用户名: 密码: 验证码:
油田射孔弹弹体粉末冶金材料制备及成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田射孔弹是一种为提高油田采油效率而使用的井下射孔工具。弹体是射孔弹的关键部件,主要作用是增强射孔弹侧向爆轰波冲量,提高金属射流的动能,延缓并降低稀疏波对金属射流的干扰,保证射孔深度。实践表明,弹体强度越高射孔弹穿深值越大,因此提高弹体强度是提高射孔弹穿深有效途径之一。由于弹体结构比较复杂,机械加工成本极高,采用冷挤压技术虽然提高了生产效率,使生产成本相对降低,但弹体材料选择受到很大限制,目前只能用20钢通过冷挤压制造弹体,而20钢弹体爆炸后碎片尺寸较大,极易发生卡井事故,增加打捞作业成本。近年出现的斜井和水平井开采技术以及无枪身射孔器和全通径射孔技术都对弹体提出了新的更高的技术要求,开发新的弹体材料和制造工艺是当前急需研究的课题。本文通过对材料组织和性能及成形工艺的研究,探索采用粉末冶金材料及工艺方法制备新型射孔弹弹体的可行性,为实现产业化提供理论基础和技术支撑,以满足快速发展的石油工业对新型射孔弹的需求。
     依据热力学原理和粉末冶金烧结合金化机理,优化设计了Fe-Cu-C系、Fe-Ni-C系和Fe-Ni-Cu-C系三种合金材料,研究了不同含量的Ni、Cu、C合金元素对弹体用不同合金系组织和性能的影响规律,分析了合金元素强化机理。研究表明:Cu对合金材料的组织和性能强化效果十分明显,Cu促进珠光体组织形成,细化珠光体层片间距,随着Cu含量的增加,合金抗拉强度和硬度增大,基体组织孔隙率增加,延伸率降低;Cu熔化后形成的孔隙均匀分布在基体组织中,在Cu含量大于2%缓慢冷却时,组织中出现游离Cu和富Cu相。Ni也促进珠光体组织形成,Ni含量增加使合金组织中铁素体含量减少而珠光体含量明显增多,合金的抗拉强度和硬度呈增大趋势变化;在C含量不变的情况下,合金延伸率随着Ni含量的增加,出现先增加后降低的变化趋势,在Ni含量为3%时,延伸率达到极值后逐渐减小;当Ni含量为2%时,在颗粒晶界出现富Ni奥氏体层,并且随着Ni含量的增加奥氏体层有逐渐增厚的趋势。材料性能试验结果表明:对于铁基粉末冶金材料,Cu和Ni共同使用对性能的强化效果远大于单个元素的强化效果,起到优势互补作用。比较而言,Fe-Ni-Cu-C系合金综合力学性能优于Fe-Ni-C系和Fe-Cu-C系合金。
     对压制成形方式、初压压力、复压压力和保压时间等成形工艺参数对压坏组织结构及密度分布的影响规律进行了深入研究。通过对不同的压制成形方式理论分析和工艺试验,确定了弹体压制成形方式;对弹体结构、弹体初压和复压成形模具进行了优化设计。研究结果表明:初压压力和复压压力对初压密度和复压密度影响很大,当初压坯密度接近7.1g/cm3以及复压压坯密度达到7.4g/cm3时,继续提高压力压坯密度也不会增加,即复压密度不超过理论密度的95%。弹体初压密度过高或过低都对复压产生不利影响,初压压力在600MPa,复压压力在800MPa时,压坯组织及密度较为适宜。常规的初压和复压方式很难使弹体获得较高的密度及均匀的密度分布,本文采用补偿挤压强化致密的工艺方法获得了具有一定密度梯度分布的高密度粉末冶金弹体,弹体平均密度达到7.3g/cm3。该项技术对获得高密度粉末冶金制品具有重要的作用与意义。弹体材料性能试验表明:密度对力学性能有很大影响。当压坯烧结密度超过6.9g/cm3时,抗拉强度和延伸率增加的幅度变大,而硬度随材料密度的变化幅度则相对平稳。当弹体密度为7.3g/cm3时,Fe-Ni-Cu-C系合金抗拉强度和延伸率分别达到647MPa和3.78%。
     对弹体烧结过程进行了系统研究,分析探讨了烧结强化机理和烧结动力学。烧结动力学分析表明:粉末的烧结速度t要取决于烧结温度。烧结温度对弹体的组织、密度和性能均有较大影响。随着烧结温度的提高,弹体材料的密度呈现先降低后增加的趋势变化,当温度达到1200℃时密度增加变缓趋于稳定;组织中的孔隙数量随着烧结温度的提高逐渐减少,形状由不规则逐渐变成椭圆形或球形,且独立分布;随着烧结温度的提高,烧结体的抗拉强度、硬度、延伸率都随之提高。实验表明:Cu和Ni对烧结过程均有强化烧结作用。Cu在烧结温度大于1083℃时会产生液相烧结,对合金元素的扩散起到强化作用,但Cu熔化形成的孔隙,会使弹体烧结体积膨胀、密度降低,产生反致密化;Ni与Fe晶粒形成的富Ni奥氏体层为Fe原子和合金元素提供了快速扩散通道,使弹体烧结体积产生收缩,产生致密化烧结作用,可有效弥补Cu反致密化产生的不利影响。Cu一方面起到强化烧结的作用,另一方面Cu熔化后形成一定数量的孔隙,通过对烧结工艺参数的调整控制基体组织的孔隙形态,使弹体爆炸后更易形成小的碎片,从而使弹体具有优异的低碎屑。试验结果表明:初烧温度在850℃,保温1小时,复烧温度在1100℃-1150℃,保温1.5小时的烧结工艺烧结效果最佳。
     本文还利用有限元模拟深入分析了不同工艺参数对弹体粉末坏料冷挤压成形时塑性变形规律、流动行为、应力状态等的影响。研究结果表明:在圆柱形坯料成形中,轴向拉应力的峰值显著高于其它方案,而采用端部带凹坑的锥台形坯料成形时,除整体的变形流动均匀性显著提高外,成形所需挤压力和模具的有效应力值最小,可实现一次挤压成形,为制定合理的工艺方案提供设计依据。对开辟弹体新的制备工艺途径具有重要指导意义。
     不同弹体的爆靶试验对比结果表明,粉末冶金弹体在钢靶及混凝土靶的爆靶穿深值和孔径都超过爆靶标准值,爆靶穿深值均比20钢弹体高且具有优异的碎屑性,完全可以取代20钢弹体。
To improve the oil extraction in the oilfield, the perforating bullet is widely used to perforate downhole. Bullet body, a key component of perforating bullet, can enhance the lateral perforating bomb wave impulse, improve the kinetic energy of the metal jet, delay and reduce the interference of rarefaction wave on metal jet, and ensure the perforation depth. The results showed that the higher the strength of bullet body is, the greater the value of the perforating depth is. So, increasing the strength of bullet body is one of effective ways to improve the perforating depth. Because of the complex structure and high machining cost, the bullet body is made by the cold extrusion technology which can improve the production efficiency and decrease the production costs while the choice of body materials is limited into20#steel. However, the explosion fragments of20#steel are very large and prone to form the lock down-hole accident, which will append the salvage. In recent years, new technical requirements are proposed with the development of the exploitation technologies of tilted and horizontal wells, and full-bore perforating technique. So, developing new bullet body materials and machining technology are currently an urgent research project. In this work, the microstructure, properties and forming process are studied, and the feasibility of preparing the new bullet body by powder metalluary materials and craft method is explored. This can provide a theoretical basis and technical support for industrialization, and meet the oil industry demand for new perforating bullet.
     Based on thermodynamic principles and alloying powder metallurgy sintering mechanism, the Fe-Cu-C series, Fe-Ni-C series and Fe-Ni-Cu-C series alloys were optimized and designed. The effect of Ni, Cu and C alloying elements on microstructure and properties of bullet body were investigated. The strengthening mechanism of alloying elements was analyzed. The results showed that the strengthening effect of Cu on microstructure and properties is very obvious. Cu could promote the formation of the pearlite structure and reduce the pearlite lamellar spacing. The tensile strength, hardness and pore rate in the matrix increase while the elongation decreases with the increase of Cu content. Cu was melted and uniformly distributed in the pores matrix. With Cu is more than2%and cools slowly, the dissociative Cu and Cu-rich phase appeared. Ni Ni also promoted the formation of the pearlite. The ferrite content decreased and pearlite content significantly increased with increasing the Ni content. The tensile strength and hardness of the alloy tended to increase. At first the elongation of the alloy increased and then decreased with the increase of Ni content when the same C content was kept. The elongation of the alloy reached the highest value and then decreased at3%Ni content. The Ni-rich austenite layer in the grain boundaries appeared at2%Ni content. The Ni-rich austenite layer tended to thicken with the increase of Ni content. Mechanical test results showed that, for iron-based powder metallurgy materials, the comprehensive strengthening effect of Cu and Ni is much larger than the single element and they play a complementary role. As a comparison, the mechanical properties of Fe-Ni-Cu-C alloy are superior to Fe-Ni-C and Fe-Cu-C alloy.
     The effect of compaction-forming method, initial pressure, repeated pressure and holding time on microstructure and density distribution were systematically studied. The press forming method of bullet body was optimized by the theoretical analysis and process experimetns. The structure of bullet body, initial and repeated pressure forming mold was optimized. The results showed that the initial pressure and repeated pressure played an important role on the initial pressure density and repeated pressure density. When the initial pressure density was close to7.1g/cm3and repeated pressure density reached to7.4g/cm, the density did not increase when continuing to increase the pressure. Namely, the repeated pressure density did not exceed95%of the theoretical density. It had the adverse effects if the initial pressure density was too high or low. The microstructure and density distribution was better at the initial pressure of600MPa and repeated pressure of800MPa. The conventional multi-pressure method of bullet body is difficult to obtain a higher density and uniform density distribution. We used the compensatio extrusion and enhanced compaction method to obtain the high density powder metallurgy sintering bullet body with certain density gradient. The average density of the bullet body was7.3g/cm3. The technology had an important role in obtaining high density powder metallurgy products. Mechanical experimental results showed that the density had a great influence on the mechanical properties. When the sintering density of the billet was above6.9g/cm3, the tensile strength and elongation increase significantly while the hardness slightly changed. When the density of bullet body was7.3g/cm3, the tensile strength and elongation of Fe-Ni-Cu-C alloy could reach647MPa and3.78%, respectively.
     Sintering process of bullet body was systematically studied. The strengthening mechanism of sintering and sintering kinetics was analyzed and discussed. Sintering kinetic analysis shows that the sintering rate depends primarily on the sintering temperature. Sintering temperature had a great influence on microstructure, density and properties of bullet body. At first the density of bullet body alloy decreased and then increased with increasing the sintering temperature. The density tended to a stabilized value when the temperature reaches1200℃. The pore volume decreased with increasing the sintering temperature. The shape of the pore became irregular oval or spherical and distributed independently. The tensile strength, hardness and elongation of bullet body increased with increasing sintering temperature. The results show that Cu and Ni had an enhanced sintering effect on the sintering process. Cu could produce liquid phase sintering and play a strengthening effect on the diffusion of the alloy elements when the sintering temperature is higher than1083℃. Cu was melted and easy to form pores. It caused the volume expansion, the decreasing of the density and anti-densification. Ni-rich austenite grain layer formed by Ni and Fe grains provided a fast diffusion path for Fe atoms and alloy elements. The sintering volume shrinkage of the bullet body appeared and resulted in sintering densification. This could compensate for the anti-densification of Cu. Cu had an enhanced sintering effect. On the other hand, a number of molten Cu pores formed. The explosion of bullet body was easy to form small pieces by adjusting the sintering parameters to control the porous shape. So the bullet body presented excellent low debris. The results show that the sintering technology is the best with the beginning of sintering temperature of850℃, holding time of1hour and the repeated sintering temperature of1100℃-1150℃, holding time of1.5hours.
     In this paper, the effect of process parameters on plastic deformation, flow behavior and stress was analyzed using finite element simulation of bullet body by adopting cold extrusion of powder billet. The results show that the peak of the axial tensile stress was significantly higher than other technology in a cylindrical shape. With a frustoconical black in the process of the molding, the whole deformation was easy to flow uniformly. The required extrusion pressure and the minimum value of the effective stress were the lowest. The formation could be realized after simple extrusion. The simulation provided the basis of reasonable process design and a new pathway preparation of fabricating the bullet body.
     As a comparision of different burst tests, the results show that the critical target penetration depth and pore size of the bullet body by powder metallurgy exceeded the standard value. Penetration depth of the bullet body was higher than that of20#steel bullet body. The bullet body presented excellent low debris and could completely replace20#steel bullet body.
引文
[1]陆大卫.油气井射孔技术[M].北京:石油工业出版社,2012:45-48.
    [2]ZYGMUNT B, WILK Z. Formation of Jets by Shaped Charges with Metal Powder Liners [J]. Propellants Explos Pyrotech,2008,33:482-487.
    [3]石健,王宝兴,郭红军,等.装药与药型罩不对称因素对射孔弹性能的影响[J].测井技术,2007,31(5):500-502.
    [4]ADAM J, EDWARD W. The Influence of Repressing Liners Made from Sintered Copper on Jet Formation [J]. Journal of Materials Proeessing Technology,2006,171:21-26.
    [5]LI Q M, MENG H. Pressure-Impulse Diagram for Blast Loads Based on Dimensional Analysis and Single-Degree-of-Freedom Model[J]. Journal of Engineer Mechanics,2002,128(1):87-92.
    [6]荣学艺.国外新型射孔技术—复合水动力射孔[J].国外油田工程,2010,229(12):29-31.
    [7]郭希明,蒋宏伟,黄玉康,等.新型水平井复合射孔枪研究[J].石油矿场机械,2011,40(5):5-10.
    [8]王毅,姜炜,刘宏英,等.粉末药型罩材料及其工艺技术的研究进展[J].含能材料,2007,15(5):555-559.
    [9]AI Y, JAFFE J S. Design and Preliminary Tests of a Family of Adaptive Waveforms to Measure Blood Vessel Diameter and Wall Thickness[C]. IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control, 2005:250-260.
    [10]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1981,120-125.
    [11]曹勇家.粉末冶金产业化的重要技术方向[J].新材料产业,2004,(132):29-37.
    [12]BOLTON J D. Liquid Phase Sintering of Various High Speed Steel with Copper-Phosphorusaddition [J]. Powder Metallurgy,1991,34(4):273-279.
    [13]URRUTIBEASKO A L. Inproved Sintering Reponse of Vanadium-Rich. High Speed Steel [J]. The Internation Journal of Powder Metallurgy,1993, 29(4):367-377.
    [14]DANKOFF J D. Macrostructure and Properties of PM High Speed Steel Containing a Dispersionof Fine Alumina[J]. Progress in Fowder. Metallurgy,1985,41(3):38-45.
    [15]袁吉诚,付代轩,唐凯,等.51型无枪身射孔器的研制及其在四川广安气田的应用[J].测井技术,2007,31(5):99-103.
    [16]唐凯,罗苗壮,陈锋,等.全通径射孔工艺技术应用研究[J].测井技术2010,34(5):92-96.
    [17]都有为.磁性材料新近进展[J].物理,2006,35(9):21-30.
    [18]毕见强,孙康宁,尹衍升.磁性材料的研究和发展趋势[J].山东大学学报工学版,2003,33(3):3-6.
    [19]COLLIN C L, DURANT N, FAVROT M. et al. Processing of FunctionalGradient WC-Co Cermets by Powder Metallurgy[J]. RM&HM, 1993-1994,(12):145-152.
    [20]曹占义,刘勇兵,杨晓红,等.铝基石墨复合材料的摩擦特性[J].摩擦学学报,1999,19(4):327-330.
    [21]居志兰,花国然,任雨松.粉末冶金A1-Fe复合材料机械及磨损性能研究[J].润滑与密封,2007,32(2):153-155.
    [22]山岸宣行,戴惠芬,李业建.电触头材料[J].电工材料,2011,120(3):51-54.
    [23]曾德麟.粉末冶金材料[M].北京:冶金工业出版社,1997:38-40.
    [24]陈进,黄伯云,赵慕岳.发展我国粉末冶金的一些思考[J].粉末冶金工业,1994,(1):8-13.
    [25]韩凤麟.中国(大陆)粉末冶金零件行业2004年进展[J].粉末冶金技术,2006,24(1):56-59.
    [26]陶国林,蒋显全,黄靖.硬质合金刀具材料发展现状与趋势[J].金属功能材料,2011,18(03):83-87.
    [27]宇田雅廣.超微粒子[J].溶接学会誌,1985,54(6):318-329.
    [28]RYOZI U. Studies of Ultrafine Particles in Japan:Crystallography, Methods of Preparation and Technological Application[J]. Progress in Materials Science,1991,35:1-96.
    [29]FIORANI D, SBEREGLIEVI G. Fundamental Properties of Nanostructured Materals[M]. Singapore:World Scientific Pulishing,1993:56-58.
    [30]BENJAMIN J S. Dispersion Strength Enedsuper Alloys Bymechanical Alloying[J]. Metal Transformation,1970,10(1):2943-2951.
    [31]美国金属学会主编.金属手册:第七卷,第九版[M].韩风麟主译,赖和怡主审.北京:机械工业出版社,1994:100-105.
    [32]何国,陈国良.大块积非晶态合金材料[J].材料导报,1999,13(3):26-30.
    [33]王晓东,齐民.缓冷大块非晶合金的发展现状及其形成能力的考虑[J].材料科学与工程,2000,18(1):133-137.
    [34]马国峰,蔡静,娄德元,等.快速凝固工艺对AZ91HP镁合金腐蚀性能的影响[J].沈阳大学学报自然科学版,2012,24(5):30-34.
    [35]GLEITER H. Nanocrystalline Materials[J]. Progress in Materials Science, 1989,33(4):223-315.
    [36]尾崎义治,贺集诚一郎著.赵修建,张联盟译.纳米微粒子导论[M].武汉:武汉工业大学出版社,1991:121-122.
    [37]李喜波,唐晓红,吴卫东.磁控溅射法制备金团镞纳米颗粒及性能表征[J].激光与粒子束,2006,18(6):1023-1026.
    [38]赵嘉学,童洪辉.磁控溅射原理的深入探讨[J].真空,2004,41(4):74-79.
    [39]VOLLATER D. Aerosol Methods and Advanced Techniques for Nanoparticle Science and Nanopowder Technology. Proceedings of the ESF Exploratory Workshop [C]. Duisburg, Germany,1993:15-17.
    [41]MAZDIYASNI K S. Invited Review "Sol-Gel" Preparation of High Temperature Superconducting Oxides[J]. Materials Research Society Symposium-Proceedings,1984,32:175-177.
    [43]日本粉体工业技术协会编.超微粒子応用技术[M].东京:日刊工业新闻社,1996:58-63.
    44] SANGJIN L, TAEHWAN S, JONDO Y, et al. Preparation of BaTiO3 Nanoparticles by Combustion Spray Pyrolysis[J]. Materials Letters,2004, 58(22-23):2932-2936.
    45] WILLARD M A, KURIHARA L K, CARPENTER E E, et al. Chemically Prepared Magnetic Nanoparticles[J]. International Materials Review,2004, 49(3-4):125-170.
    46] KONYASHIN I, SCHAEFER F, COOOPER R. et al. Novel Ultracoarse Hardmetal Grades With Reinforced Binder for Mining and Construction [J]. RM&HM,2002, (23):225-232.
    [47]川崎要造.高温耐食性ODS合金開凳[J].金属,1992,62(5):9-11.
    [48]田震,李普平,杜志刚,等.机械合金化法制备贮氢材料进展[J].材料导报,1997,11(6):24-27.
    [49]张文丛. Mg-3Ni-2MnO2者氢材料本征吸放氢动力学性能研究(D).上海:中国科学院上海冶金研究所,2000:80-85.
    [50]李李泉.储氢材料镁镍合金Mg2NiH4氢化燃烧合成反应机理[J].粉末冶金技术,2002,20(6):9-13.
    [51]柳东明,巴志新,韦涛,等.镁基储氢合金制备新方法[J].粉末冶金技术,2005,23(3):65-69.
    [52]顾昊,朱云峰,李李泉.氢化燃烧合成与机械合金化复合制备LaMg(11.5)Ni(0.5)储氢材料[J].粉末冶金技术,2009,27(2):25-28.
    [53]王尔德,胡连喜.机械合金化纳米晶材料研究进展[J].粉末冶金技术2002,20(3):135-139.
    [54]邹黎明,杨超,李元元.粉末冶金法制备钛基生物医学材料的研究进展[J].材料导报,2011,25(8):86-89.
    [55]魏先斗.陶瓷材料的结构功能及其发展前景[J].机械工程师,2006,178(4):109-111.
    [56]贡长生,张克立.新型功能材料[M].北京:化学工业出版社,2001:10-12.
    [57]李丙运,李依依,GJUNTER V E.生物医用多孔Ti-Ni形状记忆合金的[J].材料研究学报,2000,14(6):561-567.
    [58]杨金娣,李煜芳,金家敏.粉末冶金Co-Cr-Mo人工关节材料研制[J].机械工程材料,1998,22(4):32-35.
    [59]黄健超,谭树松,霍忠全.粉末冶金法制取的Cu-Al-Ni(?)忆合金的特征[J].兵器材料科学与工程,1986,9(8):16-19.
    [60]LEE P W. Powder Metal Technologies and Applications[M]. AMS Metals HandBook:Volume 7 ASM International,1998:50-53.
    [61]李益民,黄伯云,曲选辉.金属注射成形技术进展[J].稀有金属材料与工程,1996,25(1):1-4.
    [62]GERMAN R M. Powder Injection Molding[M]. Princeton:MPIF,1990:61-95.
    [64]Doug Smock. Gbbal Market for Metanl and Ceran ie Injection Molding[EB/OL].[2008-10-01]. http//www.bccre2 search com/Pressrcom /AVM049B htnl.
    [65]CAPUS J, PICKERING S, WEAVER A. Hoeganaes Offers Higher Density Stlower Cost[J]. Metal Powder Report,1994,49(7-8):22-24.
    [66]张双益,李元元.铁基粉末冶金材料的温压工艺[J].机械工程材料,2000,24(1):26-28.
    [67]RUTZ H G, HANEJKOF G. High Density Processing of High Performance Ferrous Materials[J]. The International of Powder Metallurgy,1995,31(1): 9-17.
    [68]SUN S R, COUCHMAN K. Repressing of Warm Compacted Materials[A]. CADLE T M, NARASIMIIAN K S. Advances in Powder Metallurgy & Particulate Materials-1996[C]. Princeton, NJ:MPIF,1996:109-123.
    [69]ENGSTROEM U, JOHANSSON B, RUTZ H, et al. High Density PM Materials for Future Applications[J]. PA,1994. (1):57-64.
    [70]CAPUS J M, PICKKRING S. WEAVER A. Hoeganes Offers Higher Density at Lower Cost[J]. Metal Powder Report,1994,49(7/8):22-24.
    [71]CHAGNON F, TRUDEL Y. EFFect of Compaction Temperature on Sintered Properties of High Density P/M Materials[A]. PIHILIPS M, PORTER JOurnal. Advances in Powder Metallurgy & Particulate Materials-1995[C]. Princeton, NJ:MPIF,1995:3-14.
    [72]DONALSON I, HANEJKO F G. An Investigation into the effects of Processing Methods on the Mechanical CharacteristiEs of High Performance Ferrous P/M Materials[A]. PHILIPS M, PORTER Journal. Advances in Powder Metallurgy & Paniculate Materials-1995[C]. Princeton, NJ:MPIF,1995:51-69.
    [73]Rawers J C. Warm Compaction of Attrition Milled Nanostructured Iron Powders[J]. Nano Structured Materials,1999,11(8):1055-1060.
    [74]RUTZ H G, HANEJKO F G. High Density Proeessing of Hperformance Ferrous Materials[J]. International Journal Powder Metal,1995,9(1):11-17.
    [75]CAPUS J. Warm Compacted Turbine Hub Leads New PM Thrust[J]. Metal Powder Report,1997,52(9):19-22.
    [76]DEGOIX C N, GRIFFO A, GERMAN R M. Effect of Lubrication Modeand Compaction Temperature on the Properties of Fe-Ni-Cu-Mo-C[J]. The Inteynational Journal of Powder Metallurgy,1998,34(2):29-33.
    [77]林涛,果世驹,李明怡,等.温压过程致密化机制探讨[J].北京科技大学学报,2000,22(2):131-133.
    [78]李元元,项品峰,徐铮,等.温压技术中的致密化机制[J].材料科学与工程,2001,19(1):39-42.
    [79]CAO S H, HUANG B Y, QU X H, et al. Densification Mechanism of Warm Compacrion and Powder Mixture Designing Rules[J]. Journal Cent Southuniv Technol,2000,7(1):4-6.
    [80]ANON B. Warm Compaction Moves in to Production[J]. Metal Powder Report,1996,51(7):38-42.
    [81]CAPUS J M. Warm Compacted Turbine Hub Leads New PM Thrust[J]. Metal Powder Report,1997,52(9):19-22.
    [82]ANON B. JPMA Awards High light PM/s Innovative Strengths[J]. Metal Powder Report,2000,3:10-14.
    [83]LOTHAR A M,王崇琳.新千年初的欧洲粉末冶金[J].粉末冶金工业,2001,11(2):7-10.
    [84]MICHAEL L, MARUCC I, MICHAEL C, et al. Properties of High Densitysinter-Hardening P/M Steels Processed Using an Advanced Bindersystem[A]. Advances in Powder Metallurgy & Particulate Materials [C], NJ, MPIF,2002:48-59.
    [85]DONALDSON I W, LUK S H, POSZMIK G, et al. Processing of Hybridalloysto High Densities [A]. Advances in Powder Metallurgy &Particulate Materials[C], NJ, MPIF,2002:170-185.
    [86]VELTL G, OPPERT A, PETZOLDT F. Warm Flow Compaction Fasters More Complex PM Parts [J]. Metal Powder Report,2001,56(2):26-28.
    [87]亓家钟. Ancordense温压工艺[J].粉末冶金工业,1995,5(1):14-16.
    [88]亓家钟.铁基材料高密度温压工艺[J].粉末冶金工业,1996,6(2):14-18.
    [89]EISEN W B, FERGUSON B L, GERMAN R M, et al. Powder Metal Technologies and Applications[M]. ASM Metals:Handbook,1998:7-11.
    [90]RICHARD F. HVC Punches PM to New Mass Production Limits[J]. Metal Powder Report,2002,57(9):26-31.
    [91]OLEG S, STEFAN U, HANSDETLFEF L, et al. Highly Dispersib Le Precipitated Silica with a High Surface Area US Patent,20060137575[P]. 2006-06-29.
    [92]SKOGLUND P. High Density PM Components by High Velocity Compaction:VOLKER A, CHIU L C, WILLAMFJ, et al:2001 International Comference on Power Transmission Components[C]. Ypsilanti:Metal PowderIndustries Federation,2001:16-17.
    [93]SKOGLUND P, DIZDAR S, Engstrun U. High Density Gears by Newfom-ing Technology[J]. Society of Autcmotive Engineers,2002,342(1):166-169.
    [94]JONSEN P, HAGGBLAD H A, TROIVE L, et al. Green Body Behaviour of Highvelocity Pressed Metal Powder[C]. Materials Science Forum, New Delhi,2007:289-292.
    [95]SKOGLUND P. High Density PM Components by High Velocitycom Paction[J]. Powder Metallurgy,2001,44(3):15-17.
    [96]CAROLINE E. Hoganacs Promotes Potential of High Velocity Compaction[J]. Metal Powder Report,2001,56(9):6-10.
    [97]HINZMANN G, STERKENBURG D. High-Density Multi-Leve PM Components by High Velocity Compaction[C]. HERBERT D, RAIMUND R. Euro PM 2004 Conference Proceedings. Shrewsbury UK:EPMA,2004: 541-546.
    [98]ASLUND C. High Velocity Compaction(HVC) of Stainless Steel Cas Atomized Powder[C]. HERBERT D and RAIMUND R. Euro PM 2004 Conference Proceedings. Shrewsbury UK:EPMA,2004:549-554.
    [99]DORE F, LAZZAROTTO L, BOURDIN S. High Velocity Compaction: Overview Ofmaterials[J]. Applications and Potential. Materials Science Forum,2007,534-536 293-296.
    [100]ORBAN P L. New Research Direction in Powder Metallurgy[J]. Romadian Reports in Physics,2004,56(3):505-516.
    [101]张建国,冯湘.粉末冶金成形新技术综述[J].济源职业技术学院学报,2006,5(1):27-28.
    [102]肖志瑜,陈平,李元元.粉末冶金高致密化的新途径[J].材料导报,2003, 17(11):5-8.
    [103]EISEN W B, FERUSON B L, GERMAN R M, et al. Powder Metal Technolgies and Applications[M]. ASM Metals, Hand-Book,2000:7-11.
    [104]SELECK M, SALAK A. Durability and Failure of Powder Forged Rolling Bearing Rings[J]. Wear.1999,236(1-2):47-54.
    [105]JANDESKA W, SLATTERY R, HANEJKO F, et al. Rolling Contact Fatigue Performance Contrasting Surface Densified, Powder Forged and Wrought Materials[J]. Advance in Powder Metallurgy and Particulate Materials.2005,3:1244-1255.
    [106]ILIA E, TUTTON K, ONEIL M L. Forging a Way Towards a Better Mix of PM Automotive Steels[J]. Metal Powder Report.2005,60(3):38-44.
    [107]SONTI N, RAO S, ANDERSON G. Bending Fatigue, Impact and Pitting Resistance of Ausform Finished P/M Gears[C]. Alexandria, United States: American Gear Manufacturers Association,2009:168-181.
    [108]GEIMAN T, CHRISTOPHERSON D, MARRA M, et al. Machin Ability and Performance of Precision Powder Forged Connecting Rods[J]. SAE Paper,2001,1:351-354.
    [109]CRUNCH H. Time at SAE Leaves the C-70 Conrod Case Bentand very Battered[J]. Metal Powder Report,2005,6(6):14-16.
    [110]邢军,戴建东,姚清泉,等.油田射孔弹弹盖:中国,ZL200320111670.8[P].2004-12-1.
    [111]王松波,吴士平,张浩然.锌合金弹体材料及工艺性能研究[R].大庆黑龙江省机械科学研究院,2006,12.
    [112]许志国,刘斌.液态模段生产球墨铸铁射孔弹壳体工艺性能研究[R].哈尔滨:大庆油田射孔弹厂,1995,10.
    [113]李玉东,王国军,刘洪汇.铝锌合金射孔弹壳体冷挤压工艺研究[R].大庆:黑龙江省机械工业研究所,1994,5.
    [114]马丽霞,赵军,朱清香.弹壳体冷挤压工艺[J].新技术新工艺,1997,4.43-45.
    [115]滕宏春,张凤兰,任先玉.射孔弹壳冷挤压成形参数的理论研究[J].机械工程学报,2001,37(4):89-92.
    [116]张立涛.射孔弹弹壳冷挤压成形工艺[J].大庆高等专科学校学报,2002,22(4):104-106.
    [117]田自勇,吴井增,董修志,等.无枪身聚能射孔弹弹壳强度分析及壁厚的设计[J].测井技术,1983,7(3):50-54.
    [118]付代轩.深穿透油气井射孔弹优化设计[J].测井技术,1998,22(5):362-365.
    [119]杜明章.无杵堵大孔径射孔弹研究[J].测井技术.1998,22(S1):89-91.
    [120]金玮玮.石油聚能射孔的数值模拟与弹壳设计[J].塑性工程学报,2010,17(6):121-126.
    [121]王艳萍,黄寅生,刘德全.浅谈石油射孔弹技术设计[J].煤矿爆破,2001,52(1):23-25.
    [122]石前.HSD89型深穿透射孔器研制[J].测井技术,2007,31(1):80-83.
    [123]赵云涛.药型罩对射孔弹射孔性能的影响[J].测井技术,2005,29(S1):41-43.
    [124]李艳圃.石油射孔弹爆轰波相互作用数值模拟分析[J].长春工业大学学报(自然科学版),2010,31(2):7-11.
    [125]张渝,周杰,胡启国.射孔弹壳体冷挤压工艺分析及有限元模拟[J].热加工工艺,2010,39(1):76-78.
    [126]宋维锡.金属学[M].北京:冶金工业出版社,1980:88-95.
    [127]刘传习,刘慧贞,苏鹏福,等. Fe-P-C-Cu合金的成分、组织与性能[J].粉末冶金技术,1986,1:52-55.
    [128]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998:301-327.
    [129]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社,2003:148-152.
    [130]宋玉强,李世春.元素粉末法制备Fe-Ni合金的工艺研究[J].新技术新工艺,2004,4:40-42.
    [131]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1987:55-60.
    [132]WANG Jian-xin, YANG Gang, LIU Tian-mo, et al. Effect of Ni Content on Mechanical Properties of 0Gr17Ni4Cu4Nb Stainless Stccl[J]. Transactions of Materials and Hcat Treatment,2010,31(12):56-60.
    [133]韩风麟.铁基粉末冶金零件热处理[J].粉末冶金工艺,2006,16(6):27-30.
    [134]周彼德.铜含量对铁基减摩材料组织性能的影响[J].粉末冶金技术1997,15(1):46-50.
    [135]SMITHELS C J. Metals Reference Book[M]. Reading Massusete:Butter Worth,1976:66-75.
    [136]陈华,李月英,刘勇兵,等.铬对FeNiMoCu系预合金粉末烧结性能的影响[J].材料热处理学报,2006,27(3):86-90.
    [137]古里维契,拉赫玛诺夫,高后秀译.粉末钢的热处理[M].天津大学出版社,1990:23-32.
    [138]GERMAN R M. Prediction of Sintering Density for Bimodal Powder Mixtures[J]. Metallurgical Transactions,1992,23(5):1455-1465.
    [139]SHAW N J. Densification and Coarsening During Solid State Sintering of Ceramics:Areview of the Models 1. Densification[J]. Powder Metallurgy International,1989,21(3):16-21.
    [140]Friedrich E, Schatt W. Sintering of One-component Model Systems: Nucleation and Movement of Dislocations in Necks[J]. Powder Metallurgy, 1980,23(4):193-197.
    [141]Schatt W, Friedrich E. Self-activation of Sintering Processes in One-component Systems[J]. Powder Metall,1981,13(1):15-20.
    [142]Ibid. Proceedings of the Institute for the Science of Sintering Ⅵ World Round Table Conference on Sintering[M]. Herceg-Novi:Kuzynski G C, 1985:133-137.
    [143]Schatt W et al. Powder Metall Inter[J], Metal Powder Report,1985,17(4): 176-182.
    [144]Miedema A R, de Chatel P F. Theory of Alloy Formation[M]. Warrendale Pa AIME:L H Bemett,1980:344-356.
    [145]Schatt W. et al. Shrinkage by Particle Sliding in Sintering Powder Compacts[J]. Powder Metall. Int,1984,16(1):9-11.
    [146]Milosevski M I et al. Sintering-Theory and Practice[M]. vol 14, Material Science Monographs, Pejovilik S:Ristic M M,1982:453-461.
    [147]阮建明,黄培云.粉末冶金原理[M].北京:机械工业出版社,2012:55-62.
    [148]Kipphut C M, German R M. Alloy Phase Stability in Liquid Phase Sintering[J]. Sci. Sintering,1988,20(1):31-40.
    [149]German R M. Liquid Phase Sintering[M]. Shrewsbury UK:Plenum Publishing Corporation,1985:32-46.
    [150]Munir Z A, German R M. Ageneralized Model for the Prediction of Periodic Trends in the Activation of Sintering of Refractory Metals[J]. High Temp Sci,1977,9:275-283.
    [151]Hondros E D, Seah M P. Segregation to Interfaces[J]. International Metals Reviews,1977,22:262-301.
    [152]German R M. Liquid Phase Sintering[M]. Shrewsbury UK:Plenum Publishing Corporation,1985:54-62.
    [153]Kingery W D, Narasimhan M D. Densification During Sintering in the Presence of a Liquid Phase Ⅱ Experimental[J]. Powder Metallurgy,1959, 30:307-310.
    [154]Lifshitz I M, Slyozov V V. The Kinetics of Precipitation From Supersaturated Solid Solutions[J]. Journal of Physics and Chemistry of Solids,1961,19(1):35-50.
    [155]田军龙,高英俊,罗志荣,等.陶瓷颗粒烧结致密化过程中微气孔的扩散与演化[J].广西科学,2010,17(4):332-336.
    [156]Voorhees P W. The Theory of Ostwald Ripening[J]. Journal of Statistical Physics,1985,38(1-2):231-252.
    [157]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998:15-36.
    [158]Lenel F V. Powder Metallrugy Principle and Application[M]. Metal Powder Industries Federation Princeton, New Jersey:Vollv Chelsea Publishing 1980:282-289.
    [159]Young T. Miscellaneous Works[M]. vol 1, Metal Powder Industries Federation, Princeton New Jersey:G Pouder,1980:245-255.
    [160]Kuczynski G. C. Self-Diffusion in Sintering of Metallic Particles[J]. Transactions of the American Institute of Mining,1949,185:169-178.
    [161]王玉玲,余文力.炸药与火工品[M].西安:西北工业大学出版社,2011:25-32.
    [162]田自勇,吴井增,董修志,等.无枪身聚能射孔弹弹壳强度分析及壁厚的设计[J].测井技术,1983,7:50-55.
    [163]古广钦.射孔弹技术发展的回顾和展望[J].测井技术,1992,2:4-6.
    [164]锡忠,常熹.油气井射孔弹及应用[M].北京:石油工业出版社,1992:5-11.
    [165]付代轩.深穿深油气井射孔弹优化设计[J].测井技术,1998,22(5):362-365.
    [166]郭圣延,徐永胜.影响石油射孔弹穿孔深度的几个主要因素[J].测井技 术,2005,29(2):52-54.
    [167]吴成义,张丽英.粉末冶金模具设计[M].北京:学苑出版社,1997:45-58.
    [168]阮建明,黄培云.粉末冶金原理[M].北京:机械工业出版社,2012:102-126.
    [169]张华诚.粉末冶金实用工艺学[M].北京:冶金工业出版社,2004:78-85.
    [170]阮建明,黄培云.粉末冶金原理[M].北京:机械工业出版社,2012:77-90.
    [171]翟德梅.挤压工艺及模具[M].北京:化学工业出版社,2004:7-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700