用户名: 密码: 验证码:
矿用充填堵漏风新型复合泡沫的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭自燃是影响矿井安全开采的主要灾害之一,控制漏风是防治煤炭自燃的关键手段。有机固化泡沫依靠其施工速度快,密封效果好等特点在国内外广泛应用于煤矿充填堵漏风。然而,现有的有机固化泡沫都存在不同程度的缺陷,如聚氨酯泡沫成本高、易燃、且燃烧释放出有毒烟气,酚醛泡沫脆性大、成本较高,脲醛泡沫的抗压强度低等。本文针对现有矿用有机固化泡沫的不足,研制了一种充填堵漏风新型复合泡沫,该泡沫具有密闭性好、抗压强度高、难燃、成本低等优点。
     本文以苯酚、脲素和多聚甲醛为聚合单体通过一步法创新性的合成了酚-脲-醛树脂。采用正交试验分析了脲素用量、催化剂用量、反应温度、反应时间对树脂发泡性能的影响规律,得出了酚-脲-醛树脂合成的最佳条件。通过红外光谱和核磁共振碳谱分析了酚-脲-醛树脂的化学结构,揭示了酚-脲-醛共聚树脂的合成机理。
     为优化酚-脲-醛树脂的催化体系,论文研究了不同固化剂、表面活性剂、发泡剂等对泡沫固化行为、力学性能和微观结构的影响规律,找出了最优的固化剂、表面活性剂、发泡剂配比及用量,揭示了固化剂和表面活性剂对泡沫的作用机理,探讨了酚-脲-醛树脂的成泡和固化机制。
     针对酚-脲-醛泡沫韧性差的问题,通过添加聚乙二醇(PEG)对酚-脲-醛泡沫进行改性,研究了不同分子量的PEG对酚-脲-醛泡沫的基本性能、力学特性、燃烧性能的影响规律,揭示了聚乙二醇的增韧机理,找到了聚乙二醇的最优添加量。PEG中的-OH与树脂中的-OH能够形成部分氢键,在树脂中导入长的柔性醚链,从而提高了泡沫的韧性和冲击强度,降低了粉化率。
     为了提高泡沫的阻燃性和承压强度,通过玻璃纤维与纳米粘土对酚-脲-醛泡沫进行改性,制备了玻璃纤维/纳米粘土复合泡沫,研究了玻璃纤维和纳米粘土对泡沫的力学特性、密封性能、热稳定性和阻燃性的影响规律,探讨了玻璃纤维与纳米粘土对酚-脲-醛泡沫的阻燃、增强机理。玻璃纤维与纳米粘土表现出良好的协同作用,能显著提高泡沫的压缩强度、热稳定性和阻燃性,降低泡沫的粉化率和收缩率,并改善复合泡沫的泡孔结构,提高泡沫的密封性能。
     为了验证实验室制备复合泡沫的性能,本文对比分析了酚醛泡沫、聚氨酯泡沫、脲醛泡沫与复合泡沫的综合性能。实验表明:四种泡沫中复合泡沫具有最低的发泡温度和收缩率,最高的抗压强度、阻燃性和热稳定性,但是,其发泡倍数和粉化率略低于聚氨酯泡沫。煤矿井下的工程实践表明,复合泡沫具有充填密闭效果好、施工简单、安全可靠、成本低等特点,极具广泛的应用前景。
The spontaneous combustion of coal is one of major natural disasters in coal mines ofChina. Controlling air-leakage is the key to prevention of coal spontaneous combustion.Organic curing foams are widely used to filling and air-leakage blocking in mine at home andabroad due to its rapid construction and good sealing. However, there are different defects inthe existing organic curing foams, such as high cost, flammable and releaseing toxic gases ofpolyurethane foam, brittleness and high cost of phenolic foam, low compressive strength ofurea-formaldehyde foam. Accord to lack of of existing organic curing foam in mine, a newtype of air-leakage blocking composite foam is developed in this paper, which combinesadvantages of polyurethane foam, phenolic foam and urea-formaldehyde foam, such as goodsealing performance, high compressive strength, flame retardant, low cost, and overcomestheir insufficients. In this thesis, firstly, phenol-urea-formaldehyde resin is synthesized, andresin catalyst system is optimized. Secondly, phenol-urea-aldehyde foam is modified bytoughener and enhancer to improve the overall performance of composite foam. Finally,property of composite foam, polyurethane foam, phenolic foam and urea-formaldehyde foamis comparative analyzed to clarify advantages of the composite foam, and sealing performanceof composite foam is verified through engineering practice in mine.
     To reduce production cost of foaming resin, phenol-urea-formaldehyde resin issynthesized by phenol, urea and paraformaldehyde. Effect of amount of urea, amount ofcatalyst, reaction temperature and reaction time on foaming properties of resin is analyzed byorthogonal experiments, and synthesis conditions of phenol-urea-formaldehyde resin isobtained. Chemical structure and synthesis mechanism of phenol-urea-formaldehyde resin arerevealed by infrared spectroscopy and13C NMR spectrum. Due to paraformaldehyde insteadof liquid formaldehyde, preparation process of phenol-urea-formaldehyde resin reducesdehydration links, saving energy and cost, to achieve a zero waste water discharge, a greensynthetic resin process.
     In order to optimize catalyst system of phenol-urea-formaldehyde resin, the influence ofdifferent curing agents, surfactants, foaming agents on curing behavior, mechanical propertiesand microstructure of foam are investigated, and the optimal ratio and amount of curing agent,surfactant and foaming agent are gived. Foaming and curing mechanism ofphenol-urea-formaldehyde resin is revealed.
     In order to solve poor toughness of phenol-urea-aldehyde foam, the effect of different molecular weight polyethylene glycol (PEG) on foaming behavior, impact strength,combustion properties of phenol-urea-formaldehyde foam is analyzed. The tougheningmechanism and optimal added amount of PEG are obtained. PEG can significantly improvestoughness and compression strength of foam, and reduces shrinkage ratio. When adding PEG,the thermal stability and flame retardant of phenol-urea-aldehyde foam reduce, and fire risk isenhanced.
     In order to improve compression strength and flame retardant of foam, glass fiber andnano-clay are used to prepare composite foam. The effect of glass fiber and nanoclay onmechanical properties, sealing performance, thermal stability and flame retardancy areinvestigated to reveal reinforced and flame retardant mechanism of glass fiber and nanoclay tophenol-urea-formaldehyde foam. Combined use of glass fiber and nano-clay shows a bettersynergistic effect, significantly improving compressive strength, miscostructure, thermalstability and flame retardant of foam, and reducing shrinkage rate.
     Comparative experiment among phenolic foam, polyurethane foam, urea-formaldehydefoam and composite foam shows that: composite foam has the lowest foaming temperatureand shrinkage, the highest compressive strength, flame retardancy and thermal stability.However, the expansion ratio and chalking rate of composite foam is slightly lower thanpolyurethane foam. Engineering practice in mine shows that composite foam has an excellentsealing performance and compression strength, being an excellent air-leakage blockingmaterial.
引文
[1]我国煤炭能源战略地位.中国煤炭工业网.2003.11.29
    [2]王永炜.中国煤炭资源分布现状和远景预测[J].煤,2007,16(5):44-45.
    [3]林柏泉,常建华,翟成等.我国煤矿安全现状及应当采取的对策分析[J].中国安全科学学报,2006,16(5):42-47.
    [4] Zhang, D.S., Fan, G.W., Ma, L.Q., et al. Harmony of large-scale underground mining and surfaceecological environment protection in desert district-a case study in Shendong mining area, northwest ofChina[J]. Procedia Earth and Planetary Science.2009,1:1114-1120.
    [5] Stracher, G.B. and Taylor, T.P. Coal fires burning out of control around the world: thermodynamicrecipe for environmental catastrophe [J]. International Journal of Coal Geology.2004,59(1/2):7-17.
    [6]梁运涛,罗海珠.中国煤矿火灾防治技术现状与趋势[J].煤炭学报,2008,33(2):126-130.
    [7]余明高.我国煤矿防灭火技术的最新发展及应用[J].矿业安全与环保,2000,27(1):21-23.
    [8] Michalski, S.R. The Jharia mine fire control technical assistance project: an analysis [J]. InternationalJournal of Coal Geology.2004,59(1/2):83-90.
    [9] Ray, S. K. and Singh, R. P. Recent developments and practices to control fire in undergound coalmines [J]. Fire Technology.2007,43(4),285-300.
    [10] Tripathi, D. D. New approaches for increasing the incubation period of spontaneous combustion ofcoal in an underground mine panel [J]. Fire Technology.2008,44(2):185-198.
    [11] Singh, R.V.K. and Singh, V.K. Mechanized Spraying Device-A Novel Technology for Spraying FireProtective Coating Material in the Benches of Opencast Coal Mines for Preventing SpontaneousCombustion[J]. Fire Technology,2004,40(4):355-365.
    [12] Voracek, V. Current Planning Procedures and Mine Practice in the Field of Prevention andSuppression of Spontaneous Combustion in Deep Coal Mines of the Czech Part of Upper Silesia CoalBasin‘‘, in27th International Conference of Safety in Mines Research Institutes, New Delhi, India, vol. I,1997:437-441.
    [13] Sahay,N., Bhowmick,B.C., Varma, N.K., et al Control of Fire in a Longwall Panel under ShallowCover with Chamber Method of Ventilation and High Pressure High Stability Nitrogen Foam-A CaseStudy‘‘, in Proceedings of the7th International Mine Ventilation Congress, Cracow, Poland17–22June,2001:971-978.
    [14]王德明著.矿井火灾学[M].徐州:中国矿业大学出版社,2008.
    [15] Ogunsola, Olayinka, Mikula, et al. Study of spontaneous combustion characteristics of Nigeriancoals [J]. Fuel,1991,70(2):258-261.
    [16] Angle, Chandrawatee, Berkowitz, Norbert. Distribution of oxygen forms in Alberta low rank coals[J]. Fuel,1991,70(7):891-896.
    [17] Jones, J.C. Steady behaviour of long duration in the spontaneous heating of a bituminous coal [J].Journal of Fire Sciences,1996,14(2):159-166.
    [18]孙忠强,郭立稳.我国煤矿火灾防治技术的研究现状[J].河北理工学院学报,2007,5:1-4.
    [19]吕智海,王占元.矿井火灾防治[M].北京:煤炭工业出版社,2007.
    [20]徐精彩,张辛亥,文虎,等著.煤层自燃胶体防灭火理论及技术[M].北京:煤炭工业出版社,2003.
    [21]薛韩玲,葛岭梅,徐精彩,张辛亥.矿用灭火复合凝胶的强度性能研究[J].西安科技大学学报,2004,24(2):145-147.
    [22]邓军,徐精彩,张辛亥.稠化胶体防灭火特性实验研究[J].西安科技学院学报,200l,21(2):102-105.
    [23]王秀林.煤层火灾胶体防灭火理论及应用[D].西安:西安科技学院,2002.
    [24] He P.X., Xiao W.D., Luo X.F., et al. Preparation of high water-absorbing poly (sodium Acrylate-acry lamide)[J]. Polymer Material Science and Engineer.1993,9(4):23-28.
    [25]隋涛.粉煤灰凝胶防灭火技术在煤矿中的研究应用[D].太原:太原理工大学,2007.
    [26]罗振敏,邓军,杨永斌,等.煤矿井下灾区水凝胶密闭填充材料性能研究[J].中国矿业大学学报,2007,36(6):748-751.
    [27] Xu,Y. L, Wang, D.M, Zhong, X. X, et al. Study of inhibition characteristic of sand suspendingthickener for spontaneous combustion prevention [J]. Procedia Earth and Planetary Science,2009,1:336–340.
    [28] Sudhish, C.B. Prevention and Combating Mine Fires [M], A.A.Balkema, Rotterdam, Rotterdam,Netherlands.2000:213-214.
    [29] Gary, J. C. Prevention, control and/or extinguishment of coal seam fires using cellular grout [J].International Journal of Coal Geology,2004,59(1/2):75-81.
    [30]李法刚,王文庭,王永勤.罗克休泡沫防灭火技术在义马矿区的应用[J].煤炭技术,2008,27(6):23-24.
    [31]张胜,张永朋.罗克休泡沫在煤矿堵漏过程中的应用[J].煤炭技术,2007,26(11):75-76.
    [32]何伯稳,张永,潘鑫,等.罗克休泡沫防火新材料在防治煤炭自然发火中的运用[J].煤炭工程,2006,8:29-30.
    [33]陈家清.苯酚改性脲醛泡沫塑料的研制及其在矿井防灭火中的应用[D].徐州:中国矿业大学,1990:3.
    [34] Ni, X. and Pereira, N.E. Parameters affecting fluid dispersion in a continuous oscillatory baffiedtube [J]. Aiche Journal,2000,46(l):37-45.
    [35]奚志林.矿用防灭火有机固化泡沫配制及其生产装置研究[D].徐州:中国矿业大学,2010.
    [36] Bichler, W. and Simon, L. Phenolic resin foam for the sealing of loose hanging walls of mines [J].Fuel and Energy Abstracts,1996,37(4):251.
    [37] Myung, S.Y. and Woo, I.L. Analysis of bubble nucleation and growth in the pultrusion process ofphenolic foam composites [J]. Composites Science and Technology,2008,68:202-208.
    [38]张铭,王勇,胡达,等.机械发泡法制备脲醛泡沫材料的研究[J].现代塑料加工应用,2008,20(2):14-16.
    [39] Astarloa-Aierbe, G., Egiburu, J. L., Ormaetxea, M., et al. Kinetics of phenolic resol resin formationby HPLC [J]. Polymer,1998,39(14):3147-3153.
    [40] Astarloa-Aierbe, G., Martin, M. D., Mondragon, I., et al. Kinetics of phenolic resol resin formationby HPLC.2. Barium hydroxide [J].Polymer,1998,39(15):3467-3472.
    [41] Astarloa-Aierbe G., Echeverria J.M., Mondragon I. Kinetics of phenolic resol resin formation byHPLC. III: Zinc acetate [J]. Polymer,1999,40(21):5873-5878.
    [42] Astarloa-Aierbe, G., Echeverria, J. M., Vazquez, A., et a1. Influence of the amount of catalyst andinitial PH on the phenolic resol resin formation[J].Polymer,2000,41:3311-3315.
    [43] Astarloa-Aierbe, G., Echeverria, J.M., Martin, M.D., et al. Influence of the temperature on theformation of a phenolic resol resin catalyzed with amine [J].Polymer,2002,43:2239-2243.
    [44] Kaledkowski, B. and Hetper, J. Synthesis of phenol–formaldehyde resole resins in the presence oftetraalkylammonium hydroxides as catalysts [J].Polymer,2000,41:1679-1684.
    [45] Grenier-Loustalot, M-F., Larroque, S., Grenier, P. Phenolic resins:5. Solid-state physicochemicalstudy of resoles with variable FP ratios [J].Polymer,1996,37(4):639-650.
    [46] Grenier-Loustalot, M-F., Larroque, S.;Grenier,P., et al. Phenolic resins:1. Mechanisms and kineticsof phenol and of the first polycondensates towards formaldehyde in solution[J]. Polymer,1994,35(14):3046-3054.
    [47] Bouajila, J., Raffin, G., Alamercery, S., et al. Phenolic resins(IV). Thermal degradation ofcrosslinked resins in controlled atmospheres [J]. Polymers and Polymer Composites,2003,11(5):345-357.
    [48] Bouajila, J., Raffin, G., Watson, H., et al. Phenolic resins(II)-Influences of the chemical structure ofhigh molecular weight molecules on then mechanisms of cross-linking and on the final structure of theresins[J]. Polymers and Polymer Composites,2003,11(4):233-262.
    [49] Bouajila, J., Raffin, G., Watson, H., et al. Phenolic resins (III)-Solid state structures and themalproperties of cross-lined phenolic resins [J]. Polymers and Polymer Composites,2003,11(4):263-276.
    [50] Grenier-Loustalot, MF., Salino, B., Paisse, O., et al. Phenolic resins Part6. Identifications of volatileorganic molecules during thermal treatment of neat resols and resol filled with glass fibers[J]. Polymer,2000,41(19):7123-7132.
    [51] Manfredi, L. B., Osa, O., Fernandez, N. G., et al. Structure-properties relationship for resols withdifferent formaldehyde/phenol molar ratio[J].Polymer,1999,40:3867-3875.
    [52] Guangbo, H., Ning,Y.. Influence of the synthesis conditions on the curing behavior of phenol-urea-formal-dehyde resol resins [J]. Journal of Applied Polymer Science,2005,95(12):1368-1375.
    [53] Li, G.F., Huang, Y. and Chen, C.H. The influence of formaldehyde/phenol ratio on properties offoamable phenolic resin and phenolic foam [J]. Advanced Materials Research,2011,250-253,23-527.
    [54] Grenier-Loustalot, M-F., Larroque, S.,Grande, D.,et al. Phenolic resins:2.Influence of catalyst typeon reaction mechanisms and kinetics[J].Polymer,1996,37(8):1363-1369.
    [55] Singh, D. and Ohri, S. Effect of the reactant ration and temperature on the characteristics ofphenol-formaldehyde foams [J].Journal of Applied Polymer Science,1982,27(4):1191-1196.
    [56]雷洪,杜官本, PIZZI Antonio,等.苯酚-尿素-甲醛共缩聚树脂结构形成比较[J].林产化学与工业,2009,29(1):73-78.
    [57]杜官本,李君,杨忠.苯酚-尿素-甲醛共缩聚树脂研制Ⅰ.合成与分析[J].林业科学,2000,36(5):73-77.
    [58]罗翠锐,翁凌,吴化军,等.低游离醛高羟甲基水溶性酚醛树脂的制备[J].绝缘材料,2010,43(2):5-8.
    [59]刘新民,郭庆杰.可发性酚醛树脂的合成及性能研究[J].塑料工业,2007,35(5):4-8.
    [60]伏传龙,鲁钢,魏无际,等.低游离醛高羟甲基含量酚醛树脂的合成[J].热固性树脂,2004,19(5):17-19.
    [61]张伟,庄晓伟,许玉芝,等.甲醛/苯酚配比对可发性甲阶酚醛树脂性能的影响研究[J].应用化工,2010,39(7):970-974.
    [62]罗翠锐,翁凌,吴化军,等.低游离醛高羟甲基水溶性酚醛树脂的制备[J].绝缘材料,2010,43(2):5-8.
    [63]马俊杰.多聚甲醛-苯酚树脂合成及泡沫体的制备研究[D].北京化工大学,2006.
    [64]耿紧紧.酚醛树脂发泡性研究[D].郑州大学,2010.
    [65]华杰.甲阶酚醛树脂的合成-增韧改性及其泡沫研究[D].哈尔滨工业大学,2006.
    [66]钟磊.耐高温酚醛树脂的合成及其改性研究[D].武汉理工大学,2010.
    [67] Dudley,H. and Williams, I.F. Spectroscopic Methods in Organic Chemistry[M]. Mc-Graw-Hill,1995,110-200.
    [68]冀克俭,邓卫华等.红外光谱法测定酚醛树脂的羟甲基指数[J].化学分析计量,2002,11(05):21-23.
    [69]钟东南,石晓,乔冬平.常温下可发泡性酚醛树脂的合成研究[J].热固性树脂,2003,18(6):14-16.
    [70]肖翠微,程钰.可发泡性酚醛树脂的合成研究[J].热固性树脂,2003,18(5):1-5.
    [71]孙中心,王雷,李东风.可发泡性酚醛树脂合成研究[J].工程塑料应用,2007,35(11):23-26.
    [72]尚永华,谭晓明,李焰.高羟甲基含量甲阶酚醛树脂的合成[J].粘接,2001,22(5):7-10.
    [73]吴嘉恩,刘自力,彭斌,等.高羟甲基低游离醛含量甲阶酚醛树脂的合成[J].材料研究与应用,2010,4(4):473-479.
    [74]付争兵.一种低甲醛含量水溶性酚醛树脂的制备[J].应用化工,2009,38(1):83-86.
    [75]王雷,任新娟,高磊,等.降低可发泡性酚醛树脂中游离甲醛含量的研究[J].应用化工,2009,38(1):83-86.
    [76]申迎华.尿素改性苯酚-甲醛树脂胶粘剂的研究[J].中国胶粘剂,1999,8(3):4-12.
    [77]刘纲勇,邱学青孙,杨东杰,张鹏.尿素对木质素酚醛树脂胶粘剂性能的影响[J].精细化工,2008,25(9):922-930.
    [78] Marie-Florence, G.L., Stephane, L., Daniel, G., Philippe, G. Phenolic resins:2. Influence of catalysttype on reaction mechanisms and kinetics[J]. Polymer,1996,37(8):1363-1369.
    [79]时君友,韩忠军.尿素改性酚醛树脂胶粘剂的研究[J].粘接,2006,27(1):15-17.
    [80]陶毓博,李鹏,陆仁书,等.尿素改性酚醛树脂胶粘剂的研究[J].林产工业,2005,27(1):13-16.
    [81] Young, W. N., Tae, U.P. and Dong, K.K. A study on the effects of reaction conditions on thecharacteristics of resol resins for foams by statistical analysis [J]. Korean Journal of ChemicalEngineering,2006,23(5):726-730.
    [82] Alonso. M.V., Oliet. M., Rodriguez. F., et al. Modification of ammonium lignosulfonate byphenolation for use in phenolic resins [J]. Bioresource technology,2005,96(9):1013-1018.
    [83] Phenolic foam board.US.2010/0178458.
    [84]马玉峰,张伟,王春鹏,等.酸固化剂对酚醛泡沫材料性能的影响[J].工程塑料应用,2012,40(11):77-81.
    [85]黄荣发,万里强,李勇武,等.酚醛树脂及其应用[M].北京:化学工业出版社,2011:126-127.
    [86]赵鹏,王娟,赵彤,等.酸固化剂对酚醛泡沫微观结构的影响[J].工程塑料,2011,39(5):86-90.
    [87]唐路林,李乃宁,吴培熙.高性能酚醛树脂及其应用技术[M].北京:化学工业出版社,2009,458.
    [88] Rachtanapun, P., Selke S.E.M., Matuana, L.M. Relationship between cell morphology and impactstrength of microcellular foamed high-density polythylene/polypropylene blends [J]. Polymer EngineerScience,2004,44(8):1551-1560.
    [89] Kim B G, Lee D G. Development of microwave foaming method for phenolic insulation foams [J].Journal of Material Processing Technology,2008,201(1-3):716-719.
    [90] Kingspan Holdings (IRL) Limited. A Phenolic Foam:WO,2007/029221A1[P].2007-03-15.
    [91] Kingspan Holdings (IRL) Limited. Thoughened Phenolic Foam: WO,2006/067775A1[P].2007-06-29.
    [92]王进福,华杰.表面活性剂对酚醛泡沫塑料性能的影响研究[J].塑料工业,2006,34(7):50-52.
    [93]商平,冯志鑫,刘美荣,等.不同复合表面活性剂体系对酚醛树脂泡沫塑料性能影响的研究[J].化工科技,2008,16(6):17-19.
    [94]于宏伟,吕绪佺.表面活性剂在塑料工业中的研究进展[J].化工中间体,2010,1:16-19.
    [95]朱玥裙,张健.泡沫液膜中聚合物与表面活性剂相互作用的研究进展[J].石油化工,2009,39(1):1296-1303.
    [96]袁钻如,谢鸿峰,刘承果,等.表面活性剂对环氧树脂固化反应及性能的影响[J].高分子材料科学与工程,2009,25(11):97-103.
    [97] Kingspan Holdings (IRL) Limited. Plasticiser for phenolic foam, and a process for producingphenolic foam: WO,2006/114777A1[P].2006-11-02.
    [98] Arnd Thom, Alzey(DE). Melamine resin foam: US,635-0511B2[P].2002-02-26.
    [99]王立艳,盖广清,于环洋.无氟复合发泡剂用量对酚醛泡沫性能的影响[J].新型建筑材料,2012,3:10-12.
    [100]孙瑞朋,金铁玲,王春鹏,等.发泡剂对三聚氰胺甲醛泡沫塑料性能的影响[J].应用化工,40(5):771-774.
    [101]刘浩,韩常玉,董丽松.闭孔泡沫塑料结构与性能研究进展[J].高分子通报,2008(3):29-42.
    [102]何洪清.表面活性剂在酚醛泡沫塑料中的应用[J].表面活性剂工业,1999,04:24-25,28.
    [103] Shen, H.B., Lavoie, A. J., Nutt, S.R. Enhanced peel resistance of fiber reinforced phenolic foams[J].Composites Part A: Applied Science and Manufacturing,2003,34(10):941-948.
    [104] Shen, H.B. Toughening of phenolic foam [D]. United States: Faculty of the Graduate SchoolUniversity of Southern Califomia,2003:79.
    [105] Luc, J., Amelie, R., Mickael, D. Elastic and damping characterizations of acoustical porousmaterials: Available experimental methods and applications to a melamine foam [J]. Applied Acoustics,2008,69:1129-1140.
    [106]贾伟华,姚萍.酚醛泡沫塑料的增韧改性对阻燃性的影响[J].消防科学与技术,2006,25(3):373-375.
    [107] Gu, J.W., Zhang, G.H., Dong, S.L. Study on preparation and fire retardant mechanism analysis ofintumescent flame-retardant coating[J].Surface&Coatings Technology,2007,201(18):7835-7841.
    [108] Carter,J.T., Cloate,M., Colclough,W., et al. Testing for toughness and the development oftoughened thermosetting molding compounds[J]. SAE Technical paper,1989.
    [109]李少堂,葛东彪,王书忠,等.酚醛泡沫的增韧改性研究[J].玻璃钢/复合材料,2004,4:39-41.
    [110]常怀春,吕通建,杨莹莹.聚丙烯酸正丁酯增韧酚醛泡沫塑料的研究[J].中国塑料,2005,19(12):53-55.
    [111]欧阳昆,吴幼青,吴诗勇.酚醛泡沫的制备及改性研究[J].广西轻工业,2009,124(3):32-43.
    [112]刘瑞杰,谭卫红,周永红,等.腰果壳油酚醛树脂的应用研究进展[J].化工新型材料,2012,40(6):130-132.
    [113]楚慧娟,朱宝库,徐又一.聚乙二醇对聚酰亚胺泡沫的结构及热性能的影响[J].应用化工,2008,37(4):410-415.
    [114]朱立新,黄凤来,祝亚非,等.聚乙二醇改性物对高交联度不饱和聚酯的增韧改性[J].高分子材料科学与工程,2004,20(2):205-208.
    [115]葛东彪,王书忠,胡福增.聚醚增韧酚醛树脂及其泡沫的研究[J].玻璃钢/复合材料,2003,6:22-26.
    [116]王超,黄玉东,徐晓牧.聚乙烯-乙烯醇改性酚醛树脂固化特性与微观结构[J].航空材料学报,2004,24(5):31-34.
    [117]于宝刚.用锥形量热仪研究聚氨酯泡沫的阻燃性能[J].中国塑料,2010,24(3):55-59.
    [118] HIPS/OMMT/NiO复合材料的阻燃性能[J].高分子材料科学与工程,2010,26(1):107-113.
    [119]冯才敏.硬质聚氨酯泡沫塑料及其连续玻璃纤维增强复合材料的性能研究[D].广州,中山大学图书馆,2006.
    [120] Anne-Ga lle, D., Sylvie, C., Annette, R., et al. Size effect in glass fiber reinforced and purepolyurethane foams in monotonic and creep compression [J]. Journal of Cellular Plastics,2012,48(3):221-238.
    [121] Guo, H.W., Wang, X.F., Gong, Y.X., et al. Improved mechanical property of foam glass compositestoughened by glass fiber [J]. Materials Letters,2010,64(24):2725-2727.
    [122] Kim, S. H., Park, H. C. H., Jeong, M., et al. Glass fiber reinforced rigid polyurethanefoams[J].Journal of Materials Science,2010,45(10):2675-2680.
    [123] Hui, Y. L., Yan, L. Z., Bo, W., et al. Characterization of the compressive behavior of glass fiberreinforced polyurethane foam at different strain rates [J]. Journal of Offshore Mechanics and ArcticEngineering,2010,132(2):021301
    [124] Han, D.S., Park, I.B., Kim, M.H., et al. The effects of glass fiber reinforcement on the mechanicalbehavior of polyurethane foam [J]. Journal of Mechanical Science and Technology,2010,24(1):263-266.
    [125] Shahdin, A., Mezeix, L., Bouvet, C., et al. Fabrication and mechanical testing of glass fiberentangled sandwich beams: A comparison with honeycomb and foam sandwich beams [J]. CompositeStructures,2009,90(4):404-412.
    [126] Guden,M., Yueksel, S., Tasdemirci, A., et al. Effect of aluminum closed-cell foam filling on thequasi-static axial crush performance of glass fiber reinforced polyester composite andaluminum/composite hybrid tubes [J]. Composite Structures,2007,81(4):480-490.
    [127] Alonso, M.V., Auad, M.L., Nutt, S.R.. Modeling the compressive properties of glass fiberreinforced epoxy foam using the analysis of variance approach [J]. Composites Science and Technology,2006,66(13):2126-2134.
    [128] Kiratisaevee, H., Cantwell, W.J. The impact response of aluminum foam sandwich structures basedon a glass fiber-reinforced polypropylene fiber-metal laminate [J]. Polymer Composites,2004,25(5):499-509.
    [129] Kim, H.S., Mitchell, C.. Impact performance of laminates made of syntactic foam and glass fiberreinforced epoxy as protective materials [J]. Journal of Applied Polymer Science,2003,89(9):2306-2310.
    [130]Ernie, S. A., Sahrim, A.. Bionanocomposite hybrid polyurethane foam reinforced with empty fruitbunch and nanoclay [J]. Composites Part B: Engineering,2012,43(7):2813-2816.
    [131] Vishnu, K. R., Mahesh,H. N., Narasimha Murthy,B. E. et al. Thermal and fire retardationbehaviours of nanoclay/vinylester nanocomposites [J]. Frontiers of Materials Science in China,2011,5(4):401-411.
    [132] Tjong, S. C. Structural and mechanical properties of polymer nanocomposites [J]. MaterialsScience and Engineering R: Reports,2006,53(3-4):73-l97.
    [133] Wang, L., Wang, K., Chen, L., et a1. Preparation, morphology and thermal/mechanical propertiesof epoxy/nanoclay composite [J].Composites Part A: Applied Science and Manufacturing,2006,37(11):1890-1896.
    [134] Subramaniyan, A. K., Sun, C. T.. Toughening polymeric composites using nanoclay:Crack tip scaleeffects on fracture toughness [J].Composites Part A:Applied Science and Manufacturing,2007,38(1):34-43.
    [135] Kim, J.K., Hu, C., Woor, S.C., et a1. Moisturebarrier characteristics of organoclay-epoxynanocomposites [J].Composites Science and Technology,2005,65(5):805-813.
    [136] Xu, B., Zheng, Q., Song, Y., et a1.Calculating barrier properties of polymer/clay nano-composites:Effects of clay layers [J]. Polymer,2006,47(8):2904-2910.
    [137] Zhao, Z., Gou, J., Bietto, S., et a1.Fire retardancy of clay/carbon nanofiber hybrid sheet in fiberreinforced polymer composites[J].Composites Science and Technology,2009,69(13):2081-2087.
    [138] Schmidt, D., Shah, D., Giannelis, E. P. New advances in polyme/layered silicate nanocomposites[J].Current Opinion in Solid State and Materials Science,2002,6(3):205-212.
    [139] Ray, S.S., Okamoto, M.. Polymer/layered silicate nanocomposite: a review from preparation toprocessing [J]. Progress in Polymer Science,2003,28(11):1539-1641.
    [140] Bhat, G., Hegde, R. R., Kamath, M.G., et a1. Nanoclay reinforced fibers and nonwovens [J].Journal of Engineered Fibers and Fabrics,2008,3(3):22-34.
    [141] Jo, B-W., Park, S-K., Kim, D-K.. Mechanical properties of nano-MMT reinforced polymercomposite and polymer concrete [J]. Construction and Building Materials,2008,22(1):14-20.
    [142] Ray, D., Sengupta, S., Sengupta, S. P. Preparation and properties of vinylester resin/claynanocomposites [J]. Macromolecular Materials and Engineering,2006,291(12):1513-1520.
    [143] Jeon, I. Y., Baek, J. B.. Nanocomposites derived from polymers and inorganic nanoparticles [J].Materials,2010,3(6):3654-3674.
    [144] Jo, Choonghee., Naguib, H.E.. Effect of Nanoclay and Foaming Conditions on the MechanicalProperties of HDPE-Clay Nanocomposite Foams[J]. Journal of Cellular Plastics,2007,43(2):111-121.
    [145] Widya, T., Macosko, C.W.. Nanoclay-modified rigid polyurethane foam [J]. Journal ofMacromolecular Science: Physics,2005, B44(6):897-908.
    [146] See, S. C., Zhang, Z. Y., Dhakal, H. N., et a1. Nanomechanical behaviour and thermal degradationof nanoclays and supernanoclays enhanced marine gelcoat system[J]. International Journal of MaterialsEngineering Innovation,2009,1(1):21-39.
    [147] Park, J. H., Jana, S. C.. Mechanism of exfoliation of nanoclay particles in epoxy-claynanocomposites[J]. Macromolecules,2003,36(8):2758-2768.
    [148] Hotta, S., Paul, D. R.. Nanocomposites formed from linear low density polyethylene andorganoclays [J]. Polymer,2004,45(22):7639-7654.
    [149] Lertwimolnun, W., Vergnes, B.. Influence of compatibilizer and processing conditions on thedispersion of nanoclay in a polypropylene matrix [J]. Polymer,2005,46(10):3462-3471.
    [150] Samyn, F., Bourbigot, S., Jama, C., et a1. Fire retardancy of polymer clay nanoeomposites: Is therean influence of the nanomorphology [J]. Polymer Degradation and Stability,2008,93(11):2019-2024.
    [151] Yasmin, A., Luo, J. J., Abot, J. L., et a1. Mechanical and thermal behavior of clay/epoxy nano-composites [J]. Composites Science and Technology,2006,66(14):2415-2422.
    [152] Lomakin, S. M., Zaikov, G. E.. Flame-resistant polymer nanocomposites based on layered silicates[J].Polymer Science Series B,2005,47(1-2):9-21.
    [153] Subramaniyan, A. K., Sun, C. T.. Interlaminar fracture behavior of nanoclay reinforced glass fibercomposites [J]. Journal of Composite Materials,2008,42(20):2111-2122.
    [154] Iqbal, K., Khan, S.U., Munir, A., et a1. Impact damage resistance of CFRP with nanoclay-filledepoxy matrix [J]. Composites Science and Technology,2009,69(11-l2):1949-1957.
    [155]Zhang, J., Hereid, J., Hagen, M., et a1. Effects of nanoclay and fire retardants on fire retardancy ofa polymer blend of EVA and LDPE [J]. Fire Safety Journal,2009,44(4):504-513.
    [156] Min, Z., Sanchita,B-G., Mustafa, K., et al. Reinforcement of soy polyol-based rigid polyurethanefoams by cellulose microfibers and nanoclays [J]. Journal of Applied Polymer Science,2012,124(6):4702-4710.
    [157] Mohsen, K., Ismail, G., Mohammad, K., et al. Microcellular foaming of PP/EPDM/organoclaynanocomposites: the effect of the distribution of nanoclay on foam morphology [J]. Polymer Journal,2012,44(5):433-438.
    [158] Kim, S. H., Lee, M. C., Kim, H. D., et al. Nanoclay reinforced rigid polyurethane foams [J].Journal of Applied Polymer Science,2010,117(4):1992-1997.
    [159] Mrinal, C., Saha, S. N.. Nanoclay-reinforced syntactic foams: Flexure and thermal behavior [J].Polymer Composites,2010,31(8):1332-1342.
    [160] Thirumal, M., Khastgir, D., Snikhil, K., et al. Effect of a nanoclay on the mechanical, thermal andflame retardant properties of rigid polyurethane foam[J]. Journal of Macromolecular Science. Part A:Pure and Applied Chemistry,2009,46(7):704-712.
    [161] John, B., Reghunadhan, Nair, C.P., et al. Effect of nanoclay on the mechanical, dynamicmechanical and thermal properties of cyanate ester syntactic foams [J]. Materials Science andEngineering,2010,527(21-22):5435-5443.
    [162]邬剑明.煤自燃火灾防治新技术及矿用新型密闭堵漏材料的研究与应用[D].太原,太原理工大学图书馆,2008.
    [163] Fu, J., Naguib, Hani, E.. Effect of nanoclay on the mechanical properties of PMMA/claynanocomposite foams [J]. Journal of Cellular Plastics,2006,42(4):325-342.
    [164] Liang, K.W, Sheldon, Q. S.. Nanoclay filled soy-based polyurethane foam [J]. Journal of AppliedPolymer Science,2011,119(3):1857-1863.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700