用户名: 密码: 验证码:
山体滑坡区域内长输埋地油气管道强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的快速发展和工业化进程的不断加快,世界各国对天然气和石油等能源的需求量日益增加。埋地管道因为在长距离输送的效率和经济性方面具有明显优势,目前已经成为该类介质的重要输送手段。长输埋地管道跨越的地域范围很广,由于各地区的地质环境复杂多变,管道在服役过程中不可避免的会受到来自周边环境的潜在威胁。近年来,随着地质灾害和极端天气数量的增多,由于山体滑坡引起的管道失效事故不断发生。现阶段,学术界和工程界都在关注两个问题:即如何准确预测山体滑坡作用下埋地管道的极限承载能力,以及判断已发生偏移的管道是否依然能够安全运行。
     为了解决以上两个问题,本文在两项国家质检公益性行业科研专项课题(项目编号:200910096-2和201210242)的资助下,对山体滑坡作用下埋地管道的强度失效模式开展深入研究,主要的研究内容和成果如下
     (1)在考虑材料、几何和接触非线性的基础上,建立了山体滑坡区域内埋地管道发生偏移的全过程仿真模型。模型中的滑坡过程采用位移载荷控制,施加位置选择在距离管道不远的土体表面上;管道与土体之间采用有限滑移接触属性模拟两者介面上的相互作用;管道力学性能采用真实的应力.应变曲线描述,并遵循Bridgman方法进行修正以保证计算结果的准确性。
     (2)基于弹塑性力学理论,运用弧长法和非线性稳定算法预测了山体滑坡作用下管道进入塑性垮塌和应变软化阶段的承载能力,获得了不同偏移程度下埋地管道的力学响应。文中分析了各类参数包括内压、径厚比、滑坡区宽度、土体性能以及管材性能对管道自由偏移能力的影响,指出管道进入塑性垮塌阶段时的最大主应变只与管材和土体的性能有关,该应变可以作为工程许用应变的选取依据之一。
     (3)基于弹塑性断裂力学理论,运用扩展有限元技术,通过材料试验模拟、无偏移直管爆破模拟和山体滑坡区域内偏移管道的断裂过程模拟三个层面,描述了不同载荷工况下管道材料上的裂纹从萌生、扩展直至断裂的整个过程。首先,通过网格敏感性分析得到了裂尖区域附近单元的临界尺寸;接着,探讨了初始损伤的最大主应力和临界能量释放率对管道上的裂纹特征和力学响应带来的影响,指出前者主要控制材料何时发生损伤,后者主要控制材料发生损伤后何时扩展和最终断裂;最后,通过对内压、径厚比、滑坡区宽度、土体性能以及管材性能等关键参数的分析,得到了裂纹发生扩展和管道最终断裂时的最大主应变。考虑到该应变同样只与管材和土体的性能有关,故将其作为工程许用应变的另一选取依据。
     (4)提出了基于应变判断的山体滑坡区域内埋地管道的强度失效准则,并结合有限元计算结果和相关国外标准,给出了适合于我国的埋地管道工程许用应变的选取方法。分析时将管道分为无缺陷和含缺陷两类:对于无缺陷管道,其许用应变参考塑性垮塌时的应变、最终断裂时的应变和ASME B31.8的极限应变给出;对于含缺陷管道,本文给出了XFEM和API579两种评价方法的对比结果。
     (5)以近期我国某地区因山体滑坡引起的管道事故为案例背景,通过材料性能检测、断口分析测试和现场地质勘测,验证本文中提出的有限元模型和工程可接受准则的合理性,为我国今后的埋地管道设计和基于风险的检测工作提供技术支撑。
With the development of global economy and industrialization process, demand for resources such as natural gas and oil grows rapidly around the world. At present, buried pipes have become one of the significant ways to transport these resources from remote area for the advantages of high transport and economic efficiency. Because the long-distance buried pipes have to pass through vast territory with complex geology, it will inevitably suffer from the adverse effects from surrounding environment. With increasing frequency of geological disaster and extreme weather, accidents of buried pipes caused by landslide, which is one of the typical permanent ground deformation actions, has roused wide attention in recent decades. So far, there are two significant problems that are urgent to be solved in the academics and engineering:the first one is how to predict the limit load-bearing ability of buried pipe caused by landslide actions accurately and effectively; the second one is to evaluate whether the buried pipe that suffers from deflection load during landslide process can still service in safety without substitution.
     In order to solve the two problems mentioned above, research on the strength behavior of buried pipes under landslide action is given in this paper. This paper is supported by two special funds for quality supervision research in the public interest (Grant No.200910096-2and201210242). The main contents are given as follows:
     (1) A3D numerical model is established to predict the mechanical and deformation response of buried pipe due to deflection during landslide process. In the model, the nonlinear effects of material, geometry and contact problems are comprehensively considered. First, the external loads arising from the deformed soil during landslide process are controlled by deflection displacement, and the loading location is applied on the surface of surrounding soil that is close to the buried pipe; Second, the contact pairs with finite sliding property is used to simulate the interaction between the pipe and soil. Third, the true stress-strain curve of pipe material is corrected properly according to the Bridgman law, which ensures the accuracy of finite element analysis.
     (2) Based on the theory of elastic-plastic mechanics, the limit load-bearing ability of buried pipes under landslide action is predicted using the arc-length algorithm and non-linear stabilization algorithm, and the stress-strain responses of buried pipe at plastic collapse and strain softening stages are obtained. Besides, effects of internal pressure, D/t ratio, width of landslide, mechanical properties of soil and pipes on the flexible deflection ability are investigated. It is revealed that the maximum value of1st principle strain only depends on the mechanical properties of soil and buried pipe when the structure comes into the plastic collapse stage. Thus, this strain can be used as a reference value to determine the allowable strain in engineering later.
     (3) Based on the theory of elastic-plastic fracture mechanics, the whole fracture process of buried pipe such as crack initiation and propagation under complex loads are demonstrated using the extended finite element method. The simulation contents include:(a) material performance tests of tensile and three-point bending;(b) Burst tests of straight pipe without deflection;(c) Fracture process of buried pipe due to deflection arising from landslide actions. According to the finite element analysis, some conclusions can be obtained:First, the limit value of mesh size near the crack-tip field is obtained which can ensure the computational efficiency and accuracy; Second, σmaxps and Gc are two significant parameters to affect the crack behavior and limited load-bearing ability of buried pipes. The former one represents great influence on the damage initiation property, while the latter one mainly controls the fracture toughness to resist crack propagation; Third, effects of internal pressure, D/t ratio, width of landslide, performances of soil and pipes on the crack behaviors are also investigated. Finally, the values of1st principle strain as crack propagates unstably and pipeline fractures are obtained. Since the two strains only depend on the mechanical properties of soil and buried pipe, they can be used as another reference values to determine the allowable strain later.
     (4) A common strength failure criterion based on the1st principal strain is proposed to determine the safe properties of buried pipeline under this special failure issue. In the criterion, the value of allowable strain is determined by the results of finite element analysis and limited values in the corresponding standards. For the buried pipe without defects, the allowable strain is given by the strain as buried pipe comes into plastic collapse stage, the strain as buried pipe ultimate fractures, and the strain constrained in the ASME B31.8standard. For the buried pipe with crack-like defects, the results evaluated by XFEM and FAD in API579standard are compared.
     (4) A typical accident of buried pipeline arising from landslide actions is used to verify the finite element model and strength failure criterion provided in this paper. The contents of failure analysis consist of the base metal/welding mechanical testing, fractographic testing and site inspections, which can provide technical support for the design and risk-based inspection of buried pipes.
引文
[1]郑津洋,马夏康,尹谢平.长输管道安全[M].北京:化学工业出版社.2004:1-20.
    [2]潘家华.中国天然气工业的发展前景[J].油气储运.2005,24(6):1-3.
    [3]牛立道.分析天然气长输管道建设的管理与控制[J].中国石油和化工标准与质量.2012.6:216-217.
    [4]李鹤林.天然气输送钢管研究与应用中的几个热点问题[J].中国机械工程.2001,13(12):349-352.
    [5]SANDERSON N, OHM R.K, JACOBS M. Study of X100 Line Pipe Costs Point to Potential Savings[J]. Oil and Gas Journal.1999,97(1):54-57.
    [6]GLOVER A.G, HORSLEY D.J, DORLING D.V. High-Strength Steel Becomes Standard on Alberta Gas System[J]. Oil and Gas Journal.1999,97(1):44-50.
    [7]GRAF M. K, Hillenbrand H.G, HECKMANN C. J. High-Strength Large Diameter Pipe for Long-Distance High-Pressure Gas Pipelines[J]. International Journal of Offshore and Polar Engineers.2004,14(1):69-74.
    [8]OKAGUCHI S, MAKINO H, HAMADA M. Development and Mechanical Properties of X120 Linepipe[J]. The International Society of Offshore and Polar Engineers.2003, 14(1):36-42.
    [9]董绍华,杨祖佩.全球油气管道完整性技术与管理的最新进展——中国管道完整性管理的发展对策[J].油气储运.2007,26(2):1-17.
    [10]赵忠刚,姚安林,赵学芬.长输管道地质灾害的类型、防控措施和预测方法[J].石油建设工程.2006,1:7-12.
    [11]赵新伟,李鹤林,罗金恒.油气管道完整性管理技术及其进展[J].中国安全科学学报.2006,16(1):129-135.
    [12]GORDON J.R, WANG Y.Y, MICHDERIS P. Applying Fitness for Service Concepts to Welded Structures:Special Considerations for Welded Joints[A]. The 1995 Joint ASME/JSME Pressure Vessels and Piping Conference[C]. Hoholulu, Hawaii, July,1995: 23-27.
    [13]HONEGGER D.G, NYMAN D.J, JOHNSON E.R, et al. Trans-Alaska Pipeline System Performance in the 2002 Denali Fault, Alaska Earthquake [J]. Earthquake Spectra.2004, 20(3):707-738.
    [14]MATTIOZZI P, STROM A. Crossing Active Faults on the Sakhalin Onshore Pipeline Route:Pipeline Design and Risk Analysis[A]. Conference on seismic Engineering Conference[C].2008:1004-1013.
    [15]LIU J.X. Design Guide Developed for Buried Pipelines crossing Active Faults[J]. Oil and Gas Joumal.2004,102(26):58-65.
    [16]SORENSEN S.P, MEYER K.J. Effect of the Denali Fault Rupture on the Trans-Alaska Pipeline[A]. Proeeedings of the Sixth U.S. Conference and Workshop on Lifeline Earthquake Engineering [C]. Long Beach, California USA.2003:56.
    [17]HALL W.J, NYMAN D.J, JOHNSON E.R, et al. Performance of the Trans-Alaska Pipeline In The November 3,2002 Denali Fault Earthquake[A]. Proeeedings of the Sixth U.S. Conference and Workshop on Lifeline Earthquake Engineering [C]. LongBeach, California. USA.2003:54.
    [18]MANOLIS G.D, BESKOS D.E. Underground and lifeline structures[M]. Southampton: CMP,1997:30-47.
    [19]VALLEJO L.E, SHETTIMA M. Fault Movement and its Impact On Ground Deformations and Engineering Structures [J]. Engineering Geology.1996,43(2-3):119-133.
    [20]周正华,张艳梅,孙平善等.断层场地震害研究综述[J].地震工程与工程振动.2003,23(5):38-41.
    [21]王滨.断层作用下埋地钢质管道反应分析方法研究[D].大连:大连理工大学.2011.
    [22]NYMAN D.J, JOHNSON E.R, ROACH C.H. Trans-Alaska Pipeline Emergency Response and Recovery Following the November 3,2002 Denali Fault Earthquake[A]. ASCE Technical Council on Lifeline Earthquake Engineering[C], Long Beach, CA, August, 2003:1-11.
    [23]刘慧.滑坡作用下埋地管线反应分析[D].大连:大连理工大学.2008.
    [24]NYMAN D.J, NELSON E.L, ROACH C.H. New Trans-Alaska Pipeline Earthquake Monitoring System[A]. Conference Proceeding Paper Part of Optimizing Post-earthquake Lifeline System Reliability[C], ASME, Jun 15,1999:897-906.
    [25]NEWMARK N.M, HALL W.J. Pipeline Design to Resist Large Fault Displacement[A]. Proceedings of U.S National Conference on Earthquake Engineering[C].1975:416-425.
    [26]SY/T0450-2004输油(气)钢质管道抗震设计规范[S]国家发展和改革委员会.2004.
    [27]ASCE Guidelines for the seismic design of oil and gas Pipeline system[S] ASCE Technical Council on Lifeline Earthquake Engineering.1984.
    [28]KENNEDY R.P, CHOW A.W, WILLIAMSON R.A. Fault Movement Effects on Buried Oil Pipeline[J]. Transportation Engineering Journal.1977,103:617-633.
    [29]KENNEDY R.P, KINCAID R.H. Fault Crossing Design for Buried Gas Oil Pipelines[A]. ASME PVP Conference[C].1983,77:1-9.
    [30]WANG L.R.L, YEH Y.H. A Refined Seismic Analysis and Design of Buried Pipeline for Fault Movement[J]. Earthquake Engineering and Structural Dynamics.1985,13:75-96.
    [31]陶勇寅,柳广乐.管道在地震断层作用下的位移内力分析[J].油气储运.1994,13(2):13-16.
    [32]CHIOU Y.J, CHI S.Y. A Study on Buried Pipeline Response to Fault MovementfJ]. Journal of pressure Vessel Technology.1994,116:36-41.
    [33]WANG L.R.L, WANG L.J. Parametric Study of Buried Pipelines due to Large Fault Movements[A]. Proceedings of 3rd Trilateral China-Japan-U.S. Symposium on Lifeline Earthquake Engineering [C]. Kunming, China.1998:165-172.
    [34]WANG L.J, WANG L.R.L. Buried Pipelines in Large Fault Movements[A]. Proceedings of the 4th U.S. Conference on Lifeline Earthquake Engineering[C], San Francisco, CA, United states,1995:152.
    [35]WANG L.R.L, WANG L.J. Parametric Study of Buried Pipelines due to Large Fault Movements[A]. Proceedings of the 3rd China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering [C]. Kobe,1995:165-172.
    [36]刘爱文,张素灵,胡幸贤等.地震断层作用下埋地管线的反应分析[J].地震工程与工程振动.2002,22(2):22-27.
    [37]KARAMITROS D.K, BOUCKOVALAS G.D, KOURETZIS G.P. Stress Analysis of Buried Steel Pipelines at Strike-Slip Fault Crossings[J]. Soil Dynamics and Earthquake Engineering.2007,27:200-211.
    [38]KARAMITROS D.K, BOUCKOVALAS G.D, KOURETZIS G.P. An Analytical Method for Strength Verification of Buried Steel Pipelines at Normal Fault Crossings[J]. Soil Dynamics and Earthquake Engineering.2011,31:1452-1464.
    [39]TRIFONOV O.V, CHERNIY V.P. A Semi-Analytical Approach to a Nonlinear Stress-Strain Analysis of Buried Steel Pipelines Crossing Active Faults[J]. Soil Dynamics and Earthquake Engineering.2010,30:1298-1308.
    [40]TRIFONOV O.V, CHERNIY V. P. Elastoplastic Stress-Strain Analysis of Buried Steel Pipelines subjected to Fault Displacements with Account For Service Loads[J]. Soil Dynamics and Earthquake Engineering.2012,33:53-62.
    [41]王元,汤林.活动断层区埋地管道的地震反应分析[J].石油工程建设,1998(2):7-11.
    [42]张素灵,许建东,曹华明等.地震断层作用对地下输油(气)管道破坏的分析[J].地震地质,2001,23(3):432-437.
    [43]侯忠良,甘文水,肖五虎.秦京输油管线的抗震鉴定[R].北京:冶金工业部建筑研究总院防灾抗震工程研究所,1991.
    [44]张进国,吕英民.地震裂缝错位作用时埋地管道的有限元分析[J].油气储运,1997,16(2):28-30.
    [45]TAKADA S, LIANG J.W, LI T.Y. Shell Model Response of Buried Pipelines to Large Fault Movements[J]. Journal of Structural Engineering. JSCE.1998,44:1637-1646.
    [46]郭恩栋,冯启民.跨断层埋地钢管道抗震计算方法研究[J].地震工程与工程振动,1999,19(4):43-47.
    [47]冯启民,赵林.跨越断层埋地管道屈曲分析[J].地震工程与工程振动,2001,21(4):80-87.
    [48]TAKADA S, HASSANI N, FUKUDA K. A New Proposal for Simplified Design of Buried Steel Pipes Crossing Active Faults [J]. Earthquake Engineering and Structural Dynamics.2001,30:1243-1257.
    [49]TOHIDI R.Z, SHAKIB H. Response of Steel Buried Pipeline to the Three Dimensional Fault Movement[J]. Journal of Science and Technology,2003,14 (56):1127-1135.
    [50]刘爱文,胡幸贤,赵凤新,等.地震断层作用下埋地管线壳有限元分析的等效边界方法[J].地震学报,2004,26(增刊):141-147.
    [51]刘爱文,胡幸贤,李小军等.大口径埋地钢管在地震断层作用下破坏模式的研究[J].工程力学,2005,22(3):82-87.
    [52]江闽.下埋管线跨越断层地震反应研究与实践[J].低温建筑技术.2005,(108):102-104.
    [53]赵海宴,李小军,刘爱文.冀宁输气管道穿越活动断裂的抗震分析与设计[J].工程抗震与加固改造.2005,27(6):85-88.
    [54]李小军,侯春林,赵雷,等.考虑压缩失效时埋地管线跨地震断层的最佳交角研究[J].应用基础与工程科学学报.2006,14(2):203.210.
    [55]COEEHETTI G, PRISCO C, GALLI A. Soil-Pipeline Interaction along Active Fault System[A]. Proceedings of the Seventeenth International Offshore and Polar Engineering Conferenee[C]. Lisbon, Portugal,2007:3065-3072.
    [56]COEEHETTI G, PRISCO C, GALLI A. Soil-Pipeline Interaction along Active Fault System [J].International Journal of offshore and Polar Engineering.2008,18(3):211-219.
    [57]LIU M, WANG Y.Y, YU Z.F. Response of Pipelines under Fault Crossing[A]. Proceedings of the International Offshore and Polar Engineering Conference[C], Vaneouver, BC, Canada,2008:162-165.
    [58]LI X.J, HOU C.L, ZHAO L, et al. Improved Newmark Method for Analyzing Response of Buried Pipeline Crossing Fault[J].Rock and soil Mechanics, 2008,29(5):1210-1216.
    [59]刘建平,付立武,郝建斌.长输油气管道地震监测预警的应用与技术[J].世界地震工程.2010,26(2):176-181.
    [60]VAZOURAS P, KARAMANOS S.A, DAKOULAS P. Finite Element Analysis of Buried Steel Pipelines under Strike-Slip Fault Displacements[J]. Soil Dynamics and Earthquake Engineering.2010,30:1361-1376.
    [61]BOLVARDI V, BAKHSHI A. A Study on Seismc Behavior of Buried Steel Pipelines Crossing Active Faults[A]. Pipelines 2010:Climbing New Peaks to Infrastructure Reliability-Renew, Rehab, and Reinvest[C]. Keystone, United states.2010:1-12.
    [62]KONUK J, PHILLIPS R, HURIEY S, et al. Preliminary Ovalisation Measurements of Buried Pipelines Subjected to Lateral Loading[A].18th International Conference on off shore Mechanics and Arctic Engineering[C]. Newfoundland, Canada,1999:1-9.
    [63]冯启民,郭恩栋,宋银美,等.跨断层埋地管道抗震试验[J].地震工程与工程振动,2000,20(1):56-62.
    [64]KIM J, LYNEH J.P, MICHALOWSKI R.L, et al. Experimental Study on the Behavior of Segmented Buried Conerete Pipelines Subject to Ground Movements[A].The Intemational Society for Optical Engineering[C], Sandi ego, CA, United states,2009.
    [65]YOSHIZAKI K, SAKANOUE T. Experimental Study on Soil-Pipeline Interaction using Eps Backfill[A]. Pipelines 2003[C]. Baltimore, Maryland,USA,2003:129.
    [66]YASUDA S, KISHINO H, YOSHIZAKI K, et al. Counter Measures of Buried Steel Pipes against Surface Fault Rapture[A].13th World Conference on Earthquake Engineering[C], Vaneouver, B.C. Canada,2004.
    [67]KARIMIAN H, HONGGER D, WIJEWIEHREME D. Buried Pipelines Subjected to Transverse Ground Movement:Comparison Between Full Scale Testing and Numerieal Modeling[A]. Proeeedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering[C], Hamburg, Germany,2006:73-79.
    [68]HA D, ABDOUN T.H, O'ROURKE M.J, et al. Earthquake Faulting Effects on Buried Pipelines-Case History and Centrifuge Study[J]. Journal of Earthquake Engineering, 2008,14(5):646-669.
    [69]HA D, ABDOUN T.H. Soil-Pipeline Interaction Behavior under Strike-Slip Faulting[A]. Proceedings of the Geotechnical Earthquake Engineering and Soil Dynamics IV Congress 2008[C], Sacramento,CA,United states,2008:1-10.
    [70]ABDOUN T.H, HA D, O'ROURKE M.J, et al. Factors Influencing the Behavior of Buried Pipelines Subjected to Earthquake Faulting[J]. Soil Dynamics and Earthquake Engineering,2009,29(3):415-427.
    [71]RAJANI B.B, ROBERTSON P.K, MORGENSTERN N.R. Simplified Design Methods for Pipelines Subjected to Transverse And Longitudinal Soil Movements[A]. Canadian Geotechnical Journal[C].1995,32:309-323
    [72]O'ROURKE M.J, LIU X, FLORES R.B. Steel Pipe Wrinkling due to Longitudinal Permanent Ground Deformation[J]. Journal of Transportation Engineering.1995,121 (5): 443-451.
    [73]CHAN M, PETER D.S. Soil-pipeline Interaction in Slops[D] University of Calgary, Canada,2000.
    [74]张东臣.滑坡条件下埋地管道受力分析[J].石油规划设计.2001,12(6):1-6.
    [75]COCCHETTI G, PRISCO C, GALLI A, et al. Soil-Pipeline Interaction along Unstable Slopes:A Coupled Three-Dimensional Approach. Part 1:Theoretical Formulation[J]. Canadian Geotechnical Journal.2009,46(11):1289-1304.
    [76]COCCHETTI G, PRISCO C, GALLI A, et al. Soil-Pipeline Interaction along Unstable Slopes:A Coupled Three-Dimensional Approach. Part 2:Numerical Analyses[J]. Canadian Geotechnical Journal.2009,46(11):1305-1321.
    [77]YATABE H, FUKUDA N, MASUDA T, et al. Analytical Study of Appropriate Design fr High-Grade Induction Bend Pipes Subjected to Large Ground Deformation[J]. Journal of offshore Mechanies and Arctic Engineering.2004,126(4):376-383.
    [78]EVANS A.J. Three-Dimensional Finite Element Analysis of Longitudinal Support in Buried Pipes[D]. Utah State University.2004.
    [79]王沪毅.输气管线在地质灾害中的力学行为研究[D].西安:西北工业大学.2003.
    [80]LIU P.F, ZHENG J.Y, ZHANG B.J. Failure Analysis of Natural Gas Buried X65 Steel Pipeline under Deflection Load using Finite Element Method[J]. Materials and Design. 2010,31(3):1384-1391.
    [81]KUNERT H.G, OTEGUI J.L, MARQUEZ A. Nonlinear FEM Strategies for Modeling Pipe-Soil Interaction[J]. Engineering Failure Analysis.2012,24:46-56.
    [82]CALVETTI F, PRISEO C, NOVA R. Experimental and Numerical Analysis of Soil-Pipe Interaction[J]. Journal of Geotechnical and Geo-environmental Engineering.2004, 130(12):1292-1299.
    [83]ABAQUS 6.11 Documentation.
    [84]ANSYS 13.0 Documentation.
    [85]WEMPNER G.A. Discrete Approximation Related to Nonlinear Theories of Solids. International Journal of Solids and Structures[J].1971,7:1581-1599.
    [86]RIK.S E. An Incremental Approach to the Solution of Snapping and Buckling Problems[J]. International Journal of Solids and Structures.1979.15:529-551.
    [87]RAMM E. Strategies for Tracing the Nonlinear Response near Limit Points. In: Nonlinear Finite Element Analysis in Structural Mechanics[M]. Springer, New York,1981: 1-32.
    [88]CRISFIELD M.A. An Arc-length Method including Line Searches and Accelerations. International Journal for Numerical Methods in Engineering[J].1983,19:1269-1289.
    [89]AHMED M.B., SU X.Z. Arc-Length Technique for Nonlinear Finite Element Analysis[J]. Journal of Zhejiang University Science.2004,5(5):618-628.
    [90]GURSON A.L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth. Part 1-Yield Criteria and Flow Rules for Porous Ductile Media[J]. Journal of Engineering Material and Technology 1977;99:2-15.
    [91]TVERGAARD V. Influence of Voids on Shear Band Instabilities under Plane Strain conditions[J]. International Journal of Fracture.1981;17:389-407.
    [92]TVERGAARD V. On Localization in Ductile Materials Containing Spherical Voids. International Journal of Fracture[J].1982,18:237-252.
    [93]NEEDLEMAN A, TVERGAARD V. Analysis of Ductile Rupture in Notched Bar[J]. Journal of the Mechanics and Physics of Solids.1984,32(6):461-490.
    [94]DUGDALE D.S. Yielding of Steel Sheets Containing Slits[J]. Journal of the Mechanics and Physics of Solids.1960,8:100-104.
    [95]BARENBLATT G. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture[J]. Advances in Applied mechanics.1962,7:55-129
    [96]MI Y, CRISFIELD M.A, DAVIES G.A.O. Progressive Delamination Using Interface Elements[J]. Journal of Composite Materials.1998,32:1246-1272.
    [97]TVERGAARD V, HUTCHINSON J.W. The Relation between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids[J]. Journal of Mechanics and Physics of Solids.1992,40:1377-1397.
    [98]NEEDLEMAN A. A Continuum Model for Void Nucleation by Inclusion Debonding[J]. Journal of Applied Mechanics.1987,54:525-531.
    [99]BORST. R. Numerical Aspects of Cohesive-Zone Models[J]. Engineering Fracture Mechanics.2003.70(14):1743-1757.
    [100]NEEDLEMAN A. An Analysis of Tensile De-Cohesion Along an Interface[J]. Journal of Mechanics and physics of Solids.1990.38:289-324.
    [101]HILLERBORG A, MODEER M, PETERSSON P. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements[J]. Cement and Concrete Research.1976,6:773-782.
    [102]RYBICKI E.F, KANNINEN M.F. A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral[J]. Engineering Fracture Mechanics.1977,9: 931-938.
    [103]OBRIEN T.K. Characterization of Delamination Onset and Growth in a Composite Laminate, in Damage in Composite Materials[J]. ASTM International.1982,775:140-167.
    [104]OBRIEN T.K. Interlaminar Fracture Toughness:the Long and Winding Road to Standardization[J]. Composite Part B.1998,29:57-62.
    [105]MARTIN R.H. Incorporating Interlaminar Fracture Mechanics in Design[A]. International Conference on Designing Cost-Effective Composites:Imeche Conference Transactions[C]. London U K.1998:83-92.
    [106]RAJU I.S. Calculation of Strain-Energy Release Rates with Higher Order and Singular Finite Elements[J]. Engineering Fracture Mechanics.1987,28:251-274.
    [107]BUCHHOLZ F.G, GREBNER H, DREYER K.H, et al.2d And 3d Applications of the Improved and Generalized Modified Crack Closure Integral Method[J]. Computational Mechanics '88, S N Atluri an G Yagawa,1988.
    [108]KRUEGER R. Virtual Crack Closure Technique:History, Approach, and Applications[J]. Applied Mechanics Reviews.2004,57(2):1-57.
    [109]FAWAZ S.A. Application of The Virtual Crack Closure Technique to Calculate Stress Intensity Factors for Through Cracks With an Elliptical Crack Front[J]. Engineering Fracture Mechanics.1998,59(3):327-342.
    [110]QIAN Q, XIE D. Analysis of Mixed-Mode Dynamic Crack Propagation by Interface Element Based on Virtual Crack Closure Technique[J]. Engineering Fracture Mechanics. 2007,74(5):807-814.
    [111]BELYTSCHKO T, BLACK T. Elastic Crack Growth in Finite Elements with Minimal Remeshing[J]. International Journal for Numerical Methods in Engineering.1999:45(5): 601-620.
    [112]MOES N, DOLBOW J, BELYTSCHKO T. A Finite Element Method for Crack Growth without Remeshing[J]. International Journal for Numerical Methods in Engineering. 1999:46 (1):131-150.
    [113]MOES N, BELYTSCHKO T. Extended Finite Element Method for Cohesive Crack Growth[J]. Engineering Fracture Mechanics.2002,69(7):813-833.
    [114]SUKUMAR N, MOES N, MORAN B, et al. Extended Finite Element Method for Three-Dimensional Crack Modeling[J]. International Journal for Numerical Methods in Engineering.2000,48 (11); 1549-1570.
    [115]SUKUMAR N, HUANG Z.Y, PREVOST J.H, et al. Partition of Unity Enrichment for Bimaterial Interface Cracks[J]. International Journal for Numerical Methods in Engineering. 2003,59 (8):1075-1102.
    [116]CHESSA J, WANG H, BELYTSCHKO T. On the Construction of Blending Elements for Local Partition of Unity Enriched Finite Element[J]. International Journal for Numerical Methods in Engineering.2003,57(7):1015-1038.
    [117]LEGAY A, WANG H, BELYTSCHKO T. Strong and Weak Arbitrary Discontinuities in Special Finite Elements[J]. International Journal for Numerical Methods in Engineering. 2005,64(8):991-1008.
    [118]VENTURA G, MORAN B, BELYTSCHKO T. Dislocations by Partition of Unity[J]. International Journal for Numerical Methods in Engineering.2005,62(11):1463-1487.
    [119]SONG J, AREIAS P, BELYTSCHKO T. A Method for Dynamic Crack and Shear Band Propagation with Phantom Nodes[J]. International Journal for Numerical Methods in Engineering.2006,67:863-893.
    [120]MENOUILLARD T, RETHORE J. Efficient Explicit Time Stepping for the Extended Finite Element Method (X-FEM) [J]. International Journal for Numerical Methods in Engineering.2006,69(9):911-939.
    [121]FRIES T.P, BELYTSCHKO T. The Intrinsic XFEM:A Method for Arbitrary Discontinuities without Additional Unknowns[J]. International Journal for Numerical Methods in Engineering.2006,68(13):1358-1385.
    [122]RIBEAUCOURT R, BAIETTO-DUBOURG M.C. A New Fatigue Frictional Contact Crack Paropagation Model with The Coupled Xfem/Latin Method[J]. Computer methods in applied mechanics and engineering.2007,196(33-34):3230-3247.
    [123]方修君,金峰,王进廷.基于扩展有限元法的粘聚裂纹模型[J].清华大学学报(自然科学版).2007,47(3):344-347.
    [124]ZHUANG Z, CHENG B.B. Equilibrium State of Mode-I Sub-Interfacial Crack Growth in Bi-Materials[J]. International Journal of Fracture.2011,170(1):27-36.
    [125]庄卓,柳占立,成斌斌等.扩展有限元法[M].北京:清华大学出版社.2012:1-42.
    [126]CAMPILHO R.D.S.G, BANEA M.D, CHAVES F.J.P, et al. eXtended Finite Element Method For Fracture Characterization of Adhesive Joints in Pure Mode I[J]. Computational Materials Science.2011,50 (4):1543-1549.
    [127]GOLEWSKI G.L, GOLEWSKI P, SADOWSKI T. Numerical Modelling Crack Propagation under Mode I Fracture in Plain Concretes Containing Siliceous Fly-Ash Additive using XFEM Method[J]. Computational Materials Science.2012,62:75-78.
    [128]MOJIRI S. Numerical Analysis of Cohesive Crack Growth using Extended Finite Element Method (X-FEM) [D]. Institut de Recherche en G'enie Civil et M'echanique. France,2010.
    [129]XU Y.J, YUAN H. On Damage Accumulations in the Cyclic Cohesive Zone Model for Xfem Analysis of Mixed-Mode Fatigue Crack Growth[J]. Computational Materials Science.2009,46 (3):579-585.
    [130]SINGH I.V, MISHRA B.K, BHATTACHARYA S, et al. The Numerical Simulation of Fatigue Crack Growth using Extended Finite Element Method[J]. International Journal of Fatigue 2012,36(1):109-119.
    [131]SHIBANUMA K, UTSUNOMIYA T. Reformulation of XFEM Based on PUFEM for Solving Problem Caused by Blending Elements[J]. Finite Elements in Analysis and Design. 2009,45(11):806-816.
    [132]SHIBANUMA K, UTSUNOMIYA T. Evaluation on Reproduction of Priori Knowledge in XFEM[J]. Finite Elements in Analysis and Design.2011,47(4):424-433.
    [133]GORDELIY E, PEIRCE A. Coupling Schemes for Modeling Hydraulic Fracture Propagation using the XFEM[J]. Computer Methods in Applied Mechanics and Engineering.2013,253:305-322.
    [134]CHENG K.W, FRIES T.P. XFEM with Hanging Nodes for Two-Phase Incompressible Flow[J]. Computer Methods in Applied Mechanics and Engineering.2012, 245(15):290-312.
    [135]YE C, SHI J, CHENG G. J. An eXtended Finite Element Method (XFEM) Study on the Effect of Reinforcing Particles on the Crack Propagation Behavior in a Metal-Matrix Composite[J]. International Journal of Fatigue.2012,44:151-156.
    [136]XIAO Q.Z, KARIHALOO B.L. Implementation of Hybrid Crack Element on a General Finite Element Mesh and in Combination with XFEM[J]. Computer Methods in Applied Mechanics and Engineering.2007,196(13-16):1864-1873.
    [137]HOSSEINI S.S, BAYESTEH H, MOHAMMADI S. Thermo-Mechanical XFEM Crack Propagation Analysis of Functionally Graded Materials[J]. Materials Science and Engineering:A.2013,561(20):285-302.
    [138]DHIA H.B, JAMOND O. On the Use of XFEM within the Arlequin Framework for the Simulation of Crack Propagation [J]. Computer Methods in Applied Mechanics and Engineering.2010,199(21-22):1403-1414.
    [139]CHAHINE E, LABORDE P, RENARD Y. A Non-Conformal Extended Finite Element Approach:Integral Matching XFEM[J]. Applied Numerical Mathematics.2011, 61(3):322-343.
    [140]CHATZI E.N, HIRIYUR B, WAISMAN H, et al. Experimental Application and Enhancement of the Xfem-Ga Algorithm for the Detection of Flaws in Structures[J]. Computers & Structures,2011,89(7-8):556-570.
    [141]董建国.土力学与地基基础[M].上海:同济大学出版社,2005:42-57.
    [142]段绍伟,沈蒲生.深基坑开挖引起邻近管线破坏分析[J].工程力学.2005,22(4): 79-81.
    [143]KANG J, PARKER F, YOO C.H. Soil-Structure Interaction for Deeply Buried Corrugated Steel Pipes Part I:Embankment Installation [J]. Engineering Structures.2008,30: 384-392.
    [144]KANG J, PARKER F, YOO C.H. Soil-Structure Interaction for Deeply Buried Corrugated Steel Pipespart II:Imperfect Trench Installation[J] Engineering Structures. 2008,30:588-594.
    [145]OH C.S, KIMA N.H, KIM Y.J. A Finite Element Ductile Failure Simulation Method using Stress-Modified Fracture Strain Model[J]. Engineering Fracture Mechanics.2011,78 (1):124-137
    [146]KIMA N.H, OH C.S, KIM Y.J. Comparison of Fracture Strain Based Ductile Failure Simulation with Experimental Results[J]. International Journal of Pressure Vessels and Piping.2011,88 (10):434-447.
    [147]OH C.K, KIM Y.J, BAEK J.H. Ductile Failure Analysis of API X65 Pipes With Notch-Type Defects using a Local Fracture Criterion [J]. International Journal of Pressure Vessels and Piping.2007,84 (8):512-525.
    [148]OH C.K, KIM Y.J, BAEK J.H. A Phenomenological Model of Ductile Fracture for API X65 Steel[J]. International Journal of Mechanical Sciences.2007,49 (12):1399-1412.
    [149]邱保文.X80管线钢韧性断裂研究与有限元模拟[D].武汉:武汉科技大学.2010.
    [150]TANGUYA B, LUUA T.T, PERRIN G. Plastic and Damage Behaviour of a High Strength X100 Pipeline Steel:Experiments and Modelling[J]. International Journal of Pressure Vessels and Piping.2008,85:322-335.
    [151]ASME B31.8. Gas Transmission and Distribution Piping Systems[J]. The American Society of Mechanical Engineers.2010.
    [152]API-579. Fitness-For-Service. Second Edition.2007.
    [153]ZHENG J.Y, ZHANG B.J, LIU P.F. Failure Analysis and Safety Evaluation of Buried Pipeline due to Deflection of Landslide Process[J]. Engineering Failure Analysis.2012, 25:156-168.
    [154]LIU P.F, ZHANG B.J, ZHENG J.Y. Finite Element Analysis of Plastic Collapse and Crack Behavior of Steel Pressure Vessels and Piping Using XFEM[J]. Journal of Failure Analysis and Prevention.2012,12(6):707-718.
    [155]BRIDGEMAN P.W. Studies in Large Plastic Flow and Fracture[M]. New York: McGraw-Hill.1952:45-70.
    [156]BS EN 1594. Gas Supply Systems-Pipelines for Maximum Operating Pressure Over 16 Bar-Functional Requirements[S]. British Standards Policy and Strategy Committee. 2009.
    [157]R6 Rev-4. Assessment of the Integrity of Structures Containing Defects[S].2001.
    [158]GB/T 19624.在用含缺陷压力容器安全评定[S].2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700