用户名: 密码: 验证码:
蛋白质顺磁标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
顺磁标记是指将含有未成对电子的顺磁性物质引入到蛋白质中得到顺磁限制的方法,常用的顺磁效应主要包括:赝接触位移(PCS)、顺磁弛豫增强(PRE)、残余偶极耦合(RDC)。这些顺磁效应包含丰富的蛋白质结构信息可用来研究蛋白质。由于大多数蛋白质都没有顺磁金属离子的结合位点,所以研究中通常采用不同的方法将金属结合标签连接到蛋白质上,常用的方法有化学标签的二硫键连接和多肽融合。由于二硫键产物在还原环境或高pH条件下不能稳定存在,从而限制了其应用。多肽融合虽然能避免二硫键连接中存在的问题,但是在蛋白质中缺少合适的嵌入位点。因此,本论文探索不同的顺磁标记方式,进而获得蛋白质的顺磁结构限制,研究内容主要包括以下两部分:
     一、通过稀土配合物与蛋白质的特异性非共价作用标记蛋白质
     在吡啶-2,6-二甲酸(L1)分子上引入不同的取代基得到了一系列衍生物L(L=L2,L3,L4,L5),这些配体都能与稀土形成3:1稳定的配合物[Ln(L)3]n-(L=L1,L2,L3,L4,L5)。实验表明这一系列稀土配合物均能与蛋白质ubiquitin产生特异性的相互作用。通过15N-HSQC实验测定得到了配合物[Ln(L)3]n和ubiquitin相互作用的解离常数Kd,赝接触位移PCS,进而拟合得到不同配合物[Ln(L)3]n-的△χ张量及相关参数。通过分析数据,得到如下结论:
     (1)改变配合物[Ln(L)3]n取代基和电荷,可以改变配合物与蛋白质的结合常数。
     (2)PCS的大小与解离常数Kd及配合物[Ln(L)3]n-的结构有关。
     (3)不同配合物[Ln(L)3]n-可获得不同的△χ张量,快速得到多个角度和距离的限制,可以应用到蛋白质的结构。
     (4)由于五种配合物[Ln(L)3]n-的体积大小不同以及ubiquitin相互作用界面的柔性,拟合得到的这五种配合物[Ln(L)3]n的金属离子位置略有不同。
     二、通过蛋白质半胱氨酸的巯基与碳碳双键类似Michael加成反应标记蛋白质
     在Michael加成反应标记蛋白质的基础上,探索了影响Michael加成反应的因素;研究了经标签修饰的蛋白质与顺磁金属离子的作用。具体实验内容和分析结果如下:
     通过1H NMR检测室温下不同pH时标签L6与半胱氨酸Cys和赖氨酸Lys的反应活性,当pH=7.0,7.5,8.0,8.5时,标签L6与Cys都完全反应;在pH=7.0,7.5,8.0,8.5,9.0,9.5,10.0,10.5的条件下,标签L6与Lys都不反应。通过上述的实验说明标签L6只与Cys的巯基发生特异性的加成反应。
     在室温,pH=7.6的条件下,通过15N-HSQC谱图检测了ubiquitin的4种突变体ubiquitin T22C, ubiquitin A28C, ubiquitin G47C, ubiquitin E64C与标签L6的加成反应,通过比较4种突变体的反应产率来确定它们的反应活性。实验表明蛋白质的4种突变体显示出不同的活性,活性大小顺序为:ubiquitin A28C     通过Michae1加成反应,分别将标签L7,L8共价连接到ubiquitin突变体T22C,A28C上,得到4种相应的复合物ubiquitin T22C-L7, ubiquitin A28C-L7, ubiquitin T22C-L8, ubiquitin A28C-L8。在这4种复合物中加入不同顺磁金属离子Ln3+(Ln3+=Dy3+, Tb3+, Tm3+, Yb3+),以抗磁金属离子y3+作为参比,分别计算4种复合物中加入不同顺磁金属离子时的PCS值。进而,利用复合物ubiquitinT22C-L7中滴加顺磁金属离子Tm3+和Yb3+的PCS数据来拟合出AZ张量及相关参数,由于残基22位于ubiquitin结构较柔性的loop区域,loop区的运动导致PCS平均化,产生较小的△X张量。
A paramagnetic center in a protein leads to the interaction of the unpaired electron with the nuclear spins of the protein. This results in several paramagnetic effects such as pseudocontact shifts (PCS), paramagnetic relaxation enhancement (PRE), residual dipolar couplings (RDC). These effects provide long-range distance and angular information for proteins, which are valuable in the structure determination of proteins. Because most proteins are diamagnetic and usually don't have paramagnetic metal-binding motifs, the method of site-specific labeling of proteins with lanthanide-binding ligands have been introduced, including attaching a chemically synthetized ligand through the disulfide bond, insertion of a lanthanide-binding peptide into a protein. However, the instability of the disulfide-bond tether precludes the subsequent use of the method in the presence of reducing agents or at high pH conditions. Although the insertion of a lanthanide binding peptide into the loop of a protein would avoid this complication, there are only a few suitable fusion sites in a protein if any. Herein, we concentrate on the different technical methods obtaining a set of structural restraints through site-specific labeling of proteins. The thesis includes the following two parts:
     1. Noncovalent tagging proteins with paramagnetic lanthanide complexes
     Starting from pyridine-2,6-dicarboxylic acid (L1), a series of novel pyridine-2,6-dicarboxylic acid derivatives(L=L2,L3,L4,L5) were synthesized by introducing the different substitution patterns.Lanthanide complexes [Ln(L)3]n-(L=L1,L2,L3,1.4,1.5) were formed by paramagnetic lanthanide ions and the different DPA derivatives. The following experiments showed that [Ln(L)3]n-complexes could interact site-specifically with ubiquitin. The binding affinity of [Ln(L)3]n-complexes with ubiquitin and PCSs can be measured by15N-HSQC spectra. The Δx, tensor parameters were calculated by the simulation of PCS data. The following conclusions were obtained through data analysis:
     (1)The binding affinity between the protein and [Ln(L)3]n" complexes could be adjusted by changing either the charge or the substitution pattern on the organic ligand.
     (2)PCS not only depended on the binding affinity of the metal complex towards the protein but also on the geometry of the metal complex.
     (3)[Ln(L)3]n-complexes offered diverse paramagnetic Δx tensors and quickly obtained multiple angles and distance restraints, which were valuable for the structural determination of the proteins.
     (4)The determined metal positions of the lanthanide complexes of the different DPA derivatives were not well-converged into one fixed position, which was probably due to the different sizes of the [Ln(L)3]n-complexes and also to the plasticity of the ubiquitin-binding interface.
     2. Site-specific labeling of proteins through Michael addition reaction between C-C double bonds and cysteine of protein
     On the basis of Michael addition reaction, several factors affecting the Michael addition reaction were explored. In addition, the interactions between labeling proteins and paramagnetic lanthanide ions had been studied. With the studying of influencing factor and interaction, the experiment contents and the results were as follow:
     The reaction of tag (Le) with cysteine and lysine were monitored by1H NMR at room temperature. The cysteine reacted fast with L6in the pH range of7.0to8.5. The reaction of L6and Lysine was studied in the pH range of7.0to10.5.1H NMR spectra showed that lysine did not react with L6. Based on the above-mentioned results, we concludeded that the reaction of L6and cysteine was specific for the sulfhydryl group.
     The reactions of four T22C, A28C, G47C and E64C mutants of human ubiquitin with L6were monitored by15N-HSQC spectra at room temperature and at pH7.6.The reactive activities were determined by comparison the ligation yield under the same reaction condition.The four mutants showed different reaction activities following ubiquitin A28C     The ubiquitin T22C-L7, ubiquitin A28C-L7, ubiquitin T22C-L8, ubiquitin A28C-L8adducts were obtained through the addition reactions between two T22C, A28C mutants of ubiquitin and L7, L8.15N-HSQC spectra were recorded from the four protein complexes with Dy3+, Tb3+, Tm3+, Yb3+. The PCSs were measured in the four protein complexes with paramagnetic lanthanides by using the complex with Y3+as the diamagnetic reference. In addition, the PCS measured for the ubiquitin T22C-L7complexes with Tm3+, Yb3+were used to determine Δχ tensors parameters. Because T22are located in a flexible part of ubiquitin, the mobility of the loop averages the size of PCS, resulting in smaller magnitude of Δχ tensors.
引文
[1]Bloch F, Hansen W W. Nuclear induction. Phys. Rev.,1946,69(3-4):126-130
    [2]Purcell E M, Torrery H C. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev.,1946,69(1-2):36-41
    [3]Guerry P, Herrmann T. Advances in automated NMR protein structure determination. Q. Rev. Biophys.2011,44(3):257-309
    [4]Billete M, Wagner G, Wuthrich K. Solution NMR structure determination of proteins revisited. JBiomol NMR.,2008,42(3):155-158
    [5]Cavanagh J, Fairbrother W J., PalmerⅢ A G, et al. Protein NMR spectroscopy(second edition). Netherlands:Elsevier,2007.725-817
    [6]Wuthrich K. NMR of proteins and nucleic Acids. New York:John Wiley,1986.5-43
    [7]Felli I C, Brutscher B. Recent advances in solution NMR:Fast methods and heteronuclear direct detection. ChemPhysChem.,2009,10(9-10):1356-1368
    [8]Liu G, Montelione G T, Szyperski T, et al. NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA.,2005,102(30): 10487-10492
    [9]Williamson M P, Havel T F, Wuthrich K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J. Mol. Biol.,1985,182(2):295-315
    [10]Zwahlen C, Legault P, Kay L E, et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy:applications to a bacteriaphase λ N-peptide IboxB RNA complex. J. Am. Chem. Soc,1997,119(29):6711-6721
    [11]Shen Y, Montelione G T, Bax A, et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. U.S.A.,2008,105(12):4685-4690
    [12]Tugarinov V, Kanelis V, Kay L E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc,2006,1(2): 749-754
    [13]Bertini I, Luchinat C, Parigi G.Solution NMR of paramagnetic molecules:Applications to metallobiomolecules and models. Amsterdam:Elsevier,2001.29-70
    [14]Bertini I, Luchinat C, Parigi G. Paramagnetic constraints:an aid for quick solution structure determination of paramagnetic metalloproteins. Concepts Magn Reson.,2002,14(4): 259-286
    [15]Bertini I, Luchinat C. NMR of Paramagnetic substances. Amsterdam:Elsevier,1996.29-75
    [16]Pintacuda G, Su X C, Otting G, et al. NMR Structure determination of protein ligand complexes by lanthanide labeling. Acc. Chem. Res.,2007,40(3):206-212
    [17]Keizers P H, Ubbink M. Paramagnetic tagging for protein structure and dynamics analysis. Prog NMR Spectr.,2011,58(1-2):88-96
    [18]Koehler J, Meiler J. Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Prog NMR Spectr.,2011,59(4):360-389
    [19]Su X C, Otting G. Paramagnetic labelling of proteins and oligonucleotides for NMR. J. Biomol. NMR.,2010,46(1):101-112
    [20]Rodriguez-Castaneda F, Haberz P, Griesinger C,et al. Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn. Reson. Chem.,2006,44(S1):S10-S16
    [21]Bertini I, Luchinat C, Parigi G, et al. NMR spectroscopy of paramagnetic metalloproteins. Chembiochem.,2005,6(9):1536-1549
    [22]Wdhnert J, Franz K J, Nitz M, et al. Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc.,2003,125(44): 13338-13339
    [23]Chen J, Selvin P R. Thiol-reactive luminescent chelates of terbium and europium. Bioconjugate. Chem.,1999,10(2):311-315
    [24]Franz K J, Nitz M, Imperiali B, Lanthanide-binding tags as versatile protein coexpression probes. Chembiochem.,2003,4(4):265-271
    [25]Dvoretsky A, Gaponenko V, Rosevear P R. Derivation of structural restraints using a thiol-reactive chelator. FEBS Lett.,2002,528(1-3):189-192
    [26]Su X C, Liang H, Otting G, et al. [Ln(DPA)3]3" is a convenient paramagnetic shift reagent for protein NMR studies. J. Am. Chem. Soc.,2009,131(30):10352-10353
    [27]Hubbell W L, Altenbach C. Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol.,1994,4(4):566-573
    [28]Hubbell W L, Gross A, Lietzow M A, et al. Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol.,1998,8(5):649-656
    [29]Hustedt E J, Beth A H. Nitroxide spin-spin interactions:applications to protein structure and dynamics. Annu Rev Biophys Biomol Struct.,1999,28:129-153
    [30]Fanucci G E, Cafiso D S. Recent advances and applications of site-directed spin labelling. Curr. Opin. Struct. Biol,2006,16(5):644-653
    [31]Lindfors H E, Venezia B, Ubbink M. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR. J Biomol NMR.,2008,41(3):157-167
    [32]Fawzi N L, Fleissner M R, Clore G M, et al. A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data. J. Biomol. NMR.,2011,51(1-2):105-114
    [33]Bertini I, Luchinat C, Parigi G. Magnetic susceptibility in paramagnetic NMR. Prog NMR Spectr.,2002,40:249-273
    [34]Otting G. Prospects for lanthanides in structural biology by NMR. J. Biomol. NMR.,2008, 42(1):1-9
    [35]Clore G M, Iwahara J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev.,2009,109(9):4108-4139
    [36]Clore G M. Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation. Protein Sci.,2011,20(2):229-246
    [37]Tang C, Schwieters C D, Clore G M. Open-to-Closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature,2007,449(7165):1078-1082
    [38]Tang C, Iwahara J, Clore G M. Visulization of transient encounter complexes in protein-protein association. Nature,2006,444(7117):383-386
    [39]Blackledge M. Recent advances in the use of residual dipolar couplings for the study of biomolecular structure and dynamics in solution. Prog. NMR Spectrosc.,2005,46:23-61
    [40]Tolman J R, Ruan K. NMR residual dipolar couplings as probes of biomolecular dynamics. Chem. Rev.,2006,106(5):1720-1736
    [41]Bertini I, Kursula P, Luchinat C, et al. Accurate solution structures of proteins from X-ray data and a minimal set of NMR data:calmodulin-peptide complexes as examples. J. Am. Chem. Soc.,2009,131(14),5134-5144
    [42]Ma C, Opella S J. Lanthanide ions bind specifically to an added "EF-Hand" and orient a membrane protein in micelles for solution NMR spectroscopy. J.Magn. Reson.,2000, 146(2):381-384
    [43]Gaponenko V, Dvoretsky A, Rosevear P R, et al. Calculation of z-coordinates and orientational restraints using a metal binding tag. Biochemistry.,2000,39(49):15217-15224
    [44]Donaldson L W, Skrynnikov N R, Kay L E, et al. Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J. Am. Chem. Soc.,2001,123(40):9843-9847
    [45]Feeney J, Birdsall B, Bayley P.M., et al. Calmodulin tagging provides a general method of using lanthanide induced magnetic field orientation to observe residual dipolar couplings in proteins in solution. J.Biomol. NMR.,2001,21(1):41-48
    [46]Nitz M, Maglathlin R L, Imperiali B, et al. A powerful combinatorial screen to identify high-affinity terbium (Ⅲ)-binding peptides. Chembiochem.,2003,4(4):272-276
    [47]Martin L J, Schwalbe H, Imperiali B, et al. Double-lanthanide-binding tags:design, photophysical properties, and NMR applications. J Am Chem Soc.,2007,129(22):7106-7113
    [48]Su X C, Huber T, Otting G, et al. Site-specific labelling of proteins with a rigid lanthanide binding tag. ChemBioChem.,2006,7(10):1599-1604
    [49]Saio T, Ogura K, Inagaki F, et al. Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect. J Biomol NMR.,2009,44(3): 157-166
    [50]Su X C, Man B, Otting G, et al. A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J.Am.Chem.Soc.,2008,130(32):10486-10487
    [51]Man B, Su X C, Otting G, et al.3-Mercapto-2,6-pyridinedicarboxylic acid, a small lanthanide-binding tag for protein studies by NMR spectroscopy. Chem. Eur. J.2010, 16(12):3827-3832
    [52]James D, Huber T, Otting G, et al. Engineering of a bis-chelator motif into a protein a-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy. Chem.Commun.,2011, 47(26):7368-7370
    [53]Gaponenko V, Altieri A S, Byrd R A, et al. Breaking symmetry in the structure determination of (large) symmetric protein dimmers. J. Biomol. NMR.,2002,24(2):143-148
    [54]Gaponenko V, Sarma S P, Byrd R A, et al. Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J. Biomol. NMR.,2004, 28(3):205-212
    [55]Dcegami T, Verdier L, Griesinger C,et al. Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions.J. Biomol. NMR.,2004,29(3): 339-349
    [56]Leonov A, Voigt B, Griesinger C, et al. Convenient synthesis of multifunctional EDTA-based chiral metal chelates substituted with an S-mesylcysteine. Chem. Eur. J.,2005, 11(11):3342-3348
    [57]Haberz P, Junker J, Griesinger C, et al. Two new chiral EDTA-based metal chelates for weak alignment of proteins in solution. Org. Lett,2006,8(7):1275-1278
    [58]Rohovec J, Peters J A, Ubbink M, et al. A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Chem. Eur. J.,2004,10(13):3252-3260
    [59]Vlasie M D, Comuzzi C, Ubbink M, et al. Long-range-distance NMR effects in a protein labeled with a lanthanide-DOTA chelate. Eur. J. Chem.,2007,13(6):1715-1723
    [60]Keizers P H, Desreux J F, Ubbink M, et al. Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. JAm Chem Soc.,2007,129(30):9292-9293
    [61]Keizers P H, Saragliadis A, Ubbink M, et al. Design, synthesis, and evaluation of a lanthanide chelatingprotein probe:CLaNP-5 yields predictable paramagnetic effects independent of environment. J. Am. Chem. Soc.,2008,130(44):14802-14812
    [62]Liu W M, Keizers P H, Ubbink M, et al. A pH-senstive, colorful, lanthanide-chelating paramabnetic NMR probe. J.Am. Chem. Soc.,2012,134(41):17306-17313
    [63]Haussinger D, Huang J R, Grzesiek S, et al. DOTA-M8:An extremely rigid, high-affinity lanthanide chelating tag for PCS NMR Spectroscopy. J. Am. Chem. Soc.,2009,131(41): 14761-14767
    [64]Graham B, Jia X Y, Otting G, et al.DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR Spectra. Bioconjugate.,2011,22(10):2118-2125
    [65]Peters F, Leonov A, Griesinger G, et al. Cys-Ph-TAHA:a lanthanide binding tag for RDC and PCS enhanced protein NMR.J. Biomol. NMR,2011,51(3):329-337
    [66]Li Q F, Yang Y, Su X C, et al. Thiol-ene reaction:a versatile tool in site-specific labelling of proteins with chemically inert tags for paramagnetic NMR. Chem. Commun.,2012, 48(21):2704-2706
    [67]Yang, Y, Li Q F, Su X C, et al. Site-specific labeling of proteins with a chemically stable, high-affinity tag for protein Study. Chem. Eur. J.2013,19(3):1097-1103
    [68]Yagi H, Loscha K V, Otting G, et al. Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3- for protein structure analysis. J. Biomol. NMR.,2010,47(2):143-153
    [69]Jia X Y, Yagi H. Otting G, et al. Engineering [Ln(DPA)3]3- binding sites in proteins:a widely applicable method for tagging proteins with lanthanide ions. J. Biomol. NMR.,2011, 50(4):411-420
    [70]Loh C T, Huber T, Otting G, et al. Lanthanide tags for site-specific ligation to an unnatural amino Acid and generation of pseudocontact shifts in proteins. Bioconjug. Chem.,2013, 24(2):260-268
    [71]Bertini I, Donaire A, Jimenez B, et al. Paramagnetism-based versus classical constraints: Ananalysis of the solution structure of Ca Ln calbindin D9k. J. Biomol. NMR.,2001,21(2): 85-98
    [72]Zhuang T, Imperiali B, Prestegard J H, et al. Structure determination of a Galectin-3-carbohydrate complex using paramagnetism-based NMR constraints. Protein. Sci.,2008,17(7):1220-1231
    [73]John M, Pintacuda P, Otting G, et al. Structure determination of protein-ligand complexes by transferred paramagnetic shifts. J. Am. Chem. Soc.,2006,128(39):12910-12916
    [74]Pintacuda G, Dixon E, Otting G, et al. Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein Complexes. J. Am. Chem. Soc.,2006,128(11): 3696-3702
    [75]Mal T K, Ikura M, Kay L E, et al. The ATCUN domain as a probe of intermolecular interactions:application to calmodulin-peptide complexes. J. Am. Chem. Soc.,2002, 124(47):14002-14003
    [76]Tang C, Louis J M, Aniana A, et al. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature,2008,455(7213):693-696
    [77]刘主,唐淳.顺磁弛豫增强技术与蛋白质瞬态结构.波谱学杂志2011,28(3):301-316
    [78]Almeida M, Pauleta S R, et al. Gd(Ⅲ) chelates as NMR probes of protein-protein interactions Case study:rubredoxin and cytochrome C3 Inorg. Chem.,2011,50(21): 10600-10607
    [79]Pryor K E, Skyler D A, Rebek Jr J, et al. The activated core approach to combinatorial chemistry:A selection of new core molecules. Tetrahedron.,1998,54(16):4107-4124
    [80]Tang R R, Zhao Q, Luo Y M.. Efficient routes towards 4-((2-aminoethoxy) methyl) Benzop-henone. Synth. Commun.,2006,36(4):421-427
    [81]Zimmermann N, Meggers E, Schultz P G. A second-generation copper (Ⅱ)-mediated metallo-DNA-base pair. Bioorg. Chem.,2004,32(1):13-25
    [82]Syper L, Kloc K, Mlochowski J. Synthesis of ubiquinone and menaquinone analogues by oxidative demethylation of alkenylhydroquinone ethers with argentic oxide or ceric ammonium nitrat. Tetrahedron.,1980,36(1):123-129
    [83]李庆锋.生物大分子研究中的顺磁标签的合成及表征:[博士学位论文].天津:南开大学,2013
    [84]Fielding L. NMR methods for the determination of protein-ligand dissociation constants. Prog NMR Spectr.,2007,51:219-242
    [85]Ramage R, Green J, Shaw K, et al. Synthetic, structural and biological studies of the ubiquitin system:the total chemical synthesis of ubiquitin. Biochem. J.,1994,299(1):151-158
    [86]Schmitz C, Su X C, Otting G, et al. Numbat:an interactive software tool for fitting Deltachi-tensors to molecular coordinates using pseudocontact shifts. J.Biomol. NMR., 2008,41(3):179-189
    [87]Harrowfield M, Kim Y, White A H, et al. Mixed transition metal/lanthanide complexes: structural characterization of solids containing cage amine chromium (Ⅲ) cations and tris (dipicolinato)lanthanide anions. Aust. J.Chem.,1995,48:807-823
    [88]Alsaadi B M, Rossoti F J C, Williams R J P. Studies of lanthanide (Ⅲ) pyridine-2,6-dicarboxylate complexes in aqueous solution. Part Ⅰ. structures and 1H nuclear magnetic resonance spectra. J Chem. Soc. Dalton Trans.,1980,597-602
    [89]Ouali N, Bocquet B, Piguet C, et al. Analysis of paramagnetic NMR spectra of triple-helical lanthanide complexes with 2,6-dipicolinic acid revisited:a new assignment of structural changes and crystal-field effects 25 years later. Inorg. Chem.,2002,41(6):1436-1445
    [90]Perica T, Chothia C. Ubiquitin-molecular mechanisms for recognition of different structures. Curr.Opin.Struct. Biol,2010,20(3):367-376
    [91]DIKeda F, Crosetto N, Dikic I. What determines the specificity and outcomes of ubiquitin signaling. Cell.,2010,143(5):677-681
    [92]Bax A, Kontaxis G, Tjandra N. Dipolar couplings in macromolecular structure determination. Methods Enzymol.2001,339:127-174
    [93]Cornilescu G, Marquardt J, Bax A, et al. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J. Am. Chem. Soc.,1998,120: 6836-6837
    [94]Bertini I, Janik M B, Rosto A, et al. Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. J. Am. Chem. Soc.,2001,123(18):4181-4188
    [95]Dikic I, Wakatsuki S, Walters K J. Ubiquitin-binding domains-from structures to functions. Nat Rev Mol Cell Biol,2009,10(10):659-671
    [96]Komander D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans., 2009,37(5):937-953
    [97]Lange O F, Lakomek N A, Griesinger C, et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science.,2008,320(5882): 1471-1475
    [98]Michael A. Ueber die addition von natriumacetessig-und natriummalonsaureathem zu den Aethern ungesattigter sauren. J. Prakt.Chem.,1887,35(1):349-356
    [99]Marvel C S, Chambers R H. Polyalkylene sulfides from diolefins and dimercaptans. J. Am. Chem. Soc.,1948,70(3):993-998
    [100]Jacobine A F. Radiation curing in polymer science and technology Ⅲ, Elsevier, London, 1993,7:219-268
    [101]Cramer N B, Bowman C. N. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time fourier transform infrared J. Polym. Sci., Part A: Polym. Chem.,2001,39(19):3311-3319.
    [102]Hoyle C E, Lee T Y, Roper T. Thiol-enes:chemistry of the past with promise for the future. J. Polym. Sci., Part A:Polym. Chem.,2004,42(21):5301-5338
    [103]Killops K L, Campos L M, Hawer C. J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene "click" chemistry. J.Am.Chem.Soc.,2008,130(15):5062-5064
    [104]Hoye C E, Lowe A B, Bowan C N. Thiol-click chemistry:a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev,2010,39(4):1355-1387
    [105]Kosen P A. Spin labeling of proteins. Methods Enzymol.,1989,17:86-121
    [106]Berliner L J, Grunwald J, Hankovszky H O, et al. A novel reversible thiol-specific spin label-papain active-site labeling and inhibition. Anal. Biochem.,1982,119(2):450-453
    [107]Corrie JET. Thiol-reactive fluorescent probes for protein labelling. J. Chem. Soc., Perkin Trans.1,1994,2975-2982
    [108]Hong V, Kislukhin A A, Finn M G. Thiol-selective fluorogenic probes for labeling and release. J. Am. Chem. Soc.,2009,131,9986-9994
    [109]Sletten E M, Bertozzi C R. Bioorthogonal chemistry:fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl,2009,48(38):6974-6998
    [110]Fawzi N L, Fleissner M R, Clore G M, et al. A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data.J. Biomol. NMR.,2011,51(1-2): 105-114
    [111]Griff O H, McConnell H M. A nitroxide-maleimide spin label. Proc Nat Acad Sci USA., 1966,55(1):8-11
    [112]Miao Z, McCoy M R, Meares C F, et al. Cysteinylated protein as reactive disulfide:an alternative route to affinity labeling. Bioconjug Chem.,2008,19(1):15-19
    [113]Jonkheijm P, Weinrich D, Waldmann H, et al. Photochemical surface patterning by the thiol-ene reaction. Angew. Chem. Int. Ed.,2008,47(23):4421-4424
    [114]Morphy J R, Parker D, Walker C, et al. Towards tumour targeting'with copper-radiolabelled macrocycle-antibody conjugates:synthesis, antibody linkage, and complexation behavior.J. Chem. Soc. Perkin Trans.l.,1990,2:573-585
    [115]黄凤.顺磁蛋白质标签的合成与应用:[硕士学位论文].天津:南开大学,2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700