用户名: 密码: 验证码:
四氧化三铁基磁性聚合物的合成、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四氧化三铁基磁性聚合物材料由于其具有独特的超顺磁性、生物相容性以及其他可调节的优异的光、催化、吸附等性能,而在磁分离、催化、生物医学以及生物医药等领域有着广泛的应用前景。
     本论文围绕四氧化三铁基磁性聚合物材料的制备、结构表征、形貌表征、磁性能、吸附性能和催化性能等,展开对不同形貌、结构和组成的四氧化三铁基磁性聚合物材料的合成、磁分离性能以及催化性能的研究:
     (1)以油酸包覆的Fe3O4纳米粒子作为磁核,以MMA和DVB作为单体,分别使用正已烷、环已烷、甲苯等小分子致孔剂,采用改性悬浮聚合制备了10种磁性多孔微球(FMD),用氮气吸脱附法和压汞法表征了产物的孔结构,用TEM和SEM观察了产物的形貌,用TGA考察了四氧化三铁的包覆率。并尝试利用UV考察其脱除水体中的苯酚的能力。研究发现,FMD微球中存在类似于墨水瓶状孔的小口径大腹腔的孔。致孔剂类型和用量对FMD微球孔结构的影响是显著而复杂的。使用两种体系良溶剂作致孔剂(环已烷(CHX)和正已烷(n-HX))制备的产物均具有相对较高的比表面积。减少致孔剂用量,增加交联剂DVB的用量,都有利于形成较为完整的交联网络,从而提高FMD微球的四氧化三铁包覆率。此外,增加磁流体的用量,也可以提高四氧化三铁的包覆率。FMD磁性微球表现出明显Fe304晶相结构,并在室温下,表现为超顺磁性。研究发现,FMD磁性多孔微球可有效地去除水溶液中的苯酚,去除率可达99.32%。
     (2)以油酸包覆的Fe304纳米粒子作为磁核,以St和DVB作为单体,采用乳液聚合法制备了10种磁性Fe3O4/poly (St-co-DVB)微球,进一步以TEOS为硅源,制备了14种Fe3O4/poly (St-co-DVB)/SiO2有机/无机杂化的磁性微球。考察了单体组成、表面活性剂类型和磁流体的加入量对微球表面形貌、四氧化三铁包覆率及微球粒径等的影响。然后尝试以上述微球作为磁性基体,采用了水热法制备了Fe3O4/poly (St-co-DVB)/SiO2/TiO2磁性纳米催化剂,进一步研究其对罗丹明B(RhB)降解的光催化性能。研究发现,所制备的磁性纳米催化剂可在UV照射下有效地降解RhB。重复使用5次,其RhB的降解率仍在90%以上,仍具有高效的催化效果。此催化剂因其采用磁性无机.有机杂化磁性微球作为磁性基体,易于磁分离,有利于工业化使用。
     (3)制备了三个系列不同结构和形貌的磁性聚(六氯环三磷腈-co-双酚S)。以水热法制备了16种中空多孔的Fe3O4微球,并以此为磁核,以TEOS为硅源,在CTAB的存在下,在制得的Fe3O4微球外层包覆一层介孔二氧化硅制备了6种中空多孔Fe3O4/mSiO2和1种中空Fe3O4/nSiO2微球,再以BPS和HCCP作为单体,制备了4种中空多孔Fe3O4/mSiO2/PZS和4种中空Fe3O4/nSiO2/PZS微球。以共沉淀法制备的4种Fe3O4/OA纳米粒子为磁核,以BPS和HCCP作为单体,在TEA存在下,制备了9种Fe3O4/PZS磁性纳米线。以水热法制备了21种Fe304纳米线,并以此为磁核,以BPS和HCCP作为单体,在TEA存在下,制备了5种Fe3O4/PZS磁性纳米线。使用TEM和SEM观察了产物的形貌,用TGA考察了四氧化三铁的包覆率,XRD表征了产物的晶相结构,并采用DLS和SEM测试了产物的粒径,用SQUID测试了产物的磁性能,采用氮气吸脱附法表征了产物的比表面积和孔结构,此外,以上述制备的磁性聚磷腈复合材料为磁性基体,分别以Fe3O4/mSiO2/PZS为磁性基体,以二茂铁二甲酰氯为原料,利用酯化反应制备了Fe3O4/mSiO2/PZS/Fc磁性微球;以HAuCl4作为金源,采用化学沉积法制备了13种磁性聚磷腈纳米金催化剂,其对4.硝基苯酚在NaBH4存在下还原反应有较好的催化性能,并且此催化剂可循环使用。所得的聚膦腈磁性材料具有良好亲水性、良好热稳定性、生物相容性及较好的磁响应能力等等,有良好的工业应用前景。
Fe3O4-based magnetic polymer composite materials have been applied in many areas, including magnetic separation, catalysis, biomedical, bio-medicine and so on, because of their unique superparamagnetic, biocompatibility and excellent optical, catalytic and adsorption properties.
     In this thesis, we have focused on the studies of synthesis, structure, morphology, magnetic property, adsorption property and catalytic activity of the Fe3O4-based magnetic polymer composite materials. We have studied the synthesis, magnetic separation and catalytic property of Fe3O4-based magnetic polymer composite materials which have different morphology, structure, composite.
     (1) Ten different magnetic porous microspheres (FMD) were synthesized by modified suspension polymerization of methacrylate and divinylbenzene, in the presence of oleic acid coated Fe3O4nanopaticles, using n-hexane, cyclohexane, toluene as small molecules progent, respectively. The morphologies and properties of the magnetic porous microspheres were charaterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA), and X-ray powder diffraction (XRD). The pore size distribution and the specific surface area of magnetic porous microspheres were measured by nitrogen sorption and mercury porosimetry technique. The obtained microspheres were applied in the removal of phenol from aqueous solution, and the concentration of phenol aqueous solutions was measured by ultraviolet analyses (UV). It was found that magnetic porous microspheres had the ink bottle shape hole, some minor-caliber and big celiac hole. The amount and type of progents complicated and dramaticlly affected the pore structure of FMD microsphere. The magnetic porous microspheres possessed a high specific surface area by using n-hexane and cyclehexane as porogent. It was further demonstrated that the amounts of divinylbenzene and methacrylate, the volume ratio of porogents, and the dosage amount of ferrofluids affected the specific surface area of magnetic microspheres as well. Furthermore, results showed that obtained magnetic microspheres had a superparamagnetic behavior at room temperature due to the existence of Fe3O4crystalline structure. The results showed that magnetic microspheres had a high adsorption capacity and high separation efficiency (removal ratio reach to99.32%), due to their porous structure, polar groups, and superparamagnetic properties.
     (2) Ten kinds of Fe3O4/poly(styrene-co-divinylbenzene) microspheres were synthesized by emulsion polymerization with oleic acid coated Fe3O4nanoparticles as magnetic core, and styrene and divinylbenzene as monomer. Then, the above obtained microspheres were used to fourteen kinds of prepare Fe3O4/poly(styrene-co-divinylbenzene)/SiO2microspheres by sol-gel technology in the presence of tetraethoxysilane. The effects of the composite of monomer, the kinds of surfactant, and the content of oleic acid coated Fe3O4nanoparticles on the morphology, magnetic content and size of microspheres were investigated. The magnetic hybrid FesU4/poly(St-co-DVB)/SiO2/TiO2photocatalyst was prepared by one-pot solvothermal reactions by using the above silica modified microspheres as magnetic matrix. We investigated the catalytic property of as-prepared magnetic hybrid photocatalyst on the degration of RhodamineB (RhB). The results showed that the magnetic hybrid photocatalysts exhibited good photocatalytic activity under UV light irradiation and could be reused five times by magnetic separation without major loss of activity, and the degradation ratio of RhB still reached to90%.
     (3) Three series of magnetic poly(hexachlorocyclotriphosphazene-co-4,4'-dihydroxydiphenylsulfone) were synthesized with different structures and morphologies. Firstly, Fe3O4microspheres with hollow porous structures were prepared by hydrothermal method, and were used as the magnetic core to fabricate hollow porous Fe3O4/mSiO2and hollow Fe3O4/nSiO2microspheres, in the presence of TEOS and CTAB; Then, hollow porous Fe3O4/mSiO2/PZS and hollow Fe3O4/nSiO2/PZS microspheres were prepared by using BPS and HCCP as the monomer, hollow porous Fe3O4/mSiO2and hollow Fe3O4/nSiO2microspheres as magnetic matrix, respectively. Secondly, Fe3O4/OA nanoparticles were prepared by co-precipitation method, and were used as magnetic core to frabricate Fe3O4/PZS magnetic nanowires by inclusion polymerization with BPS and HCCP as monomer, in the presence of TEA. Thirdly, Fe3O4/PZS magnetic nanowires were prepared by in-situ polymerization method with as-prepared Fe3O4nanowires as magnetic core, BPS and HCCP as monomer, in the presence of TEA. The effects of experimental conditions on the morphology, size and performance of as-synthesized products were investigated. The morphology, structure and magnetic content of obtained products were examined by means of SEM, TEM, TGA and XRD, respectively. Moreover, the particle size of the products was characterized by dynamic light scattering (DLS) and nanomeasurer analyses, and the magnetic property of the products was measured by SQUID, and the specific surface area and pore structure of the products were characterized by nitrogen adsorption-desorption analyzer. In addition, the above-prepared magnetic polyphosphazene-containing materials were used as magnetic matrix to prepare Fe3O4/mSiO2/PZS/Fc microspheres by the esterification reaction, and magnetic polyphosphazenes-containing gold nanocatalysts by the chemical deposition method with HAuCl4as gold source, respectively. Furthermore, catalytic activity and reusability of these magnetic polyphosphazenes-containing gold nanocatalysts was investigated by choosing a model reaction, reduction reaction of n-nitroaniline to benzenediamine by NaBH4. It was found that as-prepared polyphosphazenes-based magnetic nanocatalysts had good hydrophilicity, good thermal stability, biocompatibility and better magnetic response ability and so on, and had good prospect in the field of industrial applications.
引文
[1]Lu AH, Salabas EL,Schuth F. Magnetic nanoparticles:synthesis, protection, functionalization, and application. Angewandte Chemie International Edition.2007,46(8):1222-1244.
    [2]Liu QQ, Wang L, Xiao AG, Yu HJ, Tan QH. A hyper-cross-linked polystyrene with nano-pore structure. European Polymer Journal.2008,44(8):2516-2522.
    [3]Kang YS, Risbud S, Rabolt JF, Stroeve P. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chemical Material.1996,8(9):2209-2211.
    [4]Basti H, Ben TaharL, Smiri LS, Herbst F, Vaulay MJ, Chau F, Ammar S, Benderbous S. Catechol derivatives-coated Fe3O4 and y-Fe2O3 nanoparticles as potential MRI contrast agents. Journal of Colloid and Interface Science Press, Corrected Proof.
    [5]Boudalis AK, Sanakis Y, Raptopoulou CP, Terzis A, Tuchagues JP, Perlepes SP. A trinuclear cluster containing the {Fe3(μ3-O)}7+ core:Structural, magnetic and spectroscopic (IR, Mossbauer, EPR) studies. Polyhedron.2005,24(12):1540-1548.
    [6]Araujo C, Almeida BG, Aguiar M, Mendes JA. Structural and magnetic properties of CoFe2O4 thin films deposited by laser ablation on Si (001) substrates. Vacuum.2008,82(12): 1437-1440.
    [7]Shafi KVPM, Koltypin Y, Gedanken A, Prozorov R, Balogh J, Lendvai J, Felner I. Sonochemical preparation of nanosized amorphous NiFe2O4 particles. The Journal of Physical Chemistry B.1997,101(33):6409-6414.
    [8]Cao SW, Zhu YJ, Ma MY, Li L, Zhang L. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and y-Fe2O3:Preparation and potential application in drug delivery. The Journal of Physical Chemistry C.2008,112(6):1851-1856.
    [9]Guskos N, Likodimos, V, Glenis S, Maryniak M, Baran M, Szymczak R, Roslaniec Z, Kwiatkowska M, Petridis D. Magnetic properties of Fe2O3/poly (Ether-Ester) nanocomposites. Journal of Nanoscience and Nanotechnology.2008,8(4):2127-2134.
    [10]Yan X, Liu G, Liu F, Tang BZ, Peng H, Pakhomov AB, Wong CY. Superparamagnetic triblock copolymer/Fe203 hybrid nanofibers. Angewandte Chemie.2001,113(19):3705-3708.
    [11]Du H, Zhang P, Liu F, Kan S, Wang D, Li T, Tang X. Trilayer composite poly (styrene/butyl acrylate/acrylic acid) terpolymer microspheres with Fe2O3 middle layer:Synthesis and characterization. Polymer International.1997,43(3):274-280.
    [12]Wang Y, Teng X, Wang JS, Yang H. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@ polystyrene core-shell nanoparticles. Nano letters.2003,3(6):789-793.
    [13]Zhang X, Huang X, Tang, X. Novel synthesis of magnetic poly (cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes with magnetic phases embedded in the walls. New Journal of Chemistry.2009,33(12):2426-2430.
    [14]Huang J, Pen H, Xu Z, Yi C. Magnetic Fe3O4/poly (styrene-co-acrylamide) composite nanoparticles prepared by microwave-assisted emulsion polymerization. Reactive and Functional Polymers.2008,68(1):332-339.
    [15]Mahdavian AR, Ashjari M, Mobarakeh HS. Nanocomposite particles with core-shell morphology. I. Preparation and characterization of Fe3O4-poly (butyl acrylate-styrene) particles via miniemulsion polymerization. Journal of Applied Polymer Science.2008,110(2): 1242-1249.
    [16]Yan F, Li J, Fu R, Lu Z, Yang W. Facile preparation of superparamagnetic Fe3O4/Poly (St-co-MPS)/SiO2 composite particles with high magnetization by introduction of silanol groups. Journal of Nanoscience and Nanotechnology.2009,9(10):5874-5879.
    [17]Ma Z, Guan Y, Liu X, Liu H. Covalent immobilization of albumin on micron-sized magnetic poly (methyl methacrylate-divinylbenzene-glycidyl methacrylate) microspheres prepared by modified suspension polymerization. Polymers for Advanced Technologies.2005,16(7): 554-558.
    [18]Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials:A review. Composites Science and Technology.2001,61(9): 1189-1224.
    [19]Liu X, Guan Y, Ma Z,Liu H. Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir.2004,20(23): 10278-10282.
    [20]Wang J, Chen Q, Zeng C, Hou B. Magnetic-Field-Induced growth of single-crystalline Fe3O4 nanowires. Advanced Materials.2004,16(2):137-140.
    [21]Ricq L, Lallemand FP, Gigandet M, Pagetti J. Influence of sodium saccharin on the electrodeposition and characterization of CoFe magnetic film. Surface and Coatings Technology.2001,138(2):278-283.
    [22]Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Advanced Materials.2007, 19(20):3163-3166.
    [23]Selvan RK, Augustin C, Berchmans LJ, Saraswathi R. Combustion synthesis of CuFe2O4. Materials Research Bulletin.2003,38(1):41-54.
    [24]Ata-Allah SS. XRD and mosbauer studies of crystallographic and magnetic transformations in synthesized Zn-substituted Cu-Ga-Fe compound. Journal of Solid State Chemistry.2004, 177(12):4443-4450.
    [25]Isnard O, Pop V, Buschow KJ. Magnetic properties of ThFe11Cx compounds (x=1.5,1.8). Journal of Magnetism and Magnetic Materials.2003,256(1-3):133-138.
    [26]Li Y, Li B, Yue M, Zhang J. Preparation and properties of Nd-Fe-B/Fe nanocomposite magnets. Journal of Iron and Steel Research, International.2006,13(Supplement 1):187-191.
    [27]Sofin M, Jansen M. Synthesis, crystal structure and magnetic properties of β-Na3FeO3. Solid State Sciences.2006,8(1):19-23.
    [28]Wang Y, Wei W, Maspoch D, Wu J, Dravid VP, Mirkin C. A. Superparamagnetic sub-5nm Fe@C nanoparticles:Isolation, structure, magnetic properties, and directed assembly. Nano Letters.2008,8(11):3761-3765.
    [29]Tai YL, Wang, L, Yan GQ, Gao JM, Yu HJ, Zhang, L. Recent research progress on the preparation and application of magnetic nanospheres. Polymer International.2011,60(7): 976-994.
    [30]Mahmoudi M, Milani A S, Stroeve P. Synthesis, surface architecture and biological response of superparamagnetic iron oxide nanoparticles for application in drug delivery:A review. International Journal of Biomedical Nanoscience and Nanotechnology.2010,1(2):164-201.
    [31]Indira T, Lakshmi P. Magnetic nanoparticles:A review. International Journal of Pharmaceutical Sciences and Nanotechnology.2010,3(3):1035-1042.
    [32]Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications. Accounts of Chemical Research.2009,42(8):1097-1107.
    [33]Caruntu D, Caruntu G, Chen Y, O'Connor CJ, Goloverda G, Kolesnichenko VL. Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity. Chemistry of Materials. 2004,16(25):5527-5534.
    [34]Zhang D, Liu Z, Han S, Li C, Lei B, Stewart MP, James M, Zhou C. Magnetite (Fe3O4) core-shell nanowires:Synthesis and magnetoresistance. Nano letters.2004,4(11):2151-2155.
    [35]Park SJ, Kim S, Lee S, Khim ZG, Char K., Hyeon T. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. Journal American Chemical Society.2000,122(35): 8581-8582.
    [36]Liu Z, Liu Y, Yao K, Ding Z, Tao J, Wang X. Synthesis and magnetic properties of Fe3O4 nanoparticles. Journal of Materials Synthesis and Processing.2002,10(2):83-87.
    [37]Morel AL, Nikitenko SI., Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M. Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano.2008,2(5): 847-856.
    [38]Cocquyt J, Soenen SJH, Saveyn P, Meeren PV, Cuyper MD. Partitioning of propranolol in the phospholipid bilayer coat of anionic magnetoliposomes. Journal of Physics:Condensed Matter. 2008,20(20):204102-204108.
    [39]Loo A, Pineda M, Saade H, Trevino M, L6pez R. Synthesis of magnetic nanoparticles in bicontinuous microemulsions. Effect of surfactant concentration. Journal of Materials Science. 2008,43(10):3649-3654.
    [40]Tago T, Hatsuta T, Miyajima K, Kishida, M, Tashiro S,Wakabayashi K. Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion. Journal of the American Ceramic Society.2002,85(9):2188-2194.
    [41]Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society.2002,124(28):8204-8205.
    [42]Yu H, Chen M, Rice PM, Wang SX, White R, Sun S. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano letters.2005,5(2):379-382.
    [43]Li Z, Sun Q, Gao M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone:Mechanism leading to Fe3O4. Angewandte Chemie International Edition.2005,44(1):123-126.
    [44]Li Y, Liao H,Qian Y. Hydrothermal synthesis of ultrafine a-Fe2O3 and Fe3O4 powders. Materials Research Bulletin.1998,33(6):841-844.
    [45]Khollam YB, Dhage, SR, Potdar HS, Deshpande SB, Bakare PP, Kulkarni SD, Date SK. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Materials Letters.2002,56(4):571-577.
    [46]Cheng W, Tang K, Qi Y, Sheng J, Liu Z. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. Journal of Materials Chemistry. 2010,20(9):1799-1805.
    [47]Lian S, Wang E, Gao L, Kang Z, Wu D, Lan Y, Xu L. Rowth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process. Solid state communications.2004,132(6):375-378.
    [48]He K, Xu CY, Zhen L, Shao WZ. Hydrothermal synthesis and characterization of single-crystalline Fe3O4 nanowires with high aspect ratio and uniformity. Materials Letters. 2007,61(14):3159-3162.
    [49]Fan X,Yao K. Structural and magnetic properties of Fe3O4 nanoparticles prepared by arc-discharge in water. Chinese Science Bulletin.2007,52(20):2866-2870.
    [50]Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X., Li M. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research Part A.2007, 80A(2):333-341.
    [51]Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews.2008,108(6):2064-2068.
    [52]Liu TY, Hu SH, Liu KH, Liu DM, Chen SY. Study on controlled drug permeation of magnetic-sensitive ferrogels:Effect of Fe3O4 and PVA. Journal of Controlled Release.2008, 126(3):228-236.
    [53]Lee DK, Kim YH, Kim CW, Cha HG, Kang YS. Vast magnetic monolayer film with surfactant-stabilized Fe3O4 nanoparticles using Langmuir-Blodgett technique. The Journal of Physical Chemistry B.2007,111(31):9288-9293.
    [54]Suslick KS, Fang M, Hyeon T. Sonochemical synthesis of iron colloids. Journal of the American Chemical Society.1996,118(47):11960-11961.
    [55]Morel AL, Nikitenko SI, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A. Sonochemical approach to the aynthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano.2008,2(5):847-856.
    [56]Zhao X, Cai Y, Wang T, Shi Y, Jiang G. Preparation of alkanethiolate-functionalized core/shell Fe3O4@Au nanoparticles and its interaction with several typical target molecules. Analytical chemistry.2008,80(23):9091-9096.
    [57]Tang D, Yuan R,Chai Y. Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. The Journal of Physical Chemistry B.2006,110(24):11640-11646.
    [58]Wang C, Daimon H, Sun S. Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano letters.2009,9(4):1493-1496.
    [59]Gao J, Zhang W, Huang P, Zhang B, Zhang X, Xu B. Intracellular spatial control of fluorescent magnetic nanoparticles. Journal of the American Chemical Society.2008,130(12): 3710-3711.
    [60]AbuMuch R, Meridor U, Frydman A, Gedanken A. Formation of a three-dimensional microstructure of Fe304-poly (vinyl alcohol) composite by evaporating the hydrosol under a magnetic field. The Journal of Physical Chemistry B.2006,110(16):8194-8203.
    [61]Kim D, Zhang Y, Voit W, Rao K, Muhammed M. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. Journal of magnetism and Magnetic Materials.2001,225(1):30-36.
    [62]Chen D, Ji G, Ma Y, Lee JY, Lu J. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high performance anode material for lithium ion batteries. ACS Applied Materials & Interfaces.2011,3(8):3078-3083.
    [63]Rouhana LL, SchlenoffJB. Aggregation resistant zwitterated superparamagnetic nanoparticles. Journal of Nanoparticle Research.2012,14(5):1-11.
    [64]Zheng Y, Cheng Y, Bao F, Wang Y. Synthesis and magnetic properties of Fe3O4 nanoparticles. Materials Research Bulletin.2006,41(3):525-529.
    [65]Zhang Z, Zhang L, Chen L, Wan QH. Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA. Biotechnology Progress.2006,22(2):514-518.
    [66]Yin H, Wang C, Zhu H, Overbury SH, Sun S, Dai S. Colloidal deposition synthesis of supported gold nanocatalysts based on Au-Fe3O4 dumbbell nanoparticles. Chemical Communications.2008,36(3):4357-4359.
    [67]Stjerndahl M, Andersson M, Hall HE, Pajerowski DM, Meisel MW, Duran RS. Superparamagnetic Fe304/SiO2 nanocomposites:Enabling the tuning of both the iron oxide load and the size of the nanoparticles. Langmuir.2008,24(7):3532-3536.
    [68]Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion:The effect of nonionic surfactants. Langmuir.2001,17(10):2900-2906.
    [69]Tartaj P, Serna CJ. Microemulsion-assisted synthesis of tunable superparamagnetic composites. Chemistry of Materials.2002,14(10):4396-4402.
    [70]Tartaj P, Tartaj J. Microstructural evolution of iron-oxide-doped alumina nanoparticles synthesized from microemulsions. Chemistry of Materials.2002,14(2):536-541.
    [71]Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin,YS, Wu SH, Hsu SC, Liu HM, Mou CY, Yang CS, Huang DM, Chen YC. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Letters.2006,7(1):149-154.
    [72]Yi DK, Lee SS, Papaefthymiou GC, Ying JY. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chemistry of Materials.2006,18(3):614-619.
    [73]Lu Y, Yin Y, Mayers T, Xia Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Letters.2002,2(3):183-186.
    [74]Bomat-Miguel O, Leconte Y, Morales MP, Herlin-Boime N, Veintemillas-Verdaguer S. Laser pyrolysis preparation of SiO2-coated magnetic nanoparticles for biomedical applications. Journal of Magnetism and Magnetic Materials.2005,290-291 (Part 1):272-275.
    [75]Im SH, Herricks T, Lee YT, Xia Y. Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chemical Physics Letters. 2005,401(1-3):19-23.
    [76]Karapinar N, Hoffmann E, Hahn HH. Magnetite seeded precipitation of phosphate. Water Research.2004,38(13):3059-3066.
    [77]Deng Y, Qi D, Deng C, Zhang X, Zhao D. Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society.2008,130(1):28-29.
    [78]Morel AL, Nikitenko SI, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A. sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano.2008,2(5):847-856.
    [79]Lu Z, Wang G, Zhuang J, Yang W. Effects of the concentration of tetramethylammonium hydroxide peptizer on the synthesis of Fe3O4/SiO2 core/shell nanoparticles. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,278(1-3):140-143.
    [80]Bezencenet O, Barbier A, Ohresser P, Belkhou R, Stanescu S, Owens J, Guittet MJ. Interfacial reactivity of magnetic exchange coupled Co/α-Fe2O3 interfaces. Surface Science.2007, 601(18):4321-4325.
    [81]O'Connor CJ, Sims JA, Kumbhar A, Kolesnichenko VL, Zhou WL, Wiemann JA. Magnetic properties of FePt/Au and CoPt/Au core-shell nanoparticles. Journal of magnetism and Magnetic Materials.2001,22(6):1915-1917.
    [82]Wang S, Kang SS, Nikles DE, Harrell JW, Wu XW. Magnetic properties of self-organized L10 FePtAg nanoparticle arrays. Journal of Magnetism and Magnetic Materials.2003,266(1-2): 49-56.
    [83]Xiao QF, Brina.k E, Zhang ZD, Buschow KHJ. Phase transformation and magnetic properties of Fe-Pt-based bulk alloys. Journal of Alloys and Compounds.2004,364(1-2):315-322.
    [84]Lim J, Eggeman A, Lanni F, Tilton R, Majetich S. Synthesis and single-particle optical detection of low-polydispersity plasmonic-superparamagnetic nanoparticles. Advanced Materials-Deerfield Beach Then Weinheim.2008,20(9):1721-1728..
    [85]Xuan S, Jiang W, Gong X, Hu Y, Chen Z. Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity. The Journal of Physical Chemistry C.2008,113(2): 553-558.
    [86]Wang C, Yin L, Zhang L, Kang L, Wang X, Gao R. Magnetic (y-Fe203@Si02)n@Ti02 functional hybrid nanoparticles with actived photocatalytic ability. The Journal of Physical Chemistry C.2009,113(10):4008-4011.
    [87]Ang C, Giam L, Chan Z, Lin A, Gu H, Devlin E, Papaefthymiou G, Selvan S, Ying J. Facile synthesis of Fe2O3 nanocrystals without Fe (CO)5 precursor and one-pot synthesis of highly fluorescent Fe2O3-CdSe nanocomposites. Advance Materials.2009,21(1):869-873.
    [88]Choi J, Jun Y, Yeon S, Kim H, Shin J, Cheon J. Biocompatible heterostructured nanoparticles for multimodal biological detection. Journal of the American Chemical Society.2006,128(50): 15982-15983.
    [89]Chen YJ, Gao P, Wang RX, Zhu CL, Wang LJ, Cao MS, Jin HB. Porous Fe3O4/SnO2 core/shell nanorods:Synthesis and electromagnetic properties. The Journal of Physical Chemistry C. 2009,113(23):10061-10064.
    [90]He S, Zhang H, Delikanli S, Qin Y, Swihart MT, Zeng H. Bifunctional Magneto-Optical FePt-CdS Hybrid Nanoparticles. The Journal of Physical Chemistry C.2008,113(1):87-90.
    [91]Gu H, Zheng R, Zhang XX, Xu B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles:A conjugate of quantum dot and magnetic nanoparticles. Journal of the American Chemical Society.2004,126(18):5664-5665.
    [92]Xu Z, Hou Y, Sun S. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. Journal of the American Chemical Society.2007,129(28): 8698-8699.
    [93]Dobson J. Magnetic nanoparticles for drug delivery. Drug Development Research.2006,67(1): 55-60.
    [94]Ding Y, Hu Y, Jiang X, Zhang L,Yang C. Polymer-monomer pairs as a reaction system for the synthesis of magnetic Fe3O4-polymer hybrid hollow nanospheres. Angewandte Chemie International Edition.2004,43(46):6369-6372.
    [95]Hu F, Neoh K G, Cen L, Kang ET. Cellular response to magnetic nanoparticles "PEGylated" via surface-initiated atom transfer radical polymerization. Biomacromolecules.2006,7(3): 809-816.
    [96]Nicolas J, Ruzette AV, Farcet C, Gerard P, Magnet S, Charleux B. Nanostructured latex particles synthesized by nitroxide-mediated controlled/living free-radical polymerization in emulsion. Polymer.2007,48(24):7029-7040.
    [97]Wilson J, Poddar P, Frey N, Srikanth H, Mohomed K, Harmon J, Kotha S, Wachsmuth J. Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. Journal of Applied Physics.2004,95(3):1439-1443.
    [98]Wang X, Ding X, Zheng Z, Hu X, Cheng X, Peng Y. Magnetic molecularly imprinted polymer particles synthesized by suspension polymerization in silicone oil. Macromolecular Rapid Communications.2006,27(14):1180-1187.
    [99]Pollert E, Kniek K, Maryko M, Zaveta K, Lanok A, Bohaek J, Horak D, Babi M. Magnetic poly (glycidyl methacrylate) microspheres containing maghemite prepared by emulsion polymerization. Journal of Magnetism and Magnetic Materials.2006,306(2):241-247.
    [100]Yang J, Park SB, Yoon HG, Huh YM, Haam S. Preparation of poly-caprolactone nanoparticles containing magnetite for magnetic drug carrier. International Journal of Pharmaceutics.2006, 324(2):185-190.
    [101]Horak D, Chekina N. Preparation of magnetic poly (glycidyl methacrylate) microspheres by emulsion polymerization in the presence of sterically stabilized iron oxide nanoparticles. Journal of Applied Polymer Science.2006,102(5):4348-4357.
    [102]Zhi J, Wang Y, Lu Y, Ma J, Luo G. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. Reactive and Functional Polymers. 2006,66(12):1552-1558.
    [103]Liu ZL, Yang XB, Yao KL, Du GH, Liu ZS. Preparation and characterization of magnetic poly (St-co-MAA-co-AM) microspheres. Journal of Magnetism and Magnetic Materials.2006, 302(2):529-535.
    [104]Li G, Yan S, Zhou E, Chen Y. Preparation of magnetic and conductive NiZn ferrite-polyaniline nanocomposites with core-shell structure. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,276(1-3):40-44.
    [105]Lu S, Forcada J. Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization. Journal of Polymer Science, Part A, Polymer Chemistry. 2006,44(13):4187-4203.
    [106]Sun Y, Wang B, Wang H, Jiang J. Controllable preparation of magnetic polymer microspheres with different morphologies by miniemulsion polymerization. Journal of Colloid and Interface Science.2007,308(2):332-336.
    [107]Tan CJ, Chua HG, Ker KH, Tong YW. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Analytical Chemistry.2008,80(3):683-692.
    [108]Faridi-Majidi R, Sharifi-Sanjani N, Agend F. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization. Thin Solid Films.2006,515(1): 368-374.
    [109]Schmid A, Fujii S, Armes SP. Polystyrene-silica nanocomposite particles via alcoholic dispersion polymerization using a cationic azo initiator. Langmuir.2006,22(11):4923-4927.
    [110]Zeng H, Lai Q, Liu X, Wen D, Ji X. Factors influencing magnetic polymer microspheres prepared by dispersion polymerization. Journal of Applied Polymer Science.2007,106(5): 3474-3480.
    [111]Choi HJ, Park BJ, Cho MS, You JL. Core-shell structured poly (methyl methacrylate) coated carbonyl iron particles and their magnetorheological characteristics. Journal of Magnetism and Magnetic Materials.2007,310(2P3):2835-2837.
    [112]Hamoudeh M, Faraj AA, Canet-Soulas E, Bessueille F, Leonard D, Fessi H. Elaboration of PLLA-based superparamagnetic nanoparticles:Characterization, magnetic behaviour study and in vitro relaxivity evaluation. International Journal of Pharmaceutics.2007,338(1-2): 248-257.
    [113]Liu X, Kaminski MD, Chen H, Torno M, Taylor LT, Rosengart A.J. Synthesis and characterization of highly-magnetic biodegradable poly (D, L-lactide-co-glycolide) nanospheres. Journal of Controlled Release.2007,119(1):52-58.
    [114]Jiang C, Tsukruk VV. Freestanding nanostructures via layer-by-layer assembly. Advanced Materials.2006,18(7):829-840.
    [115]Guo J, Yang W, Wang C, He J, Chen J. Poly (N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres:Preparation, characterization, and biomedical applications. Chemistry Materials.2006,18(23):5554-5562.
    [116]Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society.2006,128(3):688-689.
    [117]Yeh JM, Weng CJ, Liao WJ, Mau YW. Anticorrosively enhanced PMMA-SiO2 hybrid coatings prepared from the sol-gel approach with MSMA as the coupling agent. Surface & Coatings Technology.2006,201(3-4):1788-1795.
    [118]Liang YY, Zhang LM, Jiang W, Li W. Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation. ChemPhysChem. 2007,8(16):2367-2372.
    [119]Yang F, Li Y, Chen Z, Zhang Y, Wu J, Gu N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials.2009,30(23-24):3882-3890.
    [120]Lee SJ, Jeong JR, Shin SC, Kim JC, Chang YH, Lee KH, Kim JD. Magnetic enhancement of iron oxide nanoparticles encapsulated with poly (d,l-latide-co-glycolide). Colloids and Surfaces A:Physicochemical and Engineering Aspects.2005,255(1):19-25.
    [121]Lin H, Watanabe Y, Kimura M, Hanabusa K, Shirai H. Preparation of magnetic poly (vinyl alcohol)(PVA) materials by in situ synthesis of magnetite in a PVA matrix. Journal of Applied Polymer Science.2003,87(8):1239-1247.
    [122]Deng J, He CL, Peng Y, Wang J, Long X, Li P, Chan ASC. Magnetic and conductive Fe304-polyaniline nanoparticles with core-shell structure. Synthetic Metals.2003,139(2): 295-301.
    [123]Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P, Chan ASC. Magnetic and conducting Fe3O4-cross-linked polyaniline nanoparticles with core-shell structure. Polymer. 2002,43(8):2179-2184.
    [124]Horak D, Benedyk N. Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids. Journal of Polymer Science Part A:Polymer Chemistry.2004,42(22):5827-5837.
    [125]Mackova H, Kralova D, Horak D. Magnetic poly (N-isopropylacrylamide) microspheres by dispersion and inverse emulsion polymerization. Journal of Polymer Science Part A:Polymer Chemistry.2007,45(24):5884-5898.
    [126]Denizli A, Say R, Piskin E. Removal of aluminium by Alizarin Yellow-attached magnetic poly(2-hydroxyethyl methacrylate) beads. Reactive and Functional Polymers.2003,55(1): 99-107.
    [127]Yang C, Liu H, Guan Y, Xing J, Liu J, Shan G. Preparation of magnetic poly (methylmethacrylate-divinylbenzene-glycidylmethacrylate) microspheres by spraying suspension polymerization and their use for protein adsorption. Journal of magnetism and Magnetic Materials.2005,293(1):187-192.
    [128]Chen YH, Liu YY, Lin RH, Yen FS. Characterization of magnetic poly (methyl methacrylate) microspheres prepared by the modified suspension polymerization. Journal of Applied Polymer Science.2008,108(1):583-590.
    [129]Pollert E, Knizek K, Marysko M, Zaveta K, Lancok A, Bohacek J, Horak D, Babic M. Magnetic poly (glycidyl methacrylate) microspheres containing maghemite prepared by emulsion polymerization. Journal of Magnetism and Magnetic Materials.2006,306(2): 241-247.
    [130]Xie G, Zhang Q, Luo Z, Wu M, Li T. Preparation and characterization of monodisperse magnetic poly (styrene butyl acrylate methacrylic acid) microspheres in the presence of a polar solvent. Journal of Applied Polymer Science.2003,87(11):1733-1738.
    [131]Mahdavian AR, Ashjari M, Mobarakeh HS. Nanocomposite particles with core-shell morphology. Ⅰ. Preparation and characterization of Fe304-poly (butyl acrylate-styrene) particles via miniemulsion polymerization. Journal of Applied Polymer Science.2008,110(2): 1242-1249.
    [132]Wen HY, Fang HF, Xiao SL. Preparation and characterization of magnetic functional hybrid particles. Applied Mechanics and Materials.2012,101(3):918-921.
    [133]Luo YD, Dai CA, Chiu WY. Polystyrene/Fe3O4 composite latex via miniemulsion polymerization-nucleation mechanism and morphology. Journal of Polymer Science Part A: Polymer Chemistry.2008,46(3):1014-1024.
    [134]Yang S, Liu H, Zhang Z. Fabrication of novel multihollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via water-in-oil-in-Water double emulsions. Langmuir.2008,24(18):10395-10401.
    [135]Liu GY, Wang H, Yang XL. Synthesis of pH-sensitive hollow polymer microspheres with movable magnetic core. Polymer.2009,50(12):2578-2586.
    [136]Lo CT, Chao C.J. Synthesis and characterization of magnetic nanoparticle/block copolymer composites. Langmuir.2009.45(2):152-159.
    [137]Wan S, Zheng Y, Liu Y, Yan H, Liu K. Fe3O4 nanoparticles coated with homopolymers of glycerol mono (meth) acrylate and their block copolymers. JouranI of Materials Chemistry. 2005,15(33):3424-3430.
    [138]Fan QL, Neoh KG, Kang ET, Shuter B, Wang SC. Solvent-free atom transfer radical polymerization for the preparation of poly (poly (ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles:synthesis, characterization and cellular uptake. Biomaterials.2007, 28(36):5426-5436.
    [139]Lu CH, Wang Y, Li Y, Yang HH, Chen X, Wang XR. Bifunctional superparamagnetic surface molecularly imprinted polymer core-shell nanoparticles. Journal of Materials Chemistry.2009, 19(8):1077-1079.
    [140]Zhu L, Xu Y, Yuan W, Xi J, Huang X, Tang X, Zheng S. One-Pot synthesis of poly (cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes via an in situ template approach. Advanced Materials.2006,18(22):2997-3000.
    [141]Zhang, X., Dai, Q., Huang, X.,Tang, X. Synthesis and characterization of novel magnetic Fe3O4/polyphosphazene nanofibers. Solid State Sciences.2009,11(11):1861-1865.
    [142]Zhou J, Meng L, Lu Q, Fu J, Huang X. Superparamagnetic submicro-megranates:Fe3O4 nanoparticles coated with highly cross-linked organic/inorganic hybrids. Chemical Communications.2009, (42):6370-6372.
    [143]Huska D, Hubalek J, Adam V, Vajtr D, Horna A, Trnkova L, Havel L, Kizek R. Automated nucleic acids isolation using paramagnetic microparticles coupled with electrochemical detection. Talanta.2009,79(2):402-411.
    [144]Kim J, Lee J. Park T. Hyeon designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Advanced Materials.2008,20(3):478-483.
    [145]Joshi HM, Lin YP, Aslam M, Prasad PV, Schultz-Sikma EA, Edelman R, Meade T, Dravid VP. Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. Journal of Physical Chemistry. C.2009,113(41):17761-17767.
    [146]Apostolova I, Wesselinowa JM. Composition dependence of the coercivity in magnetic nanoparticles suitable for magnetic hyperthermia. Phys. Status Solidi B-Basic Solid State Physical.2009,246(8):1925-1930.
    [147]Li FR, Yan WH, Guo YH, Qi H, Zhou HX. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. International Journal of Hyperthermia.2009,25(5):383-391.
    [148]Zhang F,Wang CC. Preparation of P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles. Langmuir.2009,25(14):8255-8262.
    [149]Hung CW, Holoman TRP, Kofinas P, Bentley WE. Towards oriented assembly of proteins onto magnetic nanoparticles. Biochemical Engineering Journal.2008,38(2):164-170.
    [150]Cao SW, Zhu YJ, Ma MY, Li L, Zhang L. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and Fe2O3:Preparation and potential application in drug delivery. The Journal of Physical Chemistry C.2008,112(6):1851-1856.
    [151]Fernando P, Yossi W, Eugenii K, Itamar W. Magnetically amplified DNA assays (MADA): sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles13. Angewandte Chemie International Edition.2003,42(21):2372-2376.
    [152]Tai YL, Wang L, Yan GQ, Gao JM, Yu HJ, Zhang L. Recent research progress on the preparation and application of magnetic nanospheres. Polymer International.2011,60(7): 976-994..
    [153]Afkhami A, NoroozAsl R. Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles. Colloid Surface. A-Physicochem. Eng. Asp.2009,346(1-3):52-57.
    [154]Hu J, Chen G, Lo IMC. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research.2005,39(18):4528-4536.
    [155]Zheng YQ, Tong CY, Wang B, Xie Y, Liao HD, Li D, Liu XM. Development and application of tumor-targeting magnetic nanoparticles FA-StNP@Fe2O3 for hyperthermia. Chinese Science Bulletin.2009,54(17):2998-3004.
    [156]Ngomsik AF, Bee A, Siaugue JM, Cabuil V, Cote G. Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Research.2006,40(9):1848-1856.
    [157]Senftle FE, Thorpe AN, Grant JR, Barkatt, A. Superparamagnetic nanoparticles in tap water. Water Research.2007,41(13):3005-3011.
    [158]Phu ND, Phong PC, Chau N, Luong NH, Hoang LH, Hai NH. Arsenic removal from water by magnetic Fe1-xCoxFe2O4 and Fe1-yNiyFe2O4 nanoparticles. Journal of Experimental Nanoscience.2009,4(3):253-258.
    [159]Uzun L, Kara A, Osman B, Yilmaz E, Besirli N, Denizli A. Removal of heavy-metal ions by magnetic beads containing triazole chelating groups. Journal of Applied Polymer Science. 2009,114(4):2246-2253.
    [160]Gao ZW, Peng XJ, Zhang HM, Luan ZK, Fan B. Montmorillonite-Cu(Ⅱ)/Fe(Ⅲ) oxides magnetic material for removal of cyanobacterial microcystis aeruginosa and its regeneration. Desalination.2009,247(1-3):337-345.
    [161]Ito D, Nishimura K, Miura O. Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation. Journal of Physics:Conference Series.2009,156(8):012033-012033.
    [162]Zhang SX, Zhao XL, Niu HY, Shi YL, Cai YQ, Jiang GB. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. Journal of Hazardous Materials.2009,167(1-3):560-566.
    [163]Baldrian P, Merhautov V, Gabriel J, Nerud F, Stopka, P, Hrub M, Benes MJ. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Applied Catalysis B:Environmental.2006,66(3-4):258-264.
    [164]Wu R, Qu J. Removal of water-soluble azo dye by the magnetic material MnFe2O4. Journal of Chemical Technology & Biotechnology.2005,80(1):20-27.
    [165]Wu R, Qu J, Chen Y. Magnetic powder MnO-Fe2O3 composite:a novel material for the removal of azo-dye from water. Water Research.2005,39(4):630-638.
    [166]Wu R, Qu J, He H,Yu Y. Removal of azo-dye acid red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder. Applied Catalysis B:Environmental.2004, 48(1):49-56.
    [167]Zargar B, Parham H, Hatamie A. Fast removal and recovery of amaranth by modified iron oxide magnetic nanoparticles. Chemosphere.2009,76(4):554-557.
    [168]Tian H, Li J, Shen Q, Wang H, Hao Z, Zou L, Hu Q. Using shell-tunable mesoporous Fe3O4@HMS and magnetic separation to remove DDT from aqueous media. Journal of Hazard Materials.2009,171(1-3):459-464.
    [169]Cumbal L, Greenleaf J, Leun D, SenGupta AK. Polymer supported inorganic nanoparticles: characterization and environmental applications. Reactive and Functional Polymers.2003, 54(1-3):167-180.
    [170]DeMarco MJ, SenGupta AK, Greenleaf JE. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research.2003,37(1):164-176.
    [171]Peng X, Wang Y, Tang X, Liu W. Functionalized magnetic core-shell Fe3O4@SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg(Ⅱ). Dyes and Pigments.2011,91(1): 26-32.
    [172]Wang L, Yan JX, Qin W, Liu W, Wang R. A new Rhodamine-Based Single Molecule Multianalyte (Cu2+, Hg2+) Sensor and Its Application in the Biological System. Dyes and Pigments.2011.84(2):25-36.
    [173]Liang BL. Adsorption Characteristics of Hg2+ Ions Using Fe3O4/Chitosan Magnetic Nanoparticles. Advanced Materials Research.2011,291(5):72-75.
    [174]Sun L, Li Y, Sun M, Wang H, Xu S, Zhang C,Yang Q. Porphyrin-functionalized Fe3O4@ SiO2 core/shell magnetic colorimetric material for detection, adsorption and removal of Hg2+in aqueous solution. New Journal of Chemistry.2011,35(11):2697-2704.
    [175]Rofouei MK, Rezaei A, Masteri-Farahani M, Khani H. Selective extraction and preconcentration of ultra-trace level of mercury ions in water and fish samples using Fe2O4-magnetite-nanoparticles functionalized by triazene compound prior to its determination by inductively coupled plasma-optical emission spectrometry. Analytical Methods.2012,4(4): 959-966.
    [176]Chen HT, Kaminski MD, Caviness PL, Liu XQ, Dhar P, Torno M, Rosengart AJ. Magnetic separation of micro-spheres from viscous biological fluids. Physical Medicine Biology.2007, 52(4):1185-1196.
    [177]Parton E, De Palma R, Borghs G. Biomedical applications using magnetic nanoplarticles. Solid State Technology.2007,50(8):47-49.
    [178]Schwanzer-Pfeiffer D, Mitteregger R, Rossmanith E, Falkenhagen D. Comparison of specific adsorbents for tumor necrosis factor-alpha and therapeutic anti-tumor necrosis factor-alpha antibodies:an in vitro sepsis model. International Journal of Artificial Organs.2006,29(12): 1140-1147.
    [179]Chen H, Kaminski MD, Liu X, Mertz CJ, Xie Y, Torno MD, Rosengart AJ. A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques. Medical Hypotheses.2007,68(5):1071-1079.
    [180]Zhao ZL, Bian ZY, Chen LX, He XW, Wang YF. Synthesis and surface-modifications of iron oxide magnetic nanoparticles and applications on separation and analysis. Progess in Chemistry.2006,18(10):1288-1297.
    [181]Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials.2005,26(18):3995-4021.
    [182]Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications. Accounts of Chemical Research 2009,42(8):1097-1107.
    [183]Safarik I, Safarikova M. Magnetic techniques for the isolation and purification of proteins and peptides. BioMagnetic Research and Technology.2004,2(1):7-11.
    [184]Hsing I, Xu Y, Zhao W. Micro-and nano-magnetic particles for applications in biosensing. Electroanalysis.2007,19(7-8):755-768.
    [185]Willner I, Cheglakov Z, Weizmann Y, Sharon E. Analysis of DNA and single-base mutations using magnetic particles for purification, amplification and DNAzyme detection. Analyst. 2008,133(7):923-927.
    [186]Liu XQ, Xing JM, Guan YP, Shan GB, Liu HZ. Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization. Colloid Surface. A-Physicochem. Eng. Asp.2004,238(1-3):127-131.
    [187]Peng ZG, Hidajat K, Uddin MS. Conformational change of adsorbed and desorbed bovine serum albumin on nano-sized magnetic particles. Colloid Surface. B-Biointerfaces.2004, 33(1):15-21.
    [188]Kiova J, Panova A, Rittich B, Horak D. Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. Journal of Chromatography A.2005,1064(2): 247-253.
    [189]Mohapatra S, Pal D, Ghosh SK, Pramanik P. Design of superparamagnetic iron oxide nanoparticle for purification of recombinant proteins. Journal of Nanoscience and Nanotechnology.2007,7(9):3193-3199.
    [190]Lin J, Lin YS, Kuo ST, Jiang CM, Wu MC. Purification of alpha-amylase from human saliva by superparamagnetic particles. Journal of Science Food Agriculture.2009,89(4):574-578.
    [191]Lee J, Lee Y, Youn JK, Bin NaH, Yu T, Kim H, Lee SM, Koo YM, Kwak JH, Park HG, Chang HN, Hwang M, Park JG, Kim J, Hyeon T. Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small.2008,4(1):143-152.
    [192]Lin J, Lin YS, Kuo ST, Jiang CM, Wu MC. Purification of soybean amylase by superparamagnetic particles. Food Chemistry.2009,117(1):94-98.
    [193]Sopaci SB, Simsek I, Tural B, Volkan M, Demir AS. Carboligation reactions with benzaldehyde lyase immobilized on superparamagnetic solid support. Organic & Biomolecular Chemistry.2009,7(8):1658-1664.
    [194]Deng Y, Deng C, Qi D, Liu C, Liu J, Zhang X, Zhao D. Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin. Advanced Materials.2009, 21(13):546-565.
    [195]Jin H, Lin JM, Wang X, Xin TB, Liang SX, Li ZJ, Hu GM. Magnetic particle-based chemiluminescence enzyme immunoassay for free thyroxine in human serum. Journal of Pharmaceutical and Biomedical Analysis 2009,50(5):891-896.
    [196]Lin H, Chen W, Chen Y. Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Analytical and Bioanalytical Chemistry.2009,394(8):2129-2136.
    [197]Abdelhamid E. Magnetic latex particles in nanobiotechnologies for biomedical diagnostic applications:State of the Art. Macromolecular Symposia.2009,281(1):14-19.
    [198]Veyret R, Elaissari A, Marianneau P, Sall A A, Delair T. Magnetic colloids for the generic capture of viruses. Analytical Biochemistry.2005,346(1):59-68.
    [199]Berensmeier S. Magnetic particles for the separation and purification of nucleic acids. Applied Microbiology and Biotechnology.2006,73(3):495-504.
    [200]Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical Microdevices.2006,8(4):299-308.
    [201]Li YG, Gao HS, Li WL, Xing JM, Liu HZ. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour. Technology.2009,100(21):5092-5096.
    [202]Zhang SZ, Chen HC, Gu GQ. Lu Magnetic Hollow Spheres of Periodic Mesoporous Organosilica and Fe3O4 Nanocrystals:Fabrication and Structure Control. Advanced Materials. 2008,20(4):805-809.
    [203]Banerjee S, Chen D. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology.2009, 20(18):185101-185109.
    [204]Butoescu N, Jordan O, Burdet P, Stadelmann P, Petri-Fink A, Hofmann H, Doelker E. Dexamethasone-containing biodegradable superparamagnetic microparticles for intra-articular administration:Physicochemical and magnetic properties, in vitro and in vivo drug release. European Journal of Pharmaceutics and Biopharmaceutics.2009,72(3):529-538.
    [205]Cao HN, He J, Deng L, Gao XQ. Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core-shell nanoparticles via layer-by-layer method. Applied Surface Science.2009,255(18):7974-7980.
    [206]Fan LH, Luo YL, Chen YS, Zhang CH, Wei QB. Preparation and characterization of Fe3O4 magnetic composite microspheres covered by a P(MAH-co-MAA) copolymer. Journal of Nanoparticle Research.2009,11(2):449-458.
    [207]Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria J. Magnetic nanoparticles for drug delivery. Nano Today.2007,2(3):22-32.
    [208]Yathindranath V, Hegmann T, Van Lierop J, Potter K, Fowler CB, Moore DF. Simultaneous magnetically directed drug convection and MR imaging. Nanotechnology.2009,20(40): 12-18.
    [209]Gao J, Xu B. Applications of nanomaterials inside cells. Nano Today.2009,4(1):37-51.
    [210]Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Antwerp MEV, Landmark KJ. Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonanceimaging of tumors. Advanced Materials.2008,20(9):1671-1678.
    [211]Ma Z, Liu H. Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine. China Particuology.2007,5(1-2):1-10.
    [212]Larsen EKU, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, Ostergaard L, Horsman MR, Besenbacher F, Howard K.A, Kjems J. Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. Acs Nano.2009, 3(7):1947-1951.
    [213]Panella B, Vargas A, Baiker A. Magnetically separable Pt catalyst for asymmetric hydrogenation. Journal of Catalysis.2009,261(1):88-93.
    [214]Ranganath KVS, Kloesges J, Schafer AH, Glorius F. Asymmetric nanocatalysis: N-heterocyclic carbenes as chiral modifiers of Fe3O4/Pd nanoparticles. Angewandte Chemie International Edition.2010,49(42):7786-7789.
    [215]Wang R, Wang X, Xi X, Hu R, Jiang G. Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites. Advances in Materials Science and Engineering.2012,8(1): 526-532.
    [216]Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T. A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angewandte Chemie.2007,119(37):7169-7173.
    [217]Chen Y, Liu Y, Lin R, Yen F. Photocatalytic degradation of p-phenylenediamine with Ti02-coated magnetic PMMA microspheres in an aqueous solution. Journal of Hazardous Materials.2009,163(2-3):973-981.
    [218]Hayashi T, Hirono S, Tomita M, Umemura S. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature.1996,381(6585):772-774.
    [219]Banerjee S, Chen D. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology.2009, 20(2):185101-185109.
    [220]Zhang R, Wu C, Wang X, Sun Q, Chen B, Li X, Gutmann S. Enhancement effect of nano Fe3O4 to the drug accumulation of doxorubicin in cancer cells. Materials Science and Engineering:C.2009,29(5):1697-1701.
    [221]Giri S, Trewyn B, Stellmaker M, Lin V. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angewandte Chemie.2005,117(32):5166-5172.
    [222]Valenzuela R, Fuentes M, Parra C, Baeza J, Duran N, Sharma S, Knobel M, Freer J. Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. Journal of Alloys and Compounds.2009,488(1); 227-231.
    [223]Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi J, Chin S, Sherry A, Boothman D, Gao J. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letter.2006,6(11):2427-2430.
    [224]Kim D, Rozhkova E, Rajh T, Bader S, Novosad V. Synthesis of hybrid gold/iron oxide nanoparticles in block copolymer micelles for imaging, drug delivery, and magnetic hyperthermia. leee Transactions on Magnetics, IEEE Transactions on.2009,45(10): 4821-4824.
    [225]Tang TY, Muller KH, Graves MJ, Li ZY, Walsh SR., Young V, Sadat U, Howarth SPS, Gillard JH. Iron oxide particles for atheroma imaging, arterioscler thromb vase biol.2009,29(7): 1001-1008.
    [226]Miyoshi S, Flexman J, Cross D, Maravilla K, Kim Y, Anzai Y, Oshima J, Minoshima S. Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking:cell viability, differentiation, and intracellular localization. Molecular Imaging and Biology.2005,7(4):286-295.
    [227]Joshi H, Lin Y, Aslam M, Prasad P, Schultz-Sikma E, Edelman R, Meade T, Dravid V. Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. The Journal of Physical Chemistry C.2009,113(41):17761-17767.
    [228]Doiron A, Homan K, Emelianov S, Brannon-Peppas L. Poly (lactic-co-glycolic) acid as a carrier for imaging contrast agents. Pharmaceutical Researchs.2009,26(3):674-682.
    [229]Willner I, Cheglakov Z, Weizmann Y, Sharon E. Analysis of DNA and single-base mutations using magnetic particles for purification, amplification and DNAzyme detection. The Analyst. 2008,133(7):923-927.
    [230]Dave S, Gao X. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery:A versatile and evolving technology. Nanomedicine and Nanobiotechnology.2009, 1(6):583-609.
    [231]Pichl L, Heitmann A, Herzog P, Oster J, Smets H, Schottstedt V. Magnetic bead technology in viral RNA and DNA extraction from plasma minipools. Transfusion.2005,45(7):1106-1110.
    [232]Palecek E, Fojta M. Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta.2007,74(3):276-290.
    [233]Kuhara M, Yoshino T, Shiokawa M, Okabe T, Mizoguchi S, Yabuhara A., Takeyama H, Matsunaga T. Magnetic separation of human podocalyxin-like protein 1 (hPCLP1)-positive cells from peripheral blood and umbilical cord blood using anti-hPCLP1 monoclonal antibody and protein a expressed on bacterial magnetic particles. Cell Structure Function.2009,34(1): 23-30.
    [234]Phu N, Phong P, Chau N, Luong N, Hoang L, Hai N. Arsenic removal from water by magnetic Fe1-xCoxFe2O4 and Fe1-yNiyFe2O4 nanoparticles. Journal of Experamental Nanoscience.2009, 4(2):253-258.
    [235]Li S, Guo Z, Liu Y, Yang Z, Hui HK. Integration of microfiltration and anion-exchange nanoparticles-based magnetic separation with MALDI mass spectrometry for bacterial analysis. Talanta.2009,80(1):313-320.
    [236]Ito D, Nishimura K, Miura O. Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation. Journal of Physics:Conference Series.2009,156(1):012033-012033
    [237]Gao Z, Peng X, Zhang H, Luan Z, Fan B. Montmorillonite-Cu(II)/Fe(III) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination.2009,247(1-3):337-345.
    [238]Afkhami A, Norooz-Asl R. Removal, preconcentration and determination of Mo (VI) from water and wastewater samples using maghemite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2009,346(1-3):52-57.
    [239]Jiang J, Gu H, Shao H, Devlin E, Papaefthymiou G, Ying J. Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Advanced Materials.2008,20(23):4403-4407.
    [240]Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T. A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angewandte Chemie International Edition.2007,46(37): 7039-7043.
    [241]Salloum M, Ma R, Zhu L. Enhancement in treatment planning for magnetic nanoparticle hyperthermia:Optimization of the heat absorption pattern. Internationsl Journal of Hyperthermia.2009,25(4):309-321.
    [242]Wang Z, Song J, Zhang D. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells. World Journal of Gastroenterol.2009, 15(24):2995-3002.
    [243]Zheng Y, Tong C, Wang B, Xie Y, Liao H, Li D, Liu X. Development and application of tumor-targeting magnetic nanoparticles FA-StNP@ Fe2O3 for hyperthermia. Chinese Science Bull.2009,54(17):2998-3004.
    [244]Krupskaya Y, Mahn C, Parameswaran A, Taylor A, Krmer K, Hampel S, Leonhardt A, Ritschel M. Magnetic study of iron-containing carbon nanotubes:Feasibility for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials.2009,321(24):4067-4071.
    [245]Navratil J, Shing Tsair M. Magnetic separation of iron and heavy metals from water. Water Science and Technology.2003,14(2):29-32.
    [246]Wang C, Tao S, Wei W, Meng C, Liu F, Han M. Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution. Journal of Materials Chemistry. 2010,20(22):4635-4641.
    [247]Wang P, Lo I. Synthesis of mesoporous magnetic Fe2O3 and its application to Cr (Ⅵ) removal from contaminated water. Water Research.2009,43(15):3727-3734.
    [248]LokmanUzun A, BilgenOsman E. Removal of heavy-metal ions by magnetic beads containing triazole chelating groups. Journal of Applied Polymer Science.2009,114(4):2246-2253.
    [249]Hu J, Chen G, Lo I. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Research.2005,39(18):4528-4536.
    [250]Tuutijrvi T, Lu J, Sillanp M, Chen G. As (V) adsorption on maghemite nanoparticles. Journal of Hazardous Materials.2009,166(2-3):1415-1420.
    [251]Chandra V, Park J, Chun Y, Lee JW, Hwang I.C, Kim KS. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS nano.2010,4(7): 3979-3986.
    [252]DeMarco M, SenGupta A, Greenleaf J. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research.2003,37(1):164-176.
    [253]Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. Journal of Hazardous Materials.2009,167(1-3):560-566.
    [254]Mollah M, Pathak S, Patil P, Vayuvegula M, Agrawal T, Gomes J, Kesmez M, Cocke D. Treatment of orange Ⅱ azo-dye by electrocoagulation (EC) technique in a continuous flow cell using sacrificial iron electrodes. Journal of Hazardous Materials.2004,109(1-3):165-171.
    [255]Zargar B, Parham H, Hatamie A. Fast removal and recovery of amaranth by modified iron oxide magnetic nanoparticles. Chemosphere.2009,76(4):554-557.
    [256]Gubin S, Koksharov Y, Khomutov G, Yurkov G. Magnetic nanoparticles:Preparation, structure and properties. Russian Chemical Reviews.2005,74(6):489-520.
    [257]Nedkov I, Merodiiska T, Slavov L, Vandenberghe R, Kusano Y, Takada J. Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation. Journal of Magnetism and Magnetic Materials.2006,300(2):358-367.
    [258]Ramirez LP, Landfester K. Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromolecular Chemistry and Physics.2003,204(1): 22-31.
    [259]Yang J, Park SB, Yoon HG, Hu YM, Haam S. Preparation of poly [varepsilon]-caprolactone nanoparticles containing magnetite for magnetic drug carrier. International Journal of Pharmaceutics.2006,324(2):185-190.
    [260]Howes P, Green M, Bowers A, Parker D, Varma G, Kallumadil M, Hughes M, Warley A, Brain A, Botnar R. Magnetic conjugated polymer nanoparticles as bimodal imaging agents. Journal of the American Chemical Society.2010,132(28):9833-9842.
    [261]Zhang F,Wang C. Preparation of P (NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles. Langmuir.2009,25(14):8255-8262.
    [262]Liu G, Wang H.Yang X. Synthesis of pH-sensitive hollow polymer microspheres with movable magnetic core. Polymer.2009,50(12):2578-2586.
    [263]Sarkar S, Blaney L, Gupta A, Ghosh D, SenGupta A. Use of arsenp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. Reactive and Functional Polymers.2007,67(12):1599-1611.
    [264]Liu QQ, Wang L, Xiao AG, Gao JM, Ding WB, Yu HJ, Huo J, Ericson M. Templated preparation of porous magnetic microspheres and their application in removal of cationic dyes from wastewater. Journal of Hazardous Materials.2010,181(1-3):586-592.
    [265]Khalid M, Joly G, Renaud A, Magnoux P. Removal of phenol from water by adsorption using zeolites. Industrial & Engineering Chemistry Research.2004,43(17):5275-5280.
    [266]Veeresh G, Kumar P, Mehrotra I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process:a review. Water Research.2005,39(1):154-170.
    [267]Lin S, Juang R. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents:a review. Journal of Environmental Management.2009,90(3): 1336-1349.
    [268]Aksu Z. Application of biosorption for the removal of organic pollutants:a review. Process Biochemistry.2005,40(3-4):997-1026.
    [269]Nakamoto S, Machida N. Phenol removal from aqueous solutions by peroxidase-catalyzed reaction using additives. Water Research.1992,26(1):49-54.
    [270]Fortuny A, Ferrer C, Bengoa C, Fabregat A. Catalytic removal of phenol from aqueous phase using oxygen or air as oxidant. Catalysis Today.1995,24(1-2):79-83.
    [271]Nuhoglu A,Yalcin B. Modelling of phenol removal in a batch reactor. Process Biochemistry. 2005,40(3-4):1233-1239.
    [272]Santos V, Linardi V. Biodegradation of phenol by a filamentous fungi isolated from industrial effluents identification and degradation potential. Process Biochemistry.2004,39(8): 1001-1006.
    [273]Yun C, Prasad R, Guha A, Sirkar K. Hollow fiber solvent extraction removal of toxic heavy metals from aqueous waste streams. Industrial & Engineering Chemistry Research.1993, 32(6):1186-1195.
    [274]Yang C, Qian Y, Zhang L, Feng J. Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater. Chemical Engineering Journal.2006,117(2):179-185.
    [275]Turhan K, Uzman S. Removal of phenol from water using ozone. Desalination.2008,229(1-3): 257-263.
    [276]Shen Y. Removal of phenol from water by adsorption-flocculation using organobentonite. Water Research.2002,36(5):1107-1114.
    [277]Rengaraj S, Moon S, Sivabalan R, Arabindoo, B, Murugesan V. Agricultural solid waste for the removal of organics:Adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Management.2002,22(5):543-548.
    [278]Ahmaruzzaman M, Sharma D. Adsorption of phenols from wastewater. Journal of Colloid and Interface Science.2005,287(1):14-24.
    [279]何卫东.高分子化学实验.合肥:中国科学技术大学出版社.2003.
    [280]Zeng X, Yu T, Wang P, Yuan R, Wen Q, Fan Y, Wang C, Shi R. Preparation and characterization of polar polymeric adsorbents with high surface area for the removal of phenol from water. Journal of Hazardous Materials.2010,177(1-3):773-780.
    [281]Brunauer S, Deming WS. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society.1940,621(8):723-1732.
    [282]Gregg SJ. Adsorption, surface area and porosity. Lodon:Academic Press Inc. Ltd.1982.
    [283]陈诵英,孙予罕,丁云杰.吸附与催化.郑州:河南科学技术出版社.2001.
    [284]严继民,张启元.吸附与凝聚一固体的表面与孔.北京:科学出版社.1979.
    [285]章燕豪.吸附作用.上海:上海科学技术义献出版社.1988.
    [286]Okay O. Macroporous copolymer networks. Progress in Polymer Science.2000,25(6): 711-779.
    [287]Broekhoff J, DeBoer J. Studies on pore systems in catalysts:XI. Pore distribution calculations from the adsorption branch of a nitrogen adsorption isotherm in the case of. Journal of Catalysis.1968,10(2):153-165.
    [288]Broekhoff J, deBoer J. Studies on pore systems in catalysts:ⅩⅣ. Calculation of the cumulative distribution functions for slit-shaped pores from the desorption branch of a nitrogen sorption isotherm. Journal of Catalysis.1968,10(4):391-400.
    [289]胡荣泽,张卫达,刘曼朗.粉末颗粒和孔隙的测量.北京:冶金工业出版社.1982.
    [290]刘培生,刘培生,马晓明.多孔材料检测方法.北京:冶金工业出版社.2006.
    [291]Svata M. Determination of pore size and shape distribution from porosimetric hysteresis curves. Powder Technology.1972,5(6):345-349.
    [292]何曼君,陈维孝,董西侠.《高分子物理》修订版.复旦大学出版社.1991.
    [293]Yang S, Shim S, Lee H, Kim G, Choe S. Size and uniformity variation of poly (MMA-co-DVB) particles upon precipitation polymerization. Macromolecular Research.2004, 12(5):519-527.
    [294]Yang S, Shim S, Choe S. Stable poly (methyl methacrylate-co-divinylbenzene) microspheres via precipitation polymerization. Journal of Polymer Science, Part A, Polymer Chemistry. 2005,43(6):1309-1311.
    [295]Sherrington D. Preparation, structure and morphology of polymer supports. Chemical Communications.1998,45(2):2275-2286.
    [296]Seaton N. Determination of the connectivity of porous solids from nitrogen sorption measurements. Chemical Engineering Science.1991,46(8):1895-1909.
    [297]Liu H, Seaton N. Determination of the connectivity of porous solids from nitrogen sorption measurements--Ⅲ. Solids containing large mesopores. Chemical Engineering Science.1994, 49(11):1869-1878.
    [298]Liu H, Zhang L, Seaton N. Determination of the connectivity of porous solids from nitrogen sorption measurements-11. Generalisation. Chemical Engineering Science.1992,47(17-18): 4393-4404.
    [299]Quarta A, DiCorato R, Manna L, Ragusa A, Pellegrino T. Fluorescent-magnetic hybrid nanostructures:preparation, properties, and applications in biology. NanoBioscience.2007, 6(4):298-308.
    [300]Larson TA, Bankson J, Aaron J, Sokolov K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology.2007,18(4):325101-325106.
    [301]Sato F, Matsuki H, Sato T, Sendoh M, Ishiyama K, Arai KI. The operation of a magnetic micromachine for hyperthermia and its exothermic characteristic. Magnetics, IEEE Transactions on.2002,b38(5):3362-3364.
    [302]Erdem A, Ozkan Ariksoysal D, Karadeniz H, Kara P, Sengonul A, Sayiner AA, Ozsoz M. Electrochemical genomagnetic assay for the detection of hepatitis B virus DNA in polymerase chain reaction amplicons by using disposable sensor technology. Electrochemistry Communications.2005,7(8):815-820.
    [303]Park JH, Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angewandte Chemie.2008, 120(38):7394-7398.
    [304]Yi DK, Lee SS, Ying JY. Synthesis and applications of magnetic nanocomposite catalysts. Chemistry Materials.2006,18(10):2459-2461.
    [305]Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews.2008,60(11):1252-1265.
    [306]Matsunaga T, Nakayama H, Okochi M, Takeyama H. Fluorescent detection of cyanobacterial DNA using bacterial magnetic particles on a MAG microarray. Biotechnology and Bioengineering.2001,73(5):400-405.
    [307]Huang CK, Hou CH, Chen CC, Tsai YL, Chang LM, Wei HS, Hsieh KH, Chan CH. Magnetic SiO2/Fe3O4 colloidal crystals. Nanotechnology.2008,19(4):055701-055709.
    [308]Lai CW, Wang YH, Lai CH, Yang MJ, Chen CY, Chou PT, Chan CS, Chi Y, Chen YC, Hsiao J K. Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles:A facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small.2008,4(2):218-224.
    [309]Xu Z, Wang C, Yang W, Fu S. Synthesis of superparamagnetic Fe3O4/SiO2 composite particles via sol-gel process based on inverse miniemulsion. Journal of Materials Science.2005,40(17): 4667-4670.
    [310]Ramirez KL. Encapsulated magnetite particles for biomedical application. Journal of Physics: Condensed Matter.2003,15(4):1345-1361.
    [311]Cheng K, Peng S, Xu C, Sun S. Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. Journal of the American Chemical Society.2009,131(30): 10637-10644.
    [312]Wu C, He H, Gao H, Liu G, Ma R, An Y, Shi L. Synthesis of Fe3O4@SiO2@polymer nanoparticles for controlled drug release. Science China Chemistry.2010,53(3):514-518.
    [313]Xu Z, Feng Y, Liu X, Guan M, Zhao C, Zhang H. Synthesis and characterization of Fe3O4@SiO2@poly-L-alanine, peptide brush-magnetic microspheres through NCA chemistry for drug delivery and enrichment of BSA. Colloids and Surfaces B:Biointerfaces.2010,81(2): 503-507.
    [314]Tan H, Xue JM, Shuter B, Li X, Wang J. Synthesis of PEOlated Fe3O4@SiO2 nanoparticles via bioinspired silification for magnetic resonance imaging. Advanced Functional Materials.2010, 20(5):722-731.
    [315]Ge J, Huynh T, Hu Y, Yin Y. Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports. Nano Letters.2008,8(3):931-934.
    [316]Yi DK, Lee SS, Ying JY. Synthesis and applications of magnetic nanocomposite catalysts. Chemistry of Materials.2006,18(10):2459-2461.
    [317]Jiang Y. A novel nanoscale catalyst system composed of nanosized Pd catalysts immobilized on Fe3O4@SiO2-PAMAM. Nanotechnology.2008,19(7):705-714.
    [318]Ge J, Zhang Q, Zhang T, Yin Y. Core-satellite nanocomposite catalysts protected by a porous silica shell:controllable reactivity, high stability, and magnetic recyclability. Angewandte Chemie.2008,120(46):9056-9060.
    [319]Tan CJ, Chua HG, Ker KH, Tong YW. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Analytical Chemistry.2008,80(3):683-692.
    [320]Lee J, Yang J, Ko H, Oh S, Kang J, Son J, Lee K, Lee SW, Yoon HG, Suh JS, Huh YM, Haam S. Multifunctional magnetic gold nanocomposites:human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Advanced Functional Materials.2008,18(2):258-264.
    [321]Denizli A, Sanli N, Garipcan B, Patir S, Alsancak G. Methacryloylamidoglutamic acid incorporated porous poly(methyl methacrylate) beads for heavy-metal removal. Industrial & Engineering Chemistry Research.2004,43(19):6095-6101.
    [322]Deng Y, Qi D, Deng C, Zhang X, Zhao D. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society.2007,130(1):28-29.
    [323]Xu R, Sun G, Li Q, Wang E, Gu J. A dual-responsive superparamagnetic Fe3O4/Silica/PAH/PSS material used for controlled release of chemotherapeutic agent, keggin polyoxotungstate, PM-19. Solid State Sciences.2010,12(10):1720-1725.
    [324]Tan CJ, Tong YW. Preparation of superparamagnetic ribonuclease a surface-imprinted submicrometer particles for protein recognition in aqueous media. Analytical Chemistry.2006, 79(1):299-306.
    [325]Zhu L, Xu Y, Yuan W, Xi J, Huang X, Tang X, Zheng S. One-pot synthesis of poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes via an in-situ template approach. Advanced Materials.2006,18(22):2997-3000.
    [326]Liu W, Jin J, Huang X, Zheng Y, Zhang J, Fu J, Huang Y,Tang X. A facile strategy for the functionalization of poly[cyclotriphosphazene-co-(4,4-sulfonyldiphenol)] materials. Polymer International.2010,59(9):1252-1257.
    [327]Zhang X, Huang X, Tang X. Novel synthesis of magnetic poly(cyclotriphosphazene-co-4,4sul-fonyldiphenol) nanotubes with magnetic phases embedded in the walls. New Journal of Chemistry.2009,33(12):2426-2430.
    [328]Zhu LP, Xiao HM, Zhang WD, Yang G, Fu SY. One-pot template-free synthesis of monodisperse and single-crystal magnetite hollow spheres by a simple solvothermal route. Crystal Growth and Design.2008,8(3):957-963.
    [329]Zhu Y, Kockrick E, Ikoma T, Hanagata N, Kaskel S. An efficient route to rattle-type Fe3O4@ SiO2 hollow mesoporous spheres using colloidal carbon spheres templates. Chemistry of Materials.2009,21(12):2547-2553.
    [330]Gonzalez B, Cuadrado I, Casado CM, Alonso B, Pastor CJ. Reaction of (chlorocarbonyl) metallocenes of iron and cobalt with 1,4-diaminobutane:synthesis of a heterobimetallic ferrocene-cobaltocenium complex. Organometallics.2000,19(25):5518-5521.
    [331]Mirkin CA. Chemically tailorable colloidal particles from infinite coordination polymers. Nature.2005,438(7068):651-654.
    [332]Prado Y, Lisnard L, Heurtaux D, Rogez G, Gloter A, Stephan O, Dia N, Riviere E, Catala L, Mallah T. Tailored coordination nanoparticles:assessing the magnetic single-domain critical size. Chemical Communications.2011,47(3):1051-1053.
    [333]Frolov G. Film carriers for super-high-density magnetic storage. Technical Physics.2001, 46(12):1537-1544.
    [334]Xu J, Huang X, Xie G, Fang Y, Liu D. Study on the structures and magnetic properties of Ni, CO-Al2O3 electrodeposited nanowire arrays. Materials Research Bulletin.2004,39(6): 811-818.
    [335]Choi HJ, Seong HK, Chang J, Lee KI, Park YJ, Kim JJ, Lee SK, He R, Kuykendall T, Yang P. Single-crystalline diluted magnetic semiconductor GaN:Mn nanowires. Advanced Materials. 2005,17(11):1351-1356.
    [336]Zhang Z, Blom DA, Gai Z, Thompson JR, Shen J, Dai S. High-yield solvothermal formation of magnetic CoPt alloy nanowires. Journal of the American Chemical Society.2003,125(25): 7528-7529.
    [337]Tanase M, Felton E J, Gray DS, Hultgren A, Chen CS, Reich DH. Assembly of multicellular constructs and microarrays of cells using magnetic nanowires. Lab on Chip.2005,5(6): 598-605.
    [338]Hultgren A, Tanase M, Chen CS, Reich DH. High-yield cell separations using magnetic nanowires. Magnetics, IEEE Transactions on.2004,40(4):2988-2990.
    [339]Son SJ, Reichel J, He B, Schuchman M, Lee SB. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. Journal of the American Chemical Society.2005,127(20):7316-7317.
    [340]Wen F, Y, H, Qiao L, Zheng H, Zhou D, Li F. Analyses on double resonance behavior in microwave magnetic permeability of multiwalled carbon nanotube composites containing Ni catalyst. Applied Physics Letters.2008,92(4):042503-042507.
    [341]Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnology.2003, 22(1):47-52.
    [342]Peng X, Luan Z, Di Z, Zhang Z, Zhu C. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (II) and Cu (II) from water. Carbon.2005,43(4):880-883.
    [343]Kuo CT, Lin CH. Feasibility studies of magnetic particle-embedded carbon nanotubes for perpendicular recording media. Diamond and Related Materials.2003,12(3):799-805.
    [344]Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley JC, Kornev KG. Carbon nanotubes loaded with magnetic particles. Nano letters.2005,5(5):879-884.
    [345]Son S, Lee DH, Kim SD, Sung SW. Effect of inert particles on the synthesis of carbon nanotubes in a gas-solid fluidized bed reactor. Journal of Industrial and Engineering Chemistry Seoul.2007,13(2):257-260.
    [346]Gao C, Li W, Morimoto H, Nagaoka Y, Maekawa T. Magnetic carbon nanotubes:synthesis by electrostatic self-assembly approach and application in biomanipulations. The Journal of Physical Chemistry B.2006,110(14):7213-7220.
    [347]Wang J, Ma Y, Watanabe K. Magnetic-field-induced synthesis of magnetic y-Fe2O3 nanotubes. Chemistry of Materials.2007,20(1):20-22.
    [348]Minot E, Yaish Y, Sazonova V, McEuen PL. Determination of electron orbital magnetic moments in carbon nanotubes. Nature.2004,428(6982):536-539.
    [349]Zhang X, Huang X, Tang X. A facile route to synthesis of magnetic phosphazene-containing polymer nanotubes at room temperature. Journal of Materials Chemistry.2009,19(20): 3281-3285.
    [350]Wang J, Chen Q, Zeng C, Hou B. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Advanced Materials.2004,16(2):137-140.
    [351]Liu Y, Chen Q. Synthesis of magnetosome chain-like structures. Nanotechnology.2008, 19(47):475603-475611.
    [352]Wang L, Wei H, Fan Y, Gu X, Zhan J. One-dimensional CdS/a-Fe2O3 and CdS/Fe3O4 heterostructures:Epitaxial and nonepitaxial growth and photocatalytic activity. The Journal of Physical Chemistry C.2009,113(32):14119-14125.
    [353]Abid M. Magnetotransport properties depending on the nanostructure of Fe3O4 nanowires. Journal of Physics:Condensation Matter.2006,18(26):6085.
    [354]Xu L, Zhang W, Ding Y, Peng Y, Zhang S, Yu W. Qian Y. Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes. The Journal of Physical Chemistry B.2004,108(30):10859-10862.
    [355]Kaittanis C, Santra S, Santiesteban OJ, Henderson TJ, Perez JM. The assembly state between magnetic nanosensors and their targets orchestrates their magnetic relaxation response. Journal of American Chemical Society.2011,133(10):3668-3676.
    [356]Wang J, Wu Y, Zhu Y. Fabrication of complex of Fe3O4 nanorods by magnetic-field-assisted solvothermal process. Materials Chemistry and Physics.2007,106(1):1-4.
    [357]He K, Xu CY, Zhen L, Shao WZ. Hydrothermal synthesis and characterization of single-crystalline Fe3O4 nanowires with high aspect ratio and uniformity. Materials Letters. 2007,61(14-15):3159-3162.
    [358]Gong J, Li S, Zhang D, Zhang X, Liu C, Tong Z. High quality self-assembly magnetite (Fe3O4) chain-like core-shell nanowires with luminescence synthesized by a facile one-pot hydrothermal process. Chemical Communication.2010,46(20):3514-3516.
    [359]Zhang L, Zhang Y. Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters. Journal of Magnetism and Magnetic Materials.2009,321(5):L15-L20.
    [360]Lian S, Wang E, Gao L, Kang Z, Wu D, Lan Y, Xu L. Growth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process. Solid State Communications.2004,132(6):375-378.
    [361]Feng L, Jiang L, Mai Z, Zhu D. Polymer-controlled synthesis of Fe3O4 single-crystal nanorods. Journal of Colloid and Interface Science.2004,278(2):372-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700