy-storage microcapsules. J Appl Polym Sci,2007,103:1295-1302.
    [181] Bouchemal K, Briancon S, Perrier E, et al. Synthesis and characterization of polyurethaneand poly(ether urethane) nanocapsules using a new technique of interfacial polycondensationcombined to spontaneous emulsification. Int J Pharm,2004,269:89-100.
    [182] Ni P, Zhang M, Yan N. Effect of operating variables and monomers on the formation ofpolyurea microcapsules. J Memberane Sci,1995,103:51-55.
    [183] Su JF, Wang L, Ren L. Synthesis of polyurethane microPCMs containing n-octadecane byinterfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. ColloidSurface A,2007,268-275.
    [184] Lu S, Xing J, Zhang Z, et al. Preparation and characterization of polyurea/polyurethanedouble-shell microcapsules containing butyl stearate throughinterfacial polymerization. JAppl Polym Sci,2011,121:3377-3383.
    [185] Salaün, F, Devaux E, Bourbigot S, et al. Preparation of multinuclear microparticles using apolymerization in emulsion process. J Appl Polym Sci,2008,107:2444-2452.
    [186] Torini L, Torini JF, Zydowicz N. Interfacial polycondensation encapsulation in miniemulsion.Macromolecules,2005,38:3225-3236.
    [187] Su JF, Wang L, Ren L, et al. Preparation and characterization of polyurethane microcapsulescontaining n-octadecane with styrene-maleic anhydride as a surfactant by interfacialpolycondensation. J Appl Polym Sci,2006,102:4996-5006.
    [188] Yow HN, Routh AF. Formation of liquid core-polymer shell microcapsules. Soft Mater,2006,2:940-949.
    [189] Arshady R. Preparation of microspheres and microcapsules by interfacial polycondensationtechniques. J Microencapsul,1989,6:13-28.
    [190] Naim MM, Kawi MAAE. Non-conventional solar stills Part2. non-conventional solar stillswith energy storage element. Desalination,2002,153:71-80.
    [191] Frère Y, Danicher L, Gramain P. Preparation of polyurethane microcapsules by interfacialpolycondensation. Eur Polym J,1998,34:193-199.
    [192] K.L. Thompson, S.P. Armes, From well-defined macromonomers to sterically-stabilisedlatexes to covalently corss-linkable colloidosomes: exerting control over multiple lengthscales, Chem Commun,2010,46:5274-5276.
    [193] Zhang XX, Fana YF, Taob XM, et al. Fabrication and properties of microcapsules andnanocapsules containing n-octadecane, Mater Chem Phys,2004,88:300–307.
    [194] Mulligan JC, Colvin DP. Microencapsulated phase-change material suspensions for heattransfer in spacecraft thermal systems, J Spacecraft Rockets,1996,33:278–284.
    [195] Colvin DP. Proceedings of the second internetional conference on safety and protectivefabrics, USA,2000,28–30.
    [196] Yang R, Xu H, Zhang Y. Preparation, physical property and thermal physical property ofphase change microcapsule slurry and phase change emulsion. Sol Energ Mater Sol C,2003,80:405-416.
    [197] Sánchez L, Sánchez P, Lucas A, et al. Microencapsulation of PCMs with a polystyrene shell.Colloid Polym Sci,2007,285:1377-1385.
    [198] Ai Y, Jin Y, Sun J, et al. Microencapsulation of n-hexadecane as phase change material bysuspension polymerization. E-polym,2007,98:1-9.
    [199] Sánchez L, Sánchez P, Carmona M, et al. Influence of operation conditions on themicroencapsulation of PCMs by means of suspension-like polymerization. Colloid Polym Sci,2008,286:1019-1027.
    [200] Luo Y, Zhou X. Nanoencapsulation of a hydrophobic compound by a miniemulsionpolymerization process. J Polym Sci A,2004,42:2145-2154.
    [201] Supatimusro D, Promdsorn S, Thipsit S, et al. Poly(divinylbenzene) microencapsulatedoctadecane for use as a hHeat storage material: influences of microcapsule size andmonomer/octadecane ratio. Polym Plast Technol,2012,51:1167-1172.
    [202]赵德仁.高聚物合成工艺学.北京:化学工业出版社,1981.
    [203] Li WH, St over DH. Mono-or narrow disperse poly(methacrylate-co-divinylbenzene)microspheres by precipitation polymerization. J Polym Sci A,1999,37:2899-2907.
    [204] Hawlader MNA, Uddin MS, Zhu HJ. Preparation and evaluation of a novel solar storagematerial: microencapsulated paraffin. Int J Sol Energ,2000,20:227-238.
    [205] Zhang X, Tao X, Yick K, et al. Structure and thermal stability of microencapsulatedphase-change materials. Colloid Polym Sci,2004,282:330-336.
    [206]潘祖仁.高分子化学.北京:化学工业出版社,2007.
    [207] Chen C, ChenZ, Zeng X, et al. Fabrication and characterization of nanocapsules containingn-dodecanol by miniemulsion polymerization using interfacial redox initiation. ColloidPolym Sci,2012,290:307-314.
    [208] Qiu X, Song G, Chu X, et al. Preparation, thermal properties and thermal reliabilities ofmicroencapsulated n-octadecane with acrylic-based polymer shells for thermal energystorage. Thermochim Acta,2013,551:136-144.
    [209] Xia CM, Zhou YF, Nie WY, et al. Fabrication and characterization of cypermethrinnanocapsules in miniemulsion polymerization system. J Appl Polym Sci,2012,126:1859-1866.
    [210] Chaiyasat A, Waree C, Songkhamrod K, et al. Preparation of polydivinylbenzene/naturalrubber capsule encapsulating octadecane: influence of natural rubber molecular weight andcontent. Express Polym Lett,2012,6:70-77.
    [211] Ayd n AA, Okuatan H. High-chain fatty acid esters of myristyl alcohol with odd carbonnumber: Novel organic phase change materials for thermal energy storage-2. Sol EnergMater Sol C,2011,95:2417-2433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700