用户名: 密码: 验证码:
茂型后过渡金属配合物促进的C-H键活化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了多个系列茂型后过渡金属化合物促进的C-H键活化计量和催化反应,这些结果有助于我们进一步理解C-H键活化机理和促进在有机合成中的应用。
     发展了一类茂铑化合物催化的串联氧化环化反应,能高效地合成萘并[1,8-bc]吡喃衍生物。该反应的发生经过了连续的sp2C-H键/sp3C-H键和sp2C-H键/O-H键的断裂,而且两步与不对称炔烃的环化反应都具有高度区域选择性。进一步实验表明炔烃插入是一个分步的过程,而1-萘酚衍生物是一个中间体。得到的大部分萘并[1,8-bc]吡喃产物都展示出了较强的固态荧光性质。
     研究了(η5-C5Me5)Ir(CO)2苯溶液的光照C-H键活化以及随后在空气中的氧化反应,得到了一个单核铱化合物、三个双核铱化合物和一个结构新颖的六核铱簇合物,而且我们进一步研究了所得部分化合物的反应性和相互转换关系,并对这些化合物形成机理做了进一步分析。
     制备了一系列桥连茂型铱碘桥聚合物{(C5Me4)(CH2)n(C5Me4)(IrI2)2},m (n=2-4),并以它们为起始原料合成了一系列双核铱化合物。特别是这些铱碘桥聚合物能与含氮配体发生sp2C-H键活化反应,制备了一系列环金属化的双核铱化合物。而且,我们发现这些铱碘桥聚合物和衍生的膦配位双核铱化合物是胺的交叉偶联反应良好的催化剂。
     报导了多个茚基膦配体与Ru3(CO)12的反应,分离并鉴定了一系列三核和四核的钉簇合物。这些反应的发生通过了C-H键和C-P键断裂,茚环上甲基取代基的位置强烈影响了C-H键和C-P键断裂的模式。我们还分离到一个通过分子内甲基sp3C-H键的活化的产物,这是一例稀有的磷原子协助的钉簇合物活化sp3C-H键的反应。
In this dissertation, the stoichiometric and catalytic C-H bond activation reactions of several series of cyclopentadienyl late-transition-metal complexes were studied. They are helpful for us to further understand the mechanism of C-H bond activation and promote their applications in organic synthesis.
     A highly efficient rhodium-catalyzed cascade oxidative annulation leading to naphtho[1,8-bc]pyran derivatives has been developed. These reactions proceeded by sequential cleavage of C(sp2)-H/C(sp3)-H and C(sp2)-H/O-H bonds. Moreover, these reactions are highly regioselective with unsymmetrical alkynes. The further experiments indicated that the cascade reaction is a stepwise process, wherein the1-naphthol acts as an intermediate. Most of the naphtho[1,8-bc]pyran products exhibit intense fluorescence in the solid state.
     Photochemical C-H bond activation and subsequent aerobic oxidation reactions of benzene with (η5-C5Me5)Ir(CO)2afforded a mononuclear iridium complex, three dinuclear iridium complexes, and a novel hexanuclear iridium cluster. The reactivities of some obtained iridium complexes were studied and their formation mechanisms were analyzed.
     Iodo-bridged polymeric iridium complexes{(C5Me4)(CH2)n(C5Me4)(IrI2)2}m (n=2-4) were synthesized and used as the starting material to synthesize a series of dinuclear iridium complexes. Specially, the reactions of these iodo-bridged polymeric iridium complexes with several nitrogen ligands afforded cyclometallated dinuclear iridium complexes via C(sp2)-H bond activation. Moreover, these iodo-bridged polymeric iridium complexes and derivative phosphine-coordinated dinuclear iridium complexes could serve as efficient catalysts in the selective amine cross-coupling reaction.
     The reactions of a series of indenylphosphines derivatives with Ru3(CO)12were studied and trinuclear and tetranuclear clusters were obtained via C-H bond and C-P bond activation. The position of methyl substituents on the indenyl ring strongly affects the mode of C-H and C-P bond activation. Moreover, an intramolecular C(sp3)-H bond activated product was isolated, which represents a rare example of C(sp3)-H bond activation by ruthenium clusters with assistance from coordinated phosphorus atom.
引文
[1]JIA C, KITAMURA T, FUJIWARA Y. Catalytic functionalization of arenes and alkanes via C-H bond activation [J]. Accounts of Chemical Research,2001,34 (8):633-639.
    [2]ALEXANDER E S, GEORGIY B S. Activation of C-H bonds by metal complexes [J]. Chemical Reviews,1997,97 (8):2879-2932.
    [3]BERGMAN R G. C-H activation [J]. Nature,2007,446:391-393.
    [4]BERGMAN R G. Activation of alkanes in homogeneous solution using organotransition metal complexes [J]. Science,1984,223:902-908.
    [5]ARNDTSEN B A, BERGMAN R G, MOBLEY T A, et al. Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution [J]. Accounts of Chemical Research,1995,28 (3):154-162.
    [6]MURAI S, KAKIUCHI F, SEKINE S, et al. Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins [J]. Nature,1993,366:529-531.
    [7]BALCELLS D, CLOT E, EISENSTEIN O. C-H bond activation in transition metal species from a computational perspective [J]. Chemical Reviews,2010,110 (2):749-823.
    [8]LABINGER J A, BERCAW J E. Understanding and exploiting C-H bond activation [J]. Nature,2002,417:507-514.
    [9]ACKERMANN L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations:mechanism and scope [J]. Chemical Reviews,2011,111 (3):1315-1345.
    [10]SADOW A D, TILLEY T D. Homogeneous catalysis with methane. A strategy for the hydromethylation of olefins based on the nondegenerate exchange of alkyl groups and σ-bond metathesis at scandium [J]. Journal of the American Chemical Society,2003,125 (26):7971-7977.
    [11]FONTAINE F G, TILLEY T D. Control of selectivity in the hydromethylation of olefins via ligand modification in scandocene catalysts [J]. Organometallics,2005,24 (18) 4340-4342
    [12]STAHL S S, LABINGER J A, BERCAW J E. Homogeneous oxidation of alkanes by electrophilic late transition metals [J]. Angewandte Chemie International Edition,1998,37 (16):2180-2192
    [13]CUMMINS C C, BAXTER S M, WOLCZANSKI P T. Methane and benzene activation via transient (tert-Bu3SiNH)2Zr:NSi-tert-Bu2 [J]. Journal of the American Chemical Society, 1988,110(26):8731-8733
    [14]SHERRY A E, WAYLAND B B. Metalloradical activation of methane [J]. Journal of the American Chemical Society,1990,112 (3):1259-1261
    [15]WAYLAND B B, BA S, SHERRY A E. Activation of methane and toluene by rhodium(Ⅱ) porphyrin complexes [J]. Journal of the American Chemical Society,1991,113 (14): 5305-5311.
    [16]LAPOINTE D, FAGNOU K. Overview of the mechanistic work on the concerted metallation-deprotonation pathway [J]. Chemistry Letters,2010,39 (11):1118-1126.
    [17]OXGAARD J, TENN W J, NIELSEN R J, et al. Mechanistic analysis of iridium heteroatom C-H activation:evidence for an internal electrophilic substitution mechanism [J]. Organometallics,2007,26 (7):1565-1567.
    [18]BOUTADLA Y, DAVIES D L, MACGREGOR S A, et al. Mechanisms of C-H bond activation:rich synergy between computation and experiment [J]. Dalton Transactions, 2009,(30):5820-5831.
    [19]BOUTADLA Y, DAVIES D L, MACGREGOR S A, et al. Computational and synthetic studies on the cyclometallation reaction of dimethylbenzylamine with [IrCl2Cp*]2:role of the chelating base [J]. Dalton Transactions,2009, (30):5887-5893.
    [20]DAVIES D L, AL-DUAIJ O, FAWCETT J, et al. Room-temperature cyclometallation of amines, imines and oxazolines with [MCl2Cp*]2(M= Rh, Ir) and [RuCl2(p-cymene)]2 [J]. Dalton Transactions,2003, (21):4132-4138.
    [21]LI L, BRENNESSEL W W, JONES W D. C-H activation of phenyl imines and 2-phenylpyridines with [Cp*MCl2]2 (M= Ir, Rh):regioselectivity, kinetics, and mechanism [J]. Organometallics,2009,28,3492-.
    [22]KEALY T J, PAUSON P L. A new type of organo-iron compound [J]. Nature,1951,168: 1039-1040.
    [23]WATSON P L. Facile C-H activation by lutetium-methyl and lutetium-hydride complexes [J]. Journal of the Chemical Society, Chemical Communications,1983, (6):276-277.
    [24]WATSON P L. Methane exchange reactions of lanthanide and early-transition-metal methyl complexes [J]. Journal of the American Chemical Society,1983,105 (21):6491-6493.
    [25]THOMPSON M E, BAXTER S M, BULLS A R, et al. σ-Bond metathesis for carbon-hydrogen bonds of hydrocarbons and Sc-R (R= H, alkyl, aryl) bonds of permethylscandocene derivatives. Evidence for noninvolvement of the π system in electrophilic activation of aromatic and vinylic C-H bonds [J]. Journal of the American Chemical Society,1987,109(1):203-219.
    [26]BRUNO J W, MARKS T J, DAY V W. Intra-and intermolecular organoactinide carbon-hydrogen activation pathways. Formation, properties, and reactions of thoracyclobutanes [J]. Journal of the American Chemical Society,1982,104 (25): 7357-7360.
    [27]FENDRICK C M, MARKS T J. Actinacyclobutanes. Thermochemistry based strategies for the ring-opening stoichiometric activation of saturated and olefinic hydrocarbons [J]. Journal of the American Chemical Society,1986,108 (3):425-437.
    [28]WALSH P J, HOLLANDER F J, BERGMAN R G. Generation, alkyne cycloaddition, arene carbon-hydrogen activation, nitrogen-hydrogen activation and dative ligand trapping reactions of the first monomeric imidozirconocene (Cp2Zr:NR) complexes [J]. Journal of the American Chemical Society,1988,110 (26):8729-8731.
    [29]JIANG Q, PESTANA D C, CARROLL P J, et al. Thermochemical aspects of arene C-H activation by tantalum silyl complexes:relative Ta-Si and Ta-C bond enthalpies [J]. Organometallics,1994,13 (9):3679-3691.
    [30]WALTZ K M, HARTWIG J F. Selective functionalization of alkanes by transition-metal boryl complexes [J]. Science,1997,277:211-213.
    [31]WEBSTER C E, FAN Y, HALL M B, et al. Experimental and computational evidence for a boron-assisted, σ-bond metathesis pathway for alkane borylation [J]. Journal of the American Chemical Society,2003,125 (4):858-859.
    [32]PAMPLIN C B, LEGZDINS P. Thermal activation of hydrocarbon C-H bonds by Cp*M(NO) complexes of molybdenum and tungsten [J]. Acccounts of Chemical Research, 2003,36 (4):223-233.
    [33]ADAMS C S, LEGZDINS P, TRAN E. Thermal activation of hydrocarbon C-H bonds by tungsten alkylidene complexes [J]. Journal of the American Chemical Society,2001,123 (4):612-624.
    [34]TSANG J Y K, BUSCHHAUS M S A, GRAHAM P M, et al. Facile and selective aliphatic C-H bond activation at ambient temperatures initiated by Cp*W(NO)(CH2CMe3)(η3-CH2CHCHMe) [J]. Journal of the American Chemical Society, 2008,130 (11):3652-3663.
    [35]BOECKMAN R K, FLANN C J, POSS K M. Synthetic and mechanistic studies of the retro-Claisen rearrangement:an example of cation acceleration of a [3,3]-sigmatropic rearrangement [J]. Journal of the American Chemical Society,1985,107 (14):4359-4362.
    [36]WENZEL T T, BERGMAN R G. Inter- and intramolecular insertion of rhenium into carbon-hydrogen bonds [J]. Journal of the American Chemical Society,1986,108 (16): 4856-4867.
    [37]CHEN H, HARTWIG J F. Catalytic, regiospecific end-functionalization of alkanes: rhenium-catalyzed borylation under photochemical Conditions [J]. Angewandte Chemie International Edition,1999,38 (22):3391-3393.
    [38]WALTZ K M, HE X, MUHORO C, et al. Hydrocarbon functionalization by transition metal boryls [J]. Journal of the American Chemical Society,1995,117(45):11357-11358.
    [39]MURPHY J M, LAWRENCE J D, KAWAMURA K, et al. Ruthenium-catalyzed regiospecific borylation of methyl-C-H bonds [J]. Journal of the American Chemical Society,2006,128(42):13684-13685.
    [40]ONODERA G, IMAJIMA H, YAMANASHI M, et al. Ruthenium-catalyzed allylation of aromatic compounds and allylic ether formation [J]. Organometallics,2004,23 (24): 5841-5848.
    [41]JANOWICZ A H, BERGMAN R G. Carbon-hydrogen activation in completely saturated hydrocarbons:direct observation of M+R-H→M(R)(H) [J]. Journal of the American Chemical Society,1982,104 (1):352-354.
    [42]HOYANO J K, GRAHAM W A G. Oxidative addition of the carbon-hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex [J]. Journal of the American Chemical Society,1982,104 (13):3723-3725.
    [43]JANOWICZ A H, BERGMAN R G. Activation of carbon-hydrogen bonds in saturated hydrocarbons on photolysis of (η5-C5Me5)(PMe3)IrH2. Relative rates of reaction of the intermediate with different types of carbon-hydrogen bonds and functionalization of the metal-bound alkyl groups [J]. Journal of the American Chemical Society,1983,105 (12): 3929-3939.
    [44]JONES W D, FEHER F J. Alkane carbon-hydrogen bond activation by homogeneou srhodium(I) compounds [J]. Organometallics,1983,2 (4):562-563.
    [45]JANOWICA A H, PERIANA R A, BUCHANAN J M, et al. Oxidative addition of soluble indium and rhodium complexes to carbon-hydrogen bonds in methane and higher alkanes [J]. Pure and Applied Chemistry,1984,56 (1):13-23.
    [46]PERLANA R A, BERGMAN R G. Oxidative addition of rhodium to alkane carbon-hydrogen bonds:enhancement in selectivity and alkyl group functionalization [J]. Organometallics,1984,3 (3):508-510.
    [47]BLOYCE P E, REST A J, WHITWELL I, et al. Photoactivation of alkanes by carbonyl(η5-cyclopentadienyl)dihydridoiridium:solution and matrix isolation studies [J]. Journal of the Chemical Society, Chemical Communications,1988, (13):846-848.
    [48]PETERSON T H, GOLDEN J T, BERGMAN R G. Evidence for the intervention of different C-H activating intermediates in the irradiation of (η5-C5Me5)(PMe3)IrH2 and the reaction of (η5-C5Me5)(PMe3)Ir(H)(Cl) with strong base. Detection and spectroscopic characterization of (η5-C5Me5)(PMe3)Ir(Li)(Cl), an intermediate in the dehydrohalogenation reaction [J]. Journal of the American Chemical Society,2001,123 (3): 455-462.
    [49]RAUSCH M D, GASTINGER R G, GARDNER S A, et al. Isolation and structural characterization of bis(η5-cyclopentadienyl)bis(carbonyl)-η-(o-phenylene)-diiridium (Ir-Ir), (C5H5)2(CO)2Ir2(C6H4):a product formally derived from the double oxidative addition of benzene to iridium [J]. Journal of the American Chemical Society,1977,99 (24): 7870-7876.
    [50]HOYANO J K, MCMASTER A D, GRAHAM W A G. Activation of methane by iridium complexes [J]. Journal of the American Chemical Society,1983,105 (24):7190-7191.
    [51]WEILLER B H, WASSERMAN E P, BERGMAN R G, et al. Time-resolved IR spectroscopy in liquid rare gases:direct rate measurement of an intermolecular alkane carbon-hydrogen oxidative addition reaction [J]. Journal of the American Chemical Society, 1989,111 (21):8288-8290.
    [52]WASSERMAN E P, MOORE C B, BERGMAN R G. Gas-phase rates of alkane C-H oxidative addition to a transient CpRh(CO) complex [J]. Science,1992,255:315-318.
    [53]WEILLER B H, WASSERMAN E P, MOORE C B, et al. Organometallic carbonyl substitution kinetics in liquid xenon by fast time-resolved IR spectroscopy [J]. Journal of the American Chemical Society,1993,115(10):4326-4330.
    [54]SCHULTZ R H, BENGALI A A, TAUBER M J, et al. IR flash kinetic spectroscopy of C-H bond activation of cyclohexane-d0 and-d12 by Cp*Rh(CO)2 in liquid rare gases:kinetics, thermodynamics, and unusual isotope effect [J]. Journal of the American Chemical Society, 1994,116 (16):7369-7377.
    [55]BENGALI A A, SCHULTZ R H, MOORE C B, et al. Activation of the C-H bonds in neopentane and neopentane-d12 by (η5-C5(CH3)5)Rh(CO)2:spectroscopic and temporal resolution of rhodium-krypton and rhodium-alkane complex intermediates [J]. Journal of the American Chemical Society,1994,116(21):9585-9589.
    [56]BANISTER J A, COOPER A I, HOWDLE S M, et al. "Solvent-free" photochemical activation of CH4, C2H4, and C2H6 by (C5Me5)Ir(CO)2 in supercritical fluid solution [J]. Organometallics,1996,15 (7):1804-1812.
    [57]HADDLETON D M, PERUTZ R N. Photochemical activation of ethene C-H bonds of (η5-C5H5)lr(C2H4)2 in low-temperature matrices and in solution [J]. Journal of the Chemical Society,Chemical Communications,1986, (23):1734-1736.
    [58]HADDLETON D M, MCCAMLEY A, PERUTZ R N. Matrix photochemistry of (η5-cyclopentadienyl)bis(ethene)rhodium and (η5-cyclopentadienyl)(ethene) carbonylrhodium:a test-bed for intermediates in C-H activation [J]. Journal of the American Chemical Society,1988,110(6):1810-1817.
    [59]BELL T W, HADDLETON D M, MCCAMLEY A, et al. Photochemical isomerization of metal ethene to metal vinyl hydride complexes:a matrix-isolation and solution NMR study [J]. Journal of the American Chemical Society,1990,112 (25):9212-9226.
    [60]BELL T W, BROUGH S A, PARTRIDGE M G, et al. Competition between intramolecular and intermolecular carbon-hydrogen bond activation in iridium ethene complexes [J]. Organometallics,1993,12 (8):2933-2941.
    [61]ASPLUND M C, SNEE P T, YESTON J S, et al. Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons [J]. Journal of the American Chemical Society,2002,124(35):10605-10612.
    [62]ASBURY J B, GHOSH H N, YESTON J S, et al. Sub-picosecond IR study of the reactive intermediate in an alkane C-H bond activation reaction by CpRh(CO)2 [J]. Organometallics, 1998,17 (16):3417-3419.
    [63]BENGALI A A, BERGMAN R G, MOORE C B. Evidence for the formation of free 16-electron species rather than solvate complexes in the ultraviolet irradiation of CpCo(CO)2 in liquefied noble gas solvents [J]. Journal of the American Chemical Society, 1995,117 (13):3879-3880.
    [64]BELT S T, DONG L, DUCKETT S B, et al. Control of η2-arene coordination and C-H bond activation by cyclopentadienyl complexes of rhodium [J]. Journal of the Chemical Society, Chemical Communications,1991, (4):266-269.
    [65]FOO T, BERGMAN R G. Synthesis and carbon-hydrogen activation reactions of η5-indenyl(trimethylphosphine)iridium alkyl and hydride complexes [J]. Organometallics, 1992,11 (5):1801-1810.
    [66]DIVERSI P, LACOPONI S, INGROSSO G, et al. Electron transfer catalysis in the activation of C-H bonds by iridium complexes [J]. Organometallics,1995,14 (7): 3275-3287.
    [67]MOBLEY T A, BERGMAN R G. The use of a planar chiral ligand to effect C-H Activation with asymmetric induction at an iridium center. Dramatically different C-H activation stereoselectivities for benzene and cyclohexane [J]. Journal of the American Chemical Society,1998,120(13):3253-3254.
    [68]MCGHEE W D, BERGMAN R G. Synthesis of an (η3-allyl)(hydrido)iridium complex and its reactions with arenes and alkanes. Sequential intermolecular carbon-hydrogen oxidative addition and hydride-to-alkene migratory insertion reactions [J]. Journal of the American Chemical Society,1988,110 (13):4246-4262.
    [69]MCGHEE W D, HOLLANDER F J, BERGMAN R G. Carbon-hydrogen oxidative addition and reductive elimination reactions in a dinuclear iridium complex [J]. Journal of the American Chemical Society,1988,110 (25):8428-8443.
    [70]BURGER P, BERGMAN R G. Facile intermolecular activation of carbon-hydrogen bonds in methane and other hydrocarbons and silicon-hydrogen bonds in silanes with the iridium(Ⅲ) complex Cp*(PMe3)Ir(CH3)(OTf) [J]. Journal of the American Chemical Society,1993,115 (22):10462-10463.
    [71]TELLERS D M, YUNG C M, ARNDTSEN B A, et al. Electronic and medium effects on the rate of arene C-H bond activation by cationic Ir(Ⅲ) complexes [J]. Journal of the American Chemical Society,2002,124 (7):1400-1410.
    [72]ARNDTSEN B A, BERGMAN R G. Unusually mild and selective hydrocarbon C-H bond activation with positively charged iridium(Ⅲ) complexes [J]. Science,1995,270: 1970-1973.
    [73]FUJITA K I, NAKAGUMA H, HAMADA T, et al. Inter- and intramolecular activation of aromatic C-H bonds by diphosphine and hydrido-bridged dinuclear iridium complexes [J]. Journal of the American Chemical Society,2003,125 (41):12368-12369.
    [74]CHEN H, SCHLECHT S, SEMPLE T C, et al. Thermal, catalytic, regiospecific functionalization of alkanes [J]. Thermal, Catalytic, Regiospecific Functionalization of Alkanes [J]. Science,2000,287:1995-1997.
    [75]CHO J Y, IVERSON C N, SMITH M R. Steric and chelate directing effects in aromatic borylation [J]. Journal of the American Chemical Society,2000,122 (51):12868-12869.
    [76]TSE M K, CHO J Y, SMITH M R. Regioselective aromatic borylation in an inert solvent [J]. Organic Letters,2001,3 (18):2831-2833.
    [77]IVERSON C N, SMITH M R. Stoichiometric and catalytic B-C bond formation from unactivated hydrocarbons and boranes [J]. Journal of the American Chemical Society,1999, 121 (33):7696-7697.
    [78]CHO J Y, TSE M K, HOLMES D, et al. Remarkably selective iridium catalysts for the elaboration of aromatic C-H bonds [J]. Science,2002,295:305-308.
    [79]ZHU C, WANG R, FALCK J R. Amide-directed tandem C-C/C-N bond formation through C-H activation [J]. Chemistry- An Asian Journal,2012,7 (7):1502-1514.
    [80]SONG G, WANG F, LI X.. C-C, C-O and C-N bond formation via rhodium(Ⅲ)-catalyzed oxidative C-H activation [J]. Chemical Society Reviews,2012,41 (9):3651-3678.
    [81]AROCKIAM P B, BRUNEAU C, DIXNEUF P H. Ruthenium(II)-catalyzed C-H bond activation and functionalization [J]. Chemical Reviews,2012,112(11):5879-5918.
    [82]WENCEL-DELORD J, DROGE T, LIU F, et al. Towards mild metal-catalyzed C-H bond activation [J]. Chemical Society Reviews,2011,40 (9):4740-4761.
    [83]ACKERMANN L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations:mechanism and scope [J]. Chemical Reviews,2011,111 (3):1315-1345.
    [84]JAZZAR R, HITCE J, RENAUDAT A, et al. Functionalization of organic molecules by transition-metal-catalyzed C(sp3)-H activation [J]. Chemistry-A European Journal,2010, 16 (9):2054-2672.
    [85]SATOH T, MIURA M. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis [J]. Chemistry- A European Journal,2010,16(37):11212-11222.
    [86]COLBY D A, BERGMAN R G, ELLMAN J A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation [J]. Chemical Reviews,2010,110 (2): 624-655.
    [87]YU J Q, SHI Z J. C-H activation [M]. Topics in Current Chemistry.2010,292.
    [88]CHEN X, ENGLE K M, WANG D H, et al. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions:versatility and practicality [J]. Angewandte Chemie International Edition,2009,48 (28):5094-5115.
    [89]KANG J W, MOSELEY K, MAITLIS P M. Pentamethylcyclopentadienylrhodium and-iridium halides. I. Synthesis and properties [J]. Journal of the American Chemical Society, 1969,91 (22):5970-5977.
    [90]KISENYI J M, SUNLEY G J, CABEZA J A, et al. The cyclometallation of benzoic acid to give rhodium, iridium, and osmium C,O-benzoates. X-Ray structure determination of the dibenzoate [(C5Me5)Rh(OOCPh)2(H2O)] [J]. Journal of the Chemical Society, Dalton Transactions,1987, (10):2459-2466.
    [91]UEURA K, SATOH T, MIURA M. Rhodium- and iridium-catalyzed oxidative coupling of benzoic acids with alkynes via regioselective C-H bond cleavage [J]. Journal of Organic Chemistry,2007,72 (14):5362-5367.
    [92]UEURA K, SATOH T, MIURA M. An efficient waste-free oxidative coupling via regioselective C-H bond cleavage:Rh/Cu-catalyzed reaction of benzoic acids with alkynes and acrylates under air [J]. Organic Letters,2007,9 (7):1407-1409.
    [93]SATOH T, UEURA K, MIURA M. Rhodium- and iridium-catalyzed oxidative coupling of benzoic acids with alkynes and alkenes [J]. Pure and Applied Chemistry,2008,80 (5): 1127-1134.
    [94]MOCHIDA S, HIRANO K, SATOH T, et al. Synthesis of functionalized a-pyrone and butenolide derivatives by rhodium-catalyzed oxidative coupling of substituted acrylic acids with alkynes and alkenes [J]. Journal of Organic Chemistry,2009,74 (16):6295-6298.
    [95]MOCHIDA S, SHIMIZU M, HIRANO K, et al. Synthesis of naphtho[1,8-bc]pyran derivatives and related compounds through hydroxy group directed C-H bond cleavage under rhodium catalysis [J]. Chemistry-An Asian Journal,2010,5 (4):847-851.
    [96]WANG F, SONG G, DU Z, et al. Oxidative coupling of NH isoquinolones with olefins catalyzed by Rh(Ⅲ) [J]. Journal of Organic Chemistry,2011,76 (8):2926-2932.
    [97]MORIMOTO K, HIRANO K, SATOH T, et al. Synthesis of isochromene and related derivatives by rhodium-catalyzed oxidative coupling of benzyl and allyl alcohols with alkynes [J]. Journal of Organic Chemistry,2011,76 (22):9548-9551.
    [98]FUKUTANI T, UMEDA N, HIRANO K, et al. Rhodium-catalyzed oxidative coupling of aromatic imines with internal alkynes via regioselective C-H bond cleavage [J]. Chemical Communications,2009, (34):5141-5143.
    [99]GUIMOND N, FAGNOU K. Isoquinoline synthesis via rhodium-catalyzed oxidative cross-coupling/cyclization of aryl aldimines and alkynes [J]. Journal of the American Chemical Society,2009,131 (34):12050-12051.
    [100]STUART D R, BERTRAND-LAPERLE M, BURGESS K M N, et al. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes [J]. Journal of the American Chemical Society,2008,130 (49):16474-16475.
    [101]MOCHIDA S, UMEDA N, HIRANO K, et al. Rhodium-catalyzed oxidative coupling/cyclization of benzamides with alkynes via C-H bond cleavage [J]. Chemistry Letters,2010,39 (7):744-746.
    [102]HYSTER T K, ROVIS T. Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C-H/N-H activation [J]. Journal of the American Chemical Society,2010,132 (30):10565-10569.
    [103]SONG G, CHEN D, PAN C L, et al. Rh-catalyzed oxidative coupling between primary and secondary benzamides and alkynes:synthesis of polycyclic amides [J]. Journal of Organic Chemistry,2010,75 (21):7487-7490.
    [104]STUART D R, ALSABEH P, KUHN M, et al. Rhodium(Ⅲ)-catalyzed arene and alkene C-H bond functionalization leading to indoles and pyrroles [J]. Journal of the American Chemical Society,2010,132(51):18326-18339.
    [105]HUESTIS M P, CHAN L, STUART D R, et al. The vinyl moiety as a handle for regiocontrol in the preparation of uunsymmetrical 2,3-aliphatic-substituted indoles and pyrroles [J]. Angewandte Chemie International Edition,2011,50 (6):1338-1341.
    [106]PATUREAU F W, BESSET T, GLORIUS F. Rhodium-catalyzed oxidative olefination of C-H bonds in acetophenones and benzamides [J]. Angewandte Chemie International Edition,2011,50 (5):1064-1067.
    [107]WANG F, SONG G, LI X. Rh(Ⅲ)-catalyzed tandem oxidative olefination-michael reactions between aryl carboxamides and alkenes [J]. Organic letters,2010,12 (23):5430-5433.
    [108]MOCHIDA S, HIRANO K, SATOH T, et al. Synthesis of functionalized a-pyrone and butenolide derivatives by rhodium-catalyzed oxidative coupling of substituted acrylic acids with alkynes and alkenes [J]. Journal of Organic Chemistry,2009,74 (16):6295-6298.
    [109]SU Y, ZHAO M, SONG G, et al. Synthesis of 2-pyridones and iminoesters via Rh(III)-catalyzed oxidative coupling between acrylamides and alkynes [J]. Organic Letters, 2010,12 (23):5462-5465.
    [110]HYSTER T, ROVIS T. An improved catalyst architecture for rhodium(Ⅲ) catalyzed C-H activation and its application to pyridone synthesis [J]. Chemical Science,2011,2 (8): 1606-1610.
    [111]RAKSHIT S, PATUREAU F W, GLORIUS F. Pyrrole synthesis via allylic sp3 C-H activation of enamines followed by intermolecular coupling with unactivated alkynes [J]. Journal of the American Chemical Society,2010,132 (28):9585-9587.
    [112]GUIMOND N, COULIARAS C, FAGNOU K. Rhodium(Ⅲ)-catalyzed isoquinolone synthesis:the N-O bond as a handle for C-N bond formation and catalyst turnover [J]. Journal of the American Chemical Society,2010,132 (20):6908-6909.
    [113]GUIMOND N, CORELSKY S, FAGNOU K. Rhodium(Ⅲ)-catalyzed heterocycle synthesis using an internal oxidant:improved reactivity and mechanistic studies [J]. Journal of the American Chemical Society,2011,133 (16):6449-6457.
    [114]RAKSHIT S, GROHMANN C, BESSET T, et al. Rh(Ⅲ)-catalyzed directed C-H olefination using an oxidizing directing group:mild, efficient, and versatile [J]. Journal of the American Chemical Society,2011,133 (8):2350-2353.
    [115]WANG H, GLORIUS F. Mild rhodium(Ⅲ)-catalyzed C-H activation and intermolecular annulation with allenes [J]. Angewandte Chemie International Edition,2012,51 (29): 7318-7322.
    [116]ZENG R, FU C, MA S. Highly selective mild stepwise allylation of N-methoxybenzamides with allenes [J]. Journal of the American Chemical Society,2012,134 (23):9597-9600.
    [117]PATUREAU F W, BESSET T, KUHL N, et al. Diverse strategies toward indenol and fulvene derivatives:Rh-catalyzed C-H activation of aryl ketones followed by coupling with internal alkynes [J]. Journal of the American Chemical Society,2011,133 (7):2154-2156.
    [118]MURALIRAJAN K, PARTHASARATHY K, CHENG C H. Regioselective synthesis of indenois by rhodium-catalyzed C-H activation and carbocyclization of aryl ketones and alkynes [J]. Angewandte Chemie International Edition,2011,50 (18):4169-4172.
    [119]SHI X, LI C. Synthesis of indene frameworks via rhodium-catalyzed cascade cyclization of aromatic ketone and unsaturated carbonyl compounds [J]. Organic Letters,2013,15 (7): 1476-1479.
    [120]PARK S H, KIM J Y, Chang S. Rhodium-catalyzed selective olefination of arene esters via C-H bond activation [J]. Organic Letters,2011,13 (9):2372-2375.
    [121]BESSET T, KUHL N, PATUREAU F W, et al. RhⅢ-catalyzed oxidative olefination of vinylic C-H bonds:efficient and selective access to di-unsaturated α-amino acid derivatives and other linear 1,3-butadienes [J]. Chemistry-A European Journal,2011,17 (26): 7167-7171.
    [122]GONG T J, XIAO B, LIU Z, et al. Rhodium-catalyzed selective C-H activation/olefination of phenol carbamates [J]. Organic Letters,2011,13 (12):3235-3237.
    [123]FENG C, LOH T. Rhodium-catalyzed direct ortho C-H olefination of phenol derivatives [J]. Chemical Communications,2011,47 (37):10458-10460.
    [124]UMEDA N, TSURUGI H, SATOH T, et al. Fluorescent naphthyl-and anthrylazoles from the catalytic coupling of phenylazoles with internal alkynes through the cleavage of multiple C-H bonds [J]. Angewandte Chemie International Edition,2008,47 (21): 4019-4022.
    [125]UMEDA N, HIRANO K, SATOH T, et al. Rhodium-catalyzed mono-and divinylation of 1-phenylpyrazoles and related compounds via regioselective C-H bond cleavage [J]. Journal of Organic Chemistry,2009,74 (18):7094-7099.
    [126]FUKUTANI T, HIRANO K, SATOH T, et al. Synthesis of highly substituted acenes through rhodium-catalyzed oxidative coupling of arylboron reagents with alkynes [J]. Journal of Organic Chemistry,2011,76 (8):2867-2874.
    [127]FUKUTANI T, HIRANO K, SATOH T, et al. Synthesis of highly substituted naphthalene and anthracene derivatives by rhodium-catalyzed oxidative coupling of arylboronic acids with alkynes [J]. Organic Letters,2009,11 (22):5198-5201.
    [128]PARK J, PARK E, KIM A, et al. Rhodium-catalyzed oxidative ortho-acylation of benzamides with aldehydes:direct functionalization of the sp C-H bond [J]. Organic Letters,2011,13 (16):4390-4393.
    [129]SHARMA S, PARK E, PARK J, et al. Tandem Rh(Ⅲ)-catalyzed oxidative acylation of secondary benzamides with aldehydes and intramolecular cyclization:the direct synthesis of 3-hydroxyisoindolin-l-ones [J]. Organic Letters,2012,14 (3):906-909.
    [130]LI Y, LI B J, WANG W H, et al. Rhodium-catalyzed direct addition of aryl C-H bonds to N-sulfonyl aldimines [J]. Angewandte Chemie International Edition,2011,50 (9): 2115-2119.
    [131]LI Y, ZHANG X S, ZHU Q L, et al. Olefinic C-H bond addition to aryl aldehyde and its N-sulfonylimine via Rh catalysis [J]. Organic Letters,2012,14 (17):4498-4501.
    [132]TSAI A S, TAUCHERT M E, BERGMAN R G, et al. Rhodium(Ⅲ)-catalyzed arylation of boc-imines via C-H bond functionalization [J]. Journal of the American Chemical Society, 2011,133(5):1248-1250.
    [133]TAUCHERT M E, INCARVITO C D, RHEINGOLD A L, et al. Mechanism of the rhodium(Ⅲ)-catalyzed arylation of imines via C-H bond functionalization:inhibition by substrate [J]. Journal of the American Chemical Society,2012,134 (3):1482-1485.
    [134]DU Y, HYSTER T K, ROVIS T. Rhodium(III)-catalyzed oxidative carbonylation of benzamides with carbon monoxide [J]. Chemical Communications,2011,47 (44): 12074-12076.
    [135]ZHU C, XIE W, FALCK J R. Rhodium-catalyzed aannulation of N-benzoylsulfonamide with isocyanide through C-H activation [J]. Chemistry-A European Journal,2011,17 (45): 12591-12595.
    [136]HESP K D, BERGMAN R G, ELLMAN J A. Expedient synthesis of N-acyl anthranilamides and β-enamine amides by the Rh(III)-catalyzed amidation of aryl and vinyl C-H bonds with isocyanates [J]. Journal of the American Chemical Society,2011,133 (30): 11430-11433.
    [137]RYU J, SHIN K, PARK S H, et al. Rhodium-catalyzed direct C-H amination of benzamides with aryl azides:a synthetic route to diarylamines [J]. Angewandte Chemie International Edition,2012,51 (39):9904-9908.
    [138]KIM J Y, PARK S H, RYU J, et al. Rhodium-catalyzed intermolecular amidation of arenes with sulfonyl azides via chelation-assisted C-H bond activation [J]. Journal of the American Chemical Society,2012,134 (22):9110-9113.
    [139]CHAN W W, LO S F, ZHOU Z, et al. Rh-catalyzed intermolecular carbenoid functionalization of aromatic C-H bonds by a-diazomalonates [J]. Journal of the American Chemical Society,2012,134(33):13565-13568.
    [140]Hyster T K, Ruhl K E, Rovis T. A coupling of benzamides and donor/acceptor diazo compounds to form y-lactams via Rh(Ⅲ)-catalyzed C-H activation [J]. Journal of the American Chemical Society,2013,135 (14):5364-5367.
    [141]WENCEL-DELORD J, NIMPHIUS C, PATUREAU F W, et al. [RhⅢCp*]-catalyzed dehydrogenative aryl-aryl bond formation [J]. Angewandte Chemie International Edition, 2012,51 (9):2247-2251.
    [142]DONG J, LONG Z, SONG F, et al. Rhodium or ruthenium-catalyzed oxidative C-H/C-H cross-coupling:direct access to extended π-conjugated systems [J]. Angewandte Chemie International Edition,2013,52 (2):580-584.
    [143]REDDY V P, QIU R, IWASAKI T, et al. Rhodium-catalyzed intermolecular oxidative cross-coupling of (hetero) arenes with chalcogenophenes [J]. Organic Letters,2013,15 (6): 1290-1293.
    [144]GROHMANN C, WANG H, GLORIUS F. Rh[Ⅲ]-catalyzed direct C-H amination using N-chloroamines at room temperature [J]. Organic Letters,2012,14 (2):656-659.
    [145]NG K H, ZHOU Z, YU W Y. Rhodium(Ⅲ)-catalyzed intermolecular direct amination of aromatic C-H bonds with N-chloroamines [J]. Organic Letters,2012,14(1):272-275.
    [146]HYSTER T K, ROVIS T. Pyridine synthesis from oximes and alkynes via rhodium(Ⅲ) catalysis:Cp* and Cpt provide complementary selectivity [J]. Chemical Communications, 2011,47(43):11846-11848.
    [147]YE B, CRAMER N. Chiral cyclopentadienyl ligands as stereocontrolling element in asymmetric C-H functionalization [J]. Science,2012,338:504-506.
    [148]HYSTER T K, KNORR L, WARD T R, et al. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation [J]. Science,2012,338:500-503.
    [149]YE B, CRAMER N. A tunable class of chiral Cp ligands for enantioselective rhodium(Ⅲ)-catalyzed C-H allylations of benzamides [J]. Journal of the American Chemical Society,2013,135 (2):636-639.
    [1]ZHU C, WANG R, FALCK J R. Amide-directed tandem C-C/C-N bond formation through C-H activation [J]. Chemistry-An Asian Journal,2012,7 (7):1502-1514.
    [2]SONG G, WANG F, LI X.. C-C, C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C-H activation [J]. Chemical Society Reviews,2012,41 (9):3651-3678.
    [3]HARTWIG J F. Regioselectivity of the borylation of alkanes and arenes [J]. Chemical Society Reviews,2011,40 (4):1992-2002.
    [4]WENCEL-DELORD J, DROGE T, LIU F, et al. Towards mild metal-catalyzed C-H bond activation [J]. Chemical Society Reviews,2011,40 (9):4740-4761.
    [5]ACKERMANN L. Carboxylate-assisted transition-metal-catalyzed C-H bond functional izations:mechanism and scope [J]. Chemical Reviews,2011,111 (3):1315-1345.
    [6]JAZZAR R, HITCE J, RENAUDAT A, et al. Functionalization of organic molecules by transition-metal-catalyzed C(sp)-H activation [J]. Chemistry- A European Journal,2010, 16 (9):2054-2672.
    [7]SATOH T, MIURA M. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis [J]. Chemistry-A European Journal,2010,16 (37):11212-11222.
    [8]COLBY D A, BERGMAN R G. ELLMAN J A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation [J]. Chemical Reviews,2010,110 (2): 624-655.
    [9]YU J Q, SHI Z J. C-H activation [M]. Topics in Current Chemistry.2010,292.
    [10]CHEN X, ENGLE K. M, WANG D H, et al. Palladium(Ⅱ)-catalyzed C-H activation/C-C cross-coupling reactions:versatility and practicality [J]. Angewandte Chemie International Edition,2009,48 (28):5094-5115.
    [11]JAYAKUMAR J, PARTHASARATHY K, CHENG C H. One-pot synthesis of isoquinolinium salts by rhodium-catalyzed C-H bond activation:application to the total synthesis of oxychelerythrine [J]. Angewandte Chemie International Edition,2012,51 (1): 197-200.
    [12]HUANG J, DONG L, HAN B, et al. Synthesis of aza-fused polycyclic quinolines via double C-H bond activation [J]. Chemistry-A European Journal,2012,18 (29): 8896-8900.
    [13]ZHENG L, JU J, BIN Y, et al. Synthesis of isoquinolines and heterocycle-fused pyridines via three-component cascade reaction of aryl ketones, hydroxylamine, and alkynes [J]. Journal of Organic Chemistry,2012,77 (13):5794-5800.
    [14]ZHANG X, CHEN D, ZHAO M, et al. Synthesis of isoquinolines via rhodium(III)-catalyzed dehydrative C-C and C-N coupling between oximines and alkynes [J]. Advance Synthesis & Catalysis,2011,353 (5):719-723.
    [15]WANG Y F, TOH K K, LEE J Y, et al. Synthesis of isoquinolines from α-aryl vinyl azides and internal alkynes by Rh-Cu bimetallic cooperation [J]. Angewandte Chemie International Edition,2011,50 (26):5927-5931.
    [16]GUIMOND N, GORELSKY S I, FAGNOU K. Rhodium(Ⅲ)-catalyzed heterocycle synthesis using an internal oxidant:improved reactivity and mechanistic studies [J]. Journal of the American Chemical Society,2011,133 (16):6449-6457.
    [17]UMEDA N, HIRANO K, SATOH T, et al. Rhodium-catalyzed oxidative 1:1,1:2, and 1:4 coupling reactions of phenylazoles with internal alkynes through the regioselective cleavages of multiple C-H bonds [J]. Journal of Organic Chemistry,2011,76 (1):13-24.
    [18]TOO P C, CHUA S H, WONG S H, et al. Synthesis of azaheterocycles from aryl ketone O-acetyl oximes and internal alkynes by Cu-Rh bimetallic relay catalysts [J]. Journal of Organic Chemistry,2011,76(15):6159-6168.
    [19]SONG G, GONG X, LI X. Synthesis of quinolines via Rh(Ⅲ)-catalyzed oxidative annulation of pyridines [J]. Journal of Organic Chemistry,2011,76 (18):7583-7589.
    [20]WEI X, ZHAO M, DU Z, et al. Synthesis of 1-aminoisoquinolines via Rh(III)-catalyzed oxidative coupling [J]. Organic Letters,2011,13(17):4636-4639.
    [21]MOCHIDA S, SHIMIZU M, HIRANO K, et al. Synthesis of naphtho[1,8-bc]pyran derivatives and related compounds through hydroxy group directed C-H bond cleavage under rhodium catalysis [J]. Chemistry-An Asian Journal,2010,5 (4):847-851.
    [22]GUIMOND N, GOULIARAS C, FAGNOU, K. Rhodium(Ⅲ)-catalyzed isoquinolone synthesis:the N-O bond as a handle for C-N bond formation and catalyst turnover [J]. Journal of the American Chemical Society,2010,132 (20):6908-6909.
    [23]RAKSHIT S, PATUREAU F W, GLORIUS F. Pyrrole synthesis via allylic sp3 C-H activation of enamines followed by iintermolecular coupling with unactivated alkynes [J]. Journal of the American Chemical Society,2010,132 (28):9585-9587.
    [24]HYSTER, T. K.; ROVIS, T. Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C-H/N-H activation [J]. Journal of the American Chemical Society,2010, 132(30):10565-10569.
    [25]STUART D R, ALSABEH P, KUHN M. Rhodium(Ⅲ)-catalyzed arene and alkene C-H bond functionalization leading to indoles and pyrroles [J]. Journal of the American Chemical Society,2010,132(51):18326-18339.
    [26]SONG G, CHEN D, PAN C, et al. Rh-Catalyzed oxidative coupling between primary and secondary benzamides and alkynes:synthesis of polycyclic amides [J]. Journal of Organic Chemistry,2010,75 (21):7487-7490.
    [27]MORIMOTO K, HIRANO K, SATOH T, et al. Rhodium-catalyzed oxidative coupling/cyclization of 2-phenylindoles with alkynes via C-H and N-H bond cleavages with air as the oxidant [J]. Organic Letters,2010,12 (9):2068-2071.
    [28]CHEN J, SONG G, PAN C, et al. Rh(III)-catalyzed oxidative coupling of N-aryl-2-aminopyridine with alkynes and alkenes [J]. Organic Letters,2010,12 (23): 5426-5429.
    [29]SU Y, ZHAO M, HAN K, et al. Synthesis of 2-pyridones and iminoesters via Rh(III)-catalyzed oxidative coupling between acrylamides and alkynes [J]. Organic Letters, 2010,12 (23):5462-5465.
    [30]TOO P, WANG Y F, CHIBA S. Rhodium(Ⅲ)-catalyzed synthesis of isoquinolines from aryl ketone O-acyloxime derivatives and internal alkynes [J]. Organic Letters,2010,12 (24): 5688-5691.
    [31]FUKUTANI T, UMEDA N, HIRANO K, et al. Rhodium-catalyzed oxidative coupling of aromatic imines with internal alkynes via regioselective C-H bond cleavage [J]. Chemical Communications,2009,14 (34):5141-5143.
    [32]MOCHIDA S, HIRANO K, SATOH T, et al. Synthesis of functionalized a-pyrone and butenolide derivatives by rhodium-catalyzed oxidative coupling of substituted acrylic acids with alkynes and alkenes [J]. Journal of Organic Chemistry,2009,74 (16):6295-6298.
    [33]UMEDA N, TSURUGI H, SATOH T, et al. Fluorescent naphthyl- and anthrylazoles from the catalytic coupling of phenylazoles with internal alkynes through the cleavage of multiple C-H bonds [J]. Angewandte Chemie International Edition,2008,47 (21): 4019-4022.
    [34]STUART D R, BERTRAND-LAPERLE, M, BURGESS K M N, et al. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes [J]. Journal of the American Chemical Society,2008,130 (49):16474-16475.
    [35]UEURA K, SATOH T, MIURA M. Rhodium- and iridium-catalyzed oxidative coupling of benzoic acids with alkynes via regioselective C-H bond cleavage [J]. Journal of Organic Chemistry,2007,72 (14):5362-5367.
    [36]UEURA K, SATOH T, MIURA M. An efficient waste-free oxidative coupling via regioselective C-H bond cleavage:Rh/Cu-catalyzed reaction of benzoic acids with alkynes and acrylates under Air [J]. Organic Letters,2007,9 (7):1407-1409.
    [37]CHINNAGOLLA R K, JEGANMOHAN M. Regioselective synthesis of isocoumarins by ruthenium-catalyzed aerobic oxidative cyclization of aromatic acids with alkynes [J]. Chemical Communications,2012,48 (14):2030-2032.
    [38]ACKERMANN L, WANG L, LYGIN A V. Ruthenium-catalyzed aerobic oxidative coupling of alkynes with 2-aryl-substituted pyrroles [J]. Chemical Science,2012,3 (1): 177-180.
    [39]CHINNAGOLLA K R, JEGANMOHAN M. Ruthenium-catalyzed regioselective cyclization of aromatic ketones with alkynes:an efficient route to indenols and benzofulvenes [J]. European Journal of Organic Chemistry,2012,2012 (2):417-423.
    [40]ACKERMANN L, LYGIN A V. Cationic ruthenium(II) catalysts for oxidative C-H/N-H bond functionalizations of anilines with removable directing group:synthesis of indoles in water [J]. Organic Letters,2012,14 (3):764-767.
    [41]ACKERMANN L, POSPECH J, GRACZYK K, et al. Versatile synthesis of isocoumarins and a-pyrones by ruthenium-catalyzed oxidative C-H/O-H bond cleavages [J]. Organic Letters,2012,14 (3):930-933.
    [42]CHINNAGOLLA R K, PIMPARKAR S, JEGANMOHAN M. Ruthenium-catalyzed highly regioselective cyclization of ketoximes with alkynes by C-H bond activation:a practical route to synthesize substituted isoquinolines [J]. Organic Letters,2012,14 (12):3032-3035.
    [43]THIRUNAVUKKARASU V S, DONATI M, ACKERMANN L. Hydroxyl-directed ruthenium-catalyzed C-H bond functionalization:versatile access to fluorescent pyrans [J]. Organic Letters,2012,14 (13):3416-3419.
    [44]PARTHASARATHY K, SENTHILKUMAR N, JAYAKUMAR J, et al. Ru(Ⅱ)-catalyzed C-H bond activation for the synthesis of substituted isoquinolinium salts from benzaldehydes, amines, and alkynes [J]. Organic Letters,2012,14 (13):3478-3481.
    [45]ACKERMANN L, LYGIN A V, HOFMANN N. Ruthenium-catalyzed oxidative annulation by cleavage of C-H/N-H Bonds [J]. Angewandte Chemie International Edition, 2011,50 (28):6379-6382.
    [46]LI B, FENG H, XU S, et al. Ruthenium-catalyzed isoquinolone synthesis through C-H activation using an oxidizing directing group [J]. Chemistry- A European Journal,2011,17 (45):12573-12577.
    [47]ACKERMANN L, LYGIN A V, HOFMANN, N. Ruthenium-catalyzed oxidative synthesis of 2-pyridones through C-H/N-H bond functionalizations [J]. Organic Letters,2011,13 (12): 3278-3281.
    [48]ACKERMANN L, FENNER S. Ruthenium-catalyzed C-H/N-O bond functionalization: green isoquinolone syntheses in water [J]. Organic Letters,2011,13 (24):6548-6551.
    [49]SHIN D Y, SIM S N, CHAE J H, et al. Syntheses and anti-MRSA activities of the C3 analogs of mansonone F, a potent anti-bacterial sesquiterpenoid:insights into its structural requirements for anti-MRSA activity [J]. Bioorganic and Medicinal Chemistry Letters, 2004,14 (17):4519-4523.
    [50]SUH Y G, SHIN D Y, MIN K H, et al. Facile construction of the oxaphenalene skeleton by peri ring closure. Formal synthesis of mansonone F [J]. Chemical Communications,2000, (13):1203-1204.
    [51]MIKI Y, HACHIKEN H, NOGUCHI K, et al. Synthesis and bioactivity of propranolol analogues with a rigid skeleton. I [J]. Chemical and Pharmaceutical Bulletin,1990,38 (12): 3257-3260.
    [52]BEST W M, WEGE D. Intramolecular diels-alder addition's of benzynes to furans. application to the total synthesis of biflorin, and the mansonone-E, I and F [J]. Australian Journal of Chemistry,1986,39 (4):647-666.
    [53]O'BRIEN S, SMITH D C C. Synthesis of heterocyclic analogs of phenalene (perinaphthene) containing one hereto atom [J]. Journal of the Chemical Society,1963,2907-2917.
    [54]TYSON D S, FABRIZIO E F, PANZNER M J, et al. Synthesis, characterization, and optical properties of a cyano-functionalized 2,3,7,8-tetraaryl-1,6-dioxapyrene [J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,172 (1):97-107.
    [55]CHRISTENSEN J B J. The chemistry of 1,6-dioxapyrenes part 3:Scope and limitations of an acid catalyzed ring-closing reaction [J]. Journal of Heterocyclic Chemistry,2003,40 (5): 757-761.
    [56]CHRISTENSEN J B, JOHANNSEN I, BECHGAARD K. Synthesis and properties of substituted 1,6-dioxapyrene donors [J]. Journal of Organic Chemistry,1991,56 (25): 7055-7058.
    [57]CHRISTENSEN J B, LARSEN, J, JOHANNSEN, I, et al. Corbienes and dioxapyrenes-new Weitz-type donors [J]. Synthetic Metals,1991,42 (3):2311-2313.
    [58]MORTENSEN M B, SCHLUTER A, S(?)RENSEN J, et al. A convenient synthesis of 1,6-dioxapyrene-2,7-dicarboxylic acid diethyl ester [J]. Acta Chemica Scandinavica,1997, 51 (6/7):807-809.
    [59]HUANG S, LUO Y, HUANG Z, et al. Synthesis and cytotoxicity of 9-substituted benzo[de]chromene-7,8-dione and 5-benzyl-9-substituted benzo[de]chromene-7,8-dione [J]. Synthetic Communications,2006,36 (18):2667-2684.
    [60]SHVARTSBERG M S, IVANCHIKOVA I D. An unknown route of cyclocondensation of peri-acetylenylquinones with hydrazine [J]. Tetrahedron Letters,2000,41 (5):771-773.
    [61]MIKI Y, OHTA M, HACHIKEN H, et al. A Simple synthesis of naphtho[1,8-bc]pyran [J]. Synthesis,1990,1990(4):312-312.
    [62]NARASIMHAN N S, MALI R S. Synthetic application of lithiation reactions; Ⅷ. A new synthesis of naphtho[1,8-bc]pyran [J]. Synthesis,1975,1975 (12):796-797.
    [63]RIGBY W, LEE H, BAILEY P M, et al. Pentamethylcyclopentadienyl-rhodium and-iridium complexes. Part 21. Neutral and cationic p-diketonato-,η3-allylic, and NN"-triazenido-complexes:the X-ray crystal structure of the binuclear complex [Rh2(C5Me5)2(acac)2][BF4]2 [J]. Journal of the Chemical Society, Dalton Transactions, 1979, (2):387-394.
    [64]WEI Y, DEB I, YOSHIKAI N. Palladium-catalyzed aerobic oxidative cyclization of N-aryl imines:indole synthesis from anilines and ketones [J]. Journal of the American Chemical Society,2012,134 (22):9098-9101.
    [65]SIMMONS E M, HARTWIG J F. On the interpretation of deuterium kinetic isotope effects in C-H bond functionalizations by transition-metal complexes [J]. Angewandte Chemie International Edition,2012,51(13):3066-3072.
    [66]PATUREAU F W, BESSET T, KUHL N, et al. Diverse strategies toward indenol and fulvene derivatives:Rh-catalyzed C-H activation of aryl ketones followed by coupling with internal alkynes [J]. Journal of the American Chemical Society,2011,133 (7):2154-2156.
    [67]MURALIRAJAN K, PARTHASARATHY K, CHENG C H. Regioselective synthesis of indenols by rhodium-catalyzed C-H activation and carbocyclization of aryl ketones and alkynes [J]. Angewandte Chemie International Edition,2011,50 (18):4169-4172.
    [68]BORDWELL F G, PUY VAN DER PUY M, VANIER N R. Carbon acids.8. The trimethylammonio group as a model for assessing the polar effects of electron-withdrawing groups [J]. Journal of Organic Chemistry,1976,41 (10):1883-1885.
    [69]MATTEWS W S, BARES J E, BARTMESS J E, et al. Equilibrium acidities of carbon acids. VI. Establishment of an absolute scale of acidities in dimethyl sulfoxide solution [J]. Journal of the American Chemical Society,1975,97 (24):7006-7014.
    [70]Inorganic Synthesis [M].1992,29,228.
    [71]YU W, DU Y, ZHAO K. PIDA-mediated oxidative C-C bond formation:novel synthesis of indoles from N-aryl enamines [J]. Organic Letters,2009,11 (11):2417-2420.
    [72]RIDGE D N, HANIFIN J W, HARTEN L A, et al. Potential antiarthritic agents.2. Benzoylacetonitriles and.beta.-aminocinnamonitriles [J]. Journal of Medicinal Chemistry, 1979,22(11):1385-1389.
    [73]BALAMURUGAN R, MANOJVEER S. Gold/copper-catalyzed activation of the aci-form of nitromethane in the synthesis of methylene-bridged bis-1,3-dicarbonyl compounds [J]. Chemical Communications,2011,47 (39):11143-11145.
    [74]MIO M J, KOPLEL L C, BRAUN J B, et al. One-Pot Synthesis of symmetrical and unsymmetrical bisarylethynes by a modification of the sonogashira coupling reaction [J]. Organic Letters,2002,4(19):3199-3202.
    [1]JANOWICZ A H, BERGMAN R G. Carbon-hydrogen activation in completely saturated hydrocarbons:direct observation of M+R-H→ M(R)(H) [J]. Journal of the American Chemical Society,1982,104 (1):352-354.
    [2]HOYANO J K, GRAHAM W A G. Oxidative addition of the carbon-hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(Ⅰ) complex [J]. Journal of the American Chemical Society,1982,104 (13):3723-3725.
    [3]JANOWICZ A H, BERGMAN R G. Activation of carbon-hydrogen bonds in saturated hydrocarbons on photolysis of (η5-C5Me5)(PMe3)IrH2. Relative rates of reaction of the intermediate with different types of carbon-hydrogen bonds and functionalization of the metal-bound alkyl groups [J]. Journal of the American Chemical Society,1983,105 (12): 3929-3939.
    [4]JONES W D, FEHER F J. Alkane carbon-hydrogen bond activation by homogeneou srhodium(Ⅰ) compounds [J]. Organometallics,1983,2 (4):562-563.
    [5]BERGMAN R G. Activation of Alkanes with organotransition metal complexes [J]. Science, 1984,223:902-908.
    [6]JANOWICA A H, PERIANA R A, BUCHANAN J M, et al. Oxidative addition of soluble iridium and rhodium complexes to carbon-hydrogen bonds in methane and higher alkanes [J]. Pure and Applied Chemistry,1984,56 (1):13-23.
    [7]PERLANA R A, BERGMAN R G. Oxidative addition of rhodium to alkane carbon-hydrogen bonds:enhancement in selectivity and alkyl group functionalization [J]. Organometallics,1984,3 (3):508-510.
    [8]BLOYCE P E, REST A J, WHITWELL I, et al. Photoactivation of alkanes by carbonyl(η5-cyclopentadienyl)dihydridoiridium:solution and matrix isolation studies [J]. Journal of the Chemical Society, Chemical Communications,1988, (13):846-848.
    [9]PETERSON T H, GOLDEN J T, BERGMAN R G. Evidence for the intervention of different C-H activating intermediates in the irradiation of (η5-C5Me5)(PMe3)IrH2 and the reaction of (η5-C5Me5)(PMe3)Ir(H)(Cl) with strong base. Detection and spectroscopic characterization of (η5-C5Me5)(PMe,)Ir(Li)(Cl), an intermediate in the dehydrohalogenation Reaction [J]. Journal of the American Chemical Society,2001,123 (3):455-462.
    [10]RAUSCH M D, GASTINGER R G, GARDNER S A, et al. Isolation and structural characterization of bis(η5-cyclopentadienyl)bis(carbonyl)-μ-(o-phenylene)-diiridium(Ir-Ir), (C5H5)2(CO)2Ir2(C6H4):a product formally derived from the double oxidative addition of benzene to iridium [J]. Journal of the American Chemical Society,1977,99 (24): 7870-7876.
    [11]HOYANO J K, MCM ASTER A D, GRAHAM WAG. Activation of methane by iridium complexes [J]. Journal of the American Chemical Society,1983,105 (24):7190-7191.
    [12]WEILLER B H, WASSERMAN E P, BERGMAN R G, et al. Time-resolved IR spectroscopy in liquid rare gases:direct rate measurement of an intermolecular alkane carbon-hydrogen oxidative addition reaction [J]. Journal of the American Chemical Society, 1989,111 (21):8288-8290.
    [13]WASSERMAN E P, MOORE C B, BERGMAN R G. Gas-phase rrates of alkane C-H oxidative addition to a transient CpRh(CO) Complex [J]. Science,1992,255:315-318.
    [14]WEILLER B H, WASSERMAN E P, MOORE C B, et al. Organometallic carbonyl substitution kinetics in liquid xenon by fast time-resolved IR spectroscopy [J]. Journal of the American Chemical Society,1993,115(10):4326-4330.
    [15]SCHULTZ R H, BENGALI A A, TAUBER M J, et al. IR flash kinetic spectroscopy of C-H bond activation of cyclohexane-d0 and-d12 by Cp*Rh(CO)2 in liquid rare gases:kinetics, thermodynamics, and unusual isotope effect [J]. Journal of the American Chemical Society, 1994,116 (16):7369-7377.
    [16]BENGALI A A, SCHULTZ R H, MOORE C B, et al. Activation of the C-H bonds in neopentane and neopentane-d12 by (η5-C5(CH3)5)Rh(CO)2:spectroscopic and temporal resolution of rhodium-krypton and rhodium-alkane complex intermediates [J]. Journal of the American Chemical Society,1994,116 (21):9585-9589.
    [17]BANISTER J A, COOPER A I, HOWDLE S M, et al. "Solvent-free" photochemical activation of CH4, C2H4, and CaH6 by (C5Me5)Ir(CO)2 in supercritical fluid solution [J]. Organometallics,1996,15 (7):1804-1812.
    [18]HADDLETON D M, PERUTZ R N. Photochemical activation of ethene C-H bonds of (η5-C5H5)Ir(C2H4)2 in low-temperature matrices and in solution [J]. Journal of the Chemical Society, Chemical Communications,1986,(23):1734-1736.
    [19]HADDLETON D M, MCCAMLEY A, PERUTZ R N. Matrix photochemistry of (η5-cyclopentadienyl)bis(ethene)rhodium and (η5-cyclopentadienyl)(ethene) carbonylrhodium:a test-bed for intermediates in C-H activation [J]. Journal of the American Chemical Society,1988,110 (6):1810-1817.
    [20]BELL T W, HADDLETON D M, MCCAMLEY A, et al. Photochemical isomerization of metal ethene to metal vinyl hydride complexes:a matrix-isolation and solution NMR study [J]. Journal of the American Chemical Society,1990,112 (25):9212-9226.
    [21]BELL T W, BROUGH S A, PARTRIDGE M G, et al. Competition between intramolecular and intermolecular carbon-hydrogen bond activation in iridium ethene complexes [J]. Organometallics,1993,12(8):2933-2941.
    [22]VASKA L. Dioxygen-metal complexes:toward a unified view [J]. Accounts of Chemical Research,1976,9(5):175-183.
    [23]EINSTEIN F W B, JONES R H, ZHANG X, et al. Structures of cationic di-iridium complexes derived from (η5-C5Me5)Ir(CO)2, including the dication [(η5-C5Me5)(CO)2Ir-Ir(CO)2(η5-C5Me5)]2 and the bridging methylenetetramethylcyclopentadienyl (tetramethylfulvene) complex [(η5-C5Me5)(CO)Ir-Ir;(CO)2(75-CH2C5Me4)][J]. Journal of the Chemical Society, Chemical Communications,1989,(19):1424-1426.
    [24]JIANG B, FENG Y, ISON E A. Mechanistic investigations of the iridium(Ⅲ)-catalyzed aerobic oxidation of primary and secondary alcohols [J]. Journal of the American Chemical Society,2008,130(44):14462-14464.
    [25]ARITA S, KOIKE T, KAYAKI Y, et al. Aerobic oxidative kinetic resolution of racemic secondary alcohols with chiral bifunctional amido complexes [J]. Angewandte Chemie International Edition,2008,47 (13):2447-2449.
    [26]CHOWDHURY S, HIMO F, RUSSO N, et al. Mechanistic investigation of the hydrogenation of O2 by a transfer hydrogenation catalyst [J]. Journal of the American Chemical Society,2010,132 (12):4178-4190.
    [27]KRAUSE M J, BERGMAN R G. Formation of dinuclear rhodium dialkyl complexes by alkylation of a new dinuclear dianion and by nucleophilic addition of alkyllithium reagents across a metal-metal double bond [J]. Journal of the American Chemical Society,1985,107 (10):2972-2973.
    [28]SCHORE N E,ILENDA C S, WHITE M A, et al. Carbon-carbon bond formation in dinuclear dialkyl complexes. Reactions of [CpCo(CO)R]2 (R= methyl, ethyl, or 2,2,2-trifluoroethyl) and (C11H10)Co2(CO)2(CH3)2 with carbon monoxide and triphenylphosphine [J]. Journal of the American Chemical Society,1984,106 (24): 7451-7461.
    [29]ISOBE K, MIGUEL A V D, MAITLIS P M. Arene substitution by iridium complexes under mild conditions [J]. Journal of Organometallic Chemistry,1983,250 (1):C25-C27.
    [30]GOMEZ M, KISENYI J M, SUNLEY G J, et al. Reaction of the rhodium and iridium complexes [C5Me5MMe2(Me2SO)] with aldehydes to give [C5Me5MMe(R)(CO)], and related reactions [J]. Journal of Organometallic Chemistry,1985,296 (1-2):197-207.
    [31]FUJITA K I, NAKAGUMA H, HANASAKA F, et al. Synthesis of a DMPM and hydrido-bridged diiridium complex, [(Cp*Ir)2(μ-dmpm)(μ-H)2][OTf]2, and Its Reactivity toward Alkynes and Isocyanides [J]. Organometallics,2002,21 (18):3749-3757.
    [32]HANASAKA F, FUJITA K I, YAMAGUCHI R. Synthesis of new cationic Cp*Ir N-heterocyclic carbene complexes and their high catalytic activities in the oppenauer-type oxidation of primary and secondary alcohols [J]. Organometallics,2005,24 (14): 3422-3433.
    [33]MEREDITH J M, GOLDBERG K I, KAMINSKY W, et al. Dinuclear iridium complexes containing Cp* and carbonyl ligands:synthesis, structure, and reactivity [J]. Organometallics,2009,28 (12):3546-3551.
    [34]TAKAHASHI Y, MURAKAMI N, FUJITA K I, et al. Synthesis and reactivity of homo-and hetero-dimetallic complexes bridged by diphenyl-2-pyridylphosphine and hydrides: regioselectivity of alkyne insertion into unsaturated M1(μ-PPh2Py)(μ-H)2M2 moieties [J]. Dalton Transactions,2009, (11):2029-2042.
    [35]CHURCHILL M R, HUTCHINSON J P. Crystal structure of tetrairidium dodecacarbonyl, Ir4(CO)12. An unpleasant case of disorder [J]. Inorganic Chemistry,1978,17 (12):3528-3535.
    [36]MAJUMDER P, BAKSI S, HALDER S, et al. Formation of organorhodium complexes via C-H bond activation of 1,3-di(phenylazo)benzene [J]. Dalton Transactions,2011,40 (20): 5423-5425, and references cited in its Supplementary information section.
    [37]ADAMS J J, ARULSAMY N, RODDICK D M. Investigation of iridium CF2PCP pincer catalytic dehydrogenation and decarbonylation chemistry [J]. Organometallics,2012,31 (4): 1439-1447.
    [38]LEUSINK A J, VAN KOTEN G, NOLTES J G. Stable arylsilver compounds containing dimethylamino, (dimethylainino)methyl or methoxy groups at the aryl nucleus [J]. Journal of Organometallic Chemistry,1973,56:379-390.
    [39]MEYER E M, GAMBAROTTA S, FLORIANI C, et al. Polynuclear aryl derivatives of Group 11 metals. Synthesis, solid state-solution structural relationship, and reactivity with phosphines [J]. Organometallics,1989,8 (4):1067-1079.
    [40]NOBEL D, VAN KOTEN G, SPEK A L.2,4,6-Triisopropylphenylcopper, a new tetranuclear organocopper aggregate with unsymmetrically bridging σ-π bonded aryl ligands [J]. Angewandte Chemie International Edition,1989,28 (2):208-210.
    [41]BRADFORD C W, NYHOLM R S, GAINSFORD G J, et al. Oxidative addition reactions of triphenylphosphine with dodecacarbonyltriosmium(0):benzyne-, phenyl-, and related complexes of osmium [J]. Journal of the Chemical Society, Chemical Communications, 1972, (2):87-89.
    [42]EVANS D G HUGHES G R, MINGOS D M P, et al. Reactions of zero-valent platinum-sulphur dioxide complexes with dienes; isolation and X-ray crystal structure of a novel, μ-phenyl,μ-phosphido-,μ-sulphur dioxide triangulo-triplatinum cluster [J]. Journal of the Chemical Society,Chemical Communications,1980, (24):1255-1257.
    [43]PARK J W, HENLING L M, SCHAEFERR W P, et al. The structure of titanium-rhodium heterobinuclear complexes with μ-phenyl ligands [J]. Organometallics,1991,10 (1): 171-175.
    [44]COTTON F A, LIN C, MURILLO C A. A reliable method of preparation of diiridium paddlewheel complexes:structures of the first compounds with Ir25+ cores [J]. Inorganic Chemistry,2000,39 (20):4574-4578.
    [45]WICK D D, GOLDBERG K I. Insertion of dioxygen into a platinum-hydride bond to form a novel dialkylhydroperoxo Pt(IV) complex [J]. Journal of the American Chemical Society, 1999,121 (50):11900-11901.
    [46]THYAGARAJAN S, INCARVITOO C D, RHEINGOLD A L, et al. Formation and reactivity of a cobalt(II) hydroperoxide intermediate [J]. Chemical Communications,2001, (21):2198-2199.
    [47]KEITH J M, NIEELSEN R J, OXGAARD J, et al. Pd-mediated activation of molecular oxygen in a nonpolar medium [J]. Journal of the American Chemical Society,2005,127 (38):13172-13179.
    [48]DENNEY M C, SMYTHE N A, CETTO K L, et al. Insertion of molecular oxygen into a palladium(II) hydride bond [J]. Journal of the American Chemical Society,2006,128 (8): 2508-2509.
    [49]CUI W, WAYLAND B. Superoxo, peroxo, and hydroperoxo complexes formed from reactions of rhodium porphyrins with dioxygen:thermodynamics and kinetics [J]. Journal of the American Chemical Society,2006,128 (32):10350-10351.
    [50]KONNICK M M, GANDHI B A, GUZEI I A, et al. Reaction of molecular oxygen with a PdⅡ-hydride to produce a PdⅡ-hydroperoxide:acid catalysis and implications for Pd-catalyzed aerobic oxidation reactions [J]. Angewandte Chemie International Edition, 2006,45 (18):2904-2907.
    [51]KEITH J M, MULLER R P, KEMP R A, et al. Mechanism of direct molecular oxygen insertion in a palladium(II)-hydride bond [J]. Inorganic Chemistry,2006,45 (24): 9631-9633.
    [52]POPP B V, STAHL S S. Insertion of molecular oxygen into a palladium-hydride bond: computational evidence for two nearly isoenergetic pathways [J]. Journal of the American Chemical Society,2007,129 (14):4410-4422.
    [53]KEITH J M, GODDARD W A Ⅲ, OXGAARD J. Pd-mediated activation of molecular oxygen:Pd(0) versus direct insertion [J]. Journal of the American Chemical Society,2007, 129(34):10361-10369.
    [54]YAN X, BATCHELOR R J, EINSTEIN F W B, et al. Solvent dependence of the reaction of (η5-C5Me5)Ir(CO)2 with aryldiazonium ions. Synthesis and characterization of mono-and diiridium carbonyl complexes including the X-ray structures of [{(η5-C5Me5)Ir(CO)}2(1-η1-1,2-η2-p-C3H4OMe)][BF4] and [(η5-C5Me5)(CO)2Ir-Ir(CO)(Cl) (η5-C5Me5)][BF4] [J]. Inorganic Chemistry,1997,36 (6):1237-1246.
    [55]O'CONNOR J M, CASEY C P. Ring-slippage chemistry of transition metal cyclopentadienyl and indenyl complexes [J]. Chemical Reviews,1987,87 (2):307-318.
    [56]CALHORDA M J, VEIROS L F. Ring slippage in indenyl complexes:structure and bonding [J]. Coordination Chemistry Reviews,1999,185-186:37-51
    [57]BAYRAM E, LIN EH AN J C, FULTON J L, et al. Is It homogeneous or heterogeneous catalysis derived from [RhCp*Cl2]2? In operando XAFS, kinetic, and crucial kinetic poisoning evidence for subnanometer Rh4 cluster-based benzene hydrogenation catalysis [J]. Journal of the American Chemical Society,2011,133 (46):18889-18902
    [58]KANG J W, MOSELEY K, MAITLIS P M. Pentamethylcyclopentadienylrhodium and-iridium halides.1. Synthesis and properties [J]. Journal of the American Chemical Society, 1969,91 (22):5970-5977.
    [59]BALL R G, GRAHAM W A G, HEINEKEY D M, et al. Synthesis and structure of dicarbonylbis(η-pentamethylcyclopentadienyl)diiridium [J].Inorganic Chemistry,1990,29 (10):2023-2025.
    [1]REDDY K P, PETERSEN J L. Synthesis and characterization of binuclear zirconocene complexes linked by a bridge bis(cyclopentadienyl) ligand [J]. Organometallics,1989,8 (9): 2107-2113.
    [2]BUZINKAI J F, SCHROCK R R. Bimetallic complexes containing the bis(tetramethylcyclopentadienyl)ethane ligand [J]. Inorganic Chemistry,1989,28 (14): 2837-2846.
    [3]NIFANT'EV I E, BORZOV M V, CHURAKOV A V, et al. Synthesis of bimetallic complexes via 4-stannatetrahydro-s-indacenes [J]. Organometallics,1992,11 (12): 3942-3947.
    [4]JUNGLING S, MULHAUPT R. Cooperative effects in binuclear zirconocenes:Their synthesis and use as catalyst in propene polymerization [J]. Journal of Organometallic Chemistry,1993,460(2):191-195.
    [5]MANRIQUEZ J M, WARD M D, REIFF W M, et al. Structural and physical properties of delocalized mixed-valent [Cp*M(pentalene)M'Cp*]n+ and [Cp*M(indacene)M'Cp*]n+(M, M'= Fe, Co, Ni; n= 0,1,2) complexes [J]. Journal of the American Chemical Society, 1995,117 (23):6182-6193.
    [6]QIAN Y, HUANG J, BALA M D, et al. Synthesis, structures, and catalytic reactions of ring-substituted titanium(IV) complexes [J]. Chemical Reviews,2003,103 (7):2633-2690.
    [7]HOU X, LIU S, WANG H, et al. Binuclear half-sandwich cobalt(Ⅲ) and rhodium(Ⅲ) ortho-carboranedichalocogenolato complexes with ether chain-bridged bis(cyclopentadienyl) ligand [J]. Dalton Transactions,2006, (44):5231-5239.
    [8]GURUBASAVARAJ P M, ROESKY H W, OSWALD R B, et al. Oxygen Effect in Heterobimetallic Catalysis:The Zr-O-Ti system as an excellent example for olefin polymerization [J]. Organometallics,2007,26 (14):3346-3351.
    [9]LUO S, SHEN B, LI B, et al. Synthesis, structures, and polymerization catalytic properties of doubly bridged bis(cyclopentadienyl) dinuclear (μ-oxo)titanium complexes [J]. Organometallics,2009,28 (10):3109-3112.
    [10]CHIN R M, SIMONSON A, MAULDIN J, et al. Syntheses and characterization of ruthenium complexes containing a doubly linked dicyclopentadienyl ligand and acetonitrile ligands [J]. Organometallics,2010,29 (17):3868-3875.
    [11]AHMAD S, DEY S S, JOUSSEAUME B, et al. Linear or cross-shaped di(cyclopentadienyltitanium) compounds with aryl or heteroaryl spacers [J]. Dalton Transactions,2011, (40):457-462.
    [12]KANG J W, MOSELEY K, MAITLIS P M. Pentamethylcyclopentadienylrhodium and -iridium halides. I. Synthesis and properties [J]. Journal of the American Chemical Society, 1969,91 (22):5970-5977.
    [13]EINSTEIN F W B, JONES R H, ZHANG X, et al. Structures of cationic di-iridium complexes derived from (η5-C5Me5)Ir(CO)2, including the dication [(η5-C5Me5)(CO)2Ir-Ir(CO)2(η5-C5Me5)]2+ and the bridging methylenetetramethylcyclopentadienyl (tetramethylfulvene) complex [(η5-C5Me5)(CO)Ir-Ir,(CO)2(η5-CH2C5Me4)][J]. Journal of the Chemical Society, Chemical Communications,1989, (19):1424-1426.
    [14]JOHNSTON V J, EINSTEIN F W B, POMEROY R K. Structures of the new binary metal carbonyl Os4(CO)15 and (η5-C5Me5)(OC)IrOs3(CO)11. Clusters with three-center-two-electron metal-metal bonds? [J]. Journal of the American Chemical Society,1987,109(23):7220-7222.
    [15]BALL R G, GRAHAM W A G, HEINEKEY D M, et al. Synthesis and structure of dicarbonylbis(η-pentamethylcyclopentadienyl)diiridium [J]. Inorganic Chemistry,1990,29 (10):2023-2025.
    [16]RIESEN A, EINSTEIN F W B, MA A K, et al. Synthesis and carbonyl exchange in iridium-osmium clusters (η5-C5R5)(OC)Ir[Os(CO)4]2 (R= H, Me). Structure of (η5-C5Me5)(OC)Ir[Os(CO)4]2 [J]. Organometallics,1991,10 (10):3629-3634.
    [17]BATCHELOR R J, EINSTEIN F W B, LOWE N D, et al. (Pentamethylcyclopentadienyl)nitrosyl(ethylene)iridium tetrafluoroborate, [(η5-C5Me5)Ir(NO)(C2H4)][BF4]:synthesis, characterization, and some reactions. X-ray crystal structures of the title compound and its derivatives (η5-C5Me5)Ir(NO)(CH2CH2OEt) and (η5-C5Me5)2Ir2X2(μ-X)(μ-NO) (X=Br, I) [J]. Organometallics,1994,13 (5): 2041-2052.
    [18]WANG D, ANGELICI R J. Effects of cyclopentadienyl and phosphine ligands on the basicities and nucleophilicities of Cp'Ir(CO)(PR3) Complexes [J]. Inorganic Chemistry, 1996,35(5):1321-1331.
    [19]CHIARADONNA G, INGROSSO G, MARCHETTI F. [{Ir(η5-C5Me5)(CO)}6Hg8][CF3CO2]6, a mixed-metal cluster with an Ir6Hg6 twelve-membered ring and additional Hg centers and metal-metal bonds [J]. Angewandte Chemie International Edition,2000,39 (21):3872-3873.
    [20]NAKAGAWA T, SEINO H, NAGAO S, et al. Synthesis of tellurido-bridged IrPt2, IrPd2, and IrPtPd clusters by inserting zero-valent Pt and Pd centers into Te-C bonds [J]. Angewandte Chemie International Edition,2006,45 (46):7758-7762.
    [21]BRAUNSCHWEIG H, FORSTER M, KUPFER T, et al. Borylene transfer under thermal conditions for the synthesis of rhodium and iridium bborylene complexes [J]. Angewandte Chemie International Edition,2008,47 (32):5981-5983.
    [22]TAKENAKA Y, SHIMA T, BALDAMUS J, et al. Reduction of transition-metal-coordinated carbon monoxide by a rare-earth hydride cluster:isolation of well-defined heteromultimetallic oxycarbene, oxymethyl, carbene, and methyl complexes [J]. Angewandte Chemie International Edition,2009,48 (42):7888-7891.
    [23]BRAUNSCHWEIG H, FORSTER M, SEELER F. Synthesis and structure of heterodinuclear rhodium and iridium borylene Complexes [J]. Chemistry- A European Journal,2009,15 (2):469-473.
    [24]BERTSCH S, BRAUNSCHWEIG H, CHRIST B, et al. Towards homoleptic borylene complexes:incorporation of two borylene ligands into a mononuclear iridium species [J]. Angewandte Chemie International Edition,2010,49 (49):9517-9520.
    [25]HOYANO J K, GRAHAM W A G. Oxidative addition of the carbon-hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex [J]. Journal of the American Chemical Society,1982,104 (13):3723-3725.
    [26]HOYANO J K, MCMASTER A D, GRAHAM W A G. Activation of methane by iridium complexes [J]. Journal of the American Chemical Society,1983,105 (24):7190-7191.
    [27]BANISTER J A, COOPER A I, HOWDLE S M, et al. "Solvent-free" photochemical activation of CH4, C2H4, and C2H6 by (C5Me5)Ir(CO)2 in supercritical fluid solution [J]. Organometallics,1996,15 (7):1804-1812.
    [28]HUGHES R P, LARITCHEV R B, WILLIAMSON A, et al. Iridium and rhodium complexes containing fluorinated phenyl ligands and their transformation to η2-benzyne complexes, including the parent benzyne complex IrCp*(PMe3)(C6H4) [J]. Organometallics, 2002,21 (22):4873-4885.
    [29]BOURGEOIS C J, HUANG H, LARICHEV R B, et al. Variable-temperature NMR determination of the barriers to rotation about the Ir-C σ-Bond in a series of primary perfluoroalkyl iridium complexes [IrCp*{(CF2)n,CF3}(PMe3)2]+X- [n=1,2,3,5,7,9,11; X =I, OTf] [J]. Organometallics,2007,26 (2):264-271.
    [30]CHAN P K, LEONG W K. Reaction of Cp*Ir(CO)2 with activated perfluoroaromatic compounds:formation of metallocarboxylic acids via aromatic nucleophilic substitution [J]. Organometallics,2008,27 (6):1247-1253.
    [31]YUAN J, HUGHES R P, RHEINGOLD A L. Unexpected synthesis of a perfluoroacyl complex, Cp*Ir(CO)(COC6F11)Br, by direct fluoroalkylation of a CO ligand, and elimination of perfluorocyclohexene by activation of a γ-C-F bond [J]. Organometallics, 2011,30(6):1744-1746.
    [32]BAUER W, PREM M, POLBORN K, et al. Organometallic complexes of iridium, palladium, chromium and iron from 2-phenyl-5(4H)-oxazolones-organometallic labelled dipeptides [J]. European Journal of Inorganic Chemistry,1998, (4):485-493.
    [33]DAVIES D L, AL-DUAIJ O, FAWCETT J, et al. Room-temperature cyclometallation of amines, imines and oxazolines with [MCl2Cp*]2(M= Rh, Ir) and [RuCl2(p-cymene)]2 [J]. Dalton Transactions,2003, (21):4132-4138.
    [34]CORBERAN R, SANAU M, PERIS E. Highly stable Cp*-Ir(Ⅲ) complexes with N-heterocyclic carbene ligands as C-H activation catalysts for the deuteration of organic molecules [J]. Journal of the American Chemical Society,2006,128 (12):3974-3979.
    [35]SCHEEREN C, MAASARANI F, HIJAZI A, et al. Stereoselective "electrophilic" cyclometalation of planar-prochiral (η6-arene)tricarbonylchromium complexes with asymmetric metal centers:pseudo-T-4 [Cp*RhCl2]2 and [Cp*lrCl2]2 [J]. Organometallics, 2007,26 (14):3336-3345.
    [36]CORBERAN R, LILLO V, MATA J A, et al. Enantioselective preparation of a chiral-at-metal Cp*Ir(NHC) complex and its application in the catalytic diboration of olefins [J]. Organometallics,2007,26 (17):4350-4353.
    [37]ARITA S, KOIKE T, KAYAKI Y, et al. Synthesis and reactivities of Cp*Ir amide and hydride complexes bearing C-N chelate ligands [J]. Organometallics,2008,27 (12): 2795-2802.
    [38]LI L, BRENNESSEL W W, JONES W D. An efficient low-temperature route to polycyclic isoquinoline salt synthesis via C-H activation with [Cp*MCl2]2 (M= Rh, Ir) [J]. Journal of the American Chemical Society,2008,130 (37):12414-12419.
    [39]BOUTADLA Y, DAVIES D L, JONES R C, et al. The scope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium, rhodium and ruthenium [J]. Chemistry-A European Journal,2011,17(12):3438-3448.
    [40]BROECKX L E E, LUTZ M, VOGT D, et al. C-H activation of 2,4,6-triphenylphosphinine: unprecedented formation of cyclometalated [(P^C)Ir(Ⅲ)] and [(P^C)Rh(Ⅲ)] complexes [J]. Chemical Communications,2011,47(7):2003-2005.
    [41]NEWMAN L J, BERGMAN R G. Synthesis, insertion and reductive elimination reactions of a hydrido(alkoxy)iridium complex [J]. Journal of the American Chemical Society,1985, 107 (18):5314-5315.
    [42]MCGHEE W D, BERGMAN R G. Synthesis of an (η3-allyl)(hydrido)iridium complex and its reactions with arenes and alkanes. Sequential intermolecular carbon-hydrogen oxidative addition and hydride-to-alkene migratory insertion reactions [J]. Journal of the American Chemical Society,1988,110(13):4246-4262.
    [43]STOUTLAND P O, BERGMAN R G. Carbon-hydrogen insertion and π-complex formation reactions of (η5-C5Me5)(PMe3)Ir with ethylene:an intra-and intermolecular isotope effect study [J]. Journal of the American Chemical Society,1988,110(17):5732-5744.
    [44]KLEIN D P, KLOSTER G M, BERGMAN R G. Synthesis and reactivity of (pentamethylcyclopentadienyl)iridium bis(thiolate) and thiolate hydride complexes [J]. Journal of the American Chemical Society,1990,112 (5):2022-2024.
    [45]YAN X, BATCHELOR R J, EINSTEIN F W B, et al. Solvent dependence of the reaction of (η5-C5Me5)Ir(CO)2 with aryldiazonium ions. Synthesis and characterization of mono-and diiridium carbonyl complexes including the X-ray structures of [{(η5-C5Me5)Ir(CO)}2(1-η1-1,2-η2-p-C6H4OMe)][BF4] and [(η5-C5Me5()CO)2Ir-Ir(CO)(Cl)(η5-C5Me5)][BF4] [J]. Inorganic Chemistry,1997,36 (6): 1237-1246.
    [46]TELLERS D M, YUNG C M, ARNDTSEN B A, et al. Electronic and medium effects on the rate of arene C-H bond activation by cationic Ir(Ⅲ) complexes [J]. Journal of the American Chemical Society,2002,124 (7):1400-1410.
    [47]SMITH S E, SASAKI J M, BERGMAN R G, et al. Platinum-catalyzed phenyl and methyl group transfer from tin to iridium:Evidence for an autocatalytic reaction pathway with an unusual preference for methyl transfer [J]. Journal of the American Chemical Society,2008, 130(6):1839-1841.
    [48]GROTJAHN D B, KRAUS J E, AMOURI H, et al. Multimodal study of secondary interactions in Cp*Ir complexes of imidazolylphosphines bearing an NH group [J]. Journal of the American Chemical Society,2010,132 (23):7919-7934.
    [49]WANG X, JIN G X. Preparation, structure, and ethylene polymerization behavior of half-sandwich picolyl-functionalized carborane iridium, ruthenium, and rhodium complexes [J]. Chemistry-A European Journal,2005,11 (19):5758-5764.
    [50]MENG X, TANG G R, JIN G X. Vinyl and ring-opening metathesis polymerization of norbornene with novel half-sandwich iridium(Ⅲ) complexes bearing hydroxyindanimine ligands [J]. Chemical Communications,2008, (27):3178-3180.
    [51]JIA W G, HUANG Y B, LIN Y J, et al. Syntheses and structures of half-sandwich iridium(III) and rhodium(Ⅲ) complexes with organochalcogen (S, Se) ligands bearing N-methylimidazole and their use as catalysts for norbornene polymerization [J]. Dalton Transaction,2008, (41):5612-5620.
    [52]HAN Y F, HUANG Y B, LIN Y J, et al. Synthesis, characterization, and norbomene polymerization behavior of the half-sandwich complexes [Cp*3M3(μ3-L)Cl3] and [Cp*M(2-SPyH)Cl2] (M= Ir, M= Rh, [L]3-=1,3,5-triazine-2,4,6-trithiolato,2-SPy= 2-pyridinethione) [J]. Organometallics,2008,27 (5):961-966.
    [53]YAO Z J, SU G, JIN G X. Versatile reactivity of half-sandwich Ir and Rh complexes toward carboranylamidinates and their derivatives:synthesis, structure, and catalytic activity for norbornene polymerization [J]. Chemistry-A European Journal,2011,17 (47): 13298-13307.
    [54]MIRABELLI M G L, SNEDDON L G. Transition-metal-promoted reactions of boron hydrides.9. Cp*Ir-catalyzed reactions of polyhedral boranes and acetylenes [J]. Journal of the American Chemical Society,1988,110 (2):449-453.
    [55]FUJITA K I, YAMAMOTO K, YAMAGUCHI R. Oxidative cyclization of amino alcohols catalyzed by a Cp*Ir complex. Synthesis of indoles,1,2,3,4-tetrahydroquinolines, and 2,3,4,5-tetrahydro-l-benzazepine [J]. Organic Letters,2002,4(16):2691-2694.
    [56]FUJITA K I, ASAI C, YAMAGUCHI T, et al. Direct β-alkylation of secondary alcohols with primary alcohols catalyzed by a Cp*Ir complex [J]. Organic Letters,2005,7 (18): 4017-4019.
    [57]OWSTON N A, PARKER A J, WILLIAMS J M J. Iridium-catalyzed conversion of clcohols into cmides via oximes [J]. Organic Letters,2007,9 (1):73-75.
    [58]JIANG B, FENG Y, ISON E A. Mechanistic investigations of the iridium(Ⅲ)-catalyzed aerobic oxidation of primary and secondary alcohols [J]. Journal of the American Chemical Society,2008,130(44):14462-14464.
    [59]BLACKER A J, FARAH M M, HALL M I, et al. Synthesis of benzazoles by hydrogen-transfer catalysis [J]. Organic Letters,2009,11 (9):2039-2042.
    [60]SAIDI O, BLACKER A J, FARAH M M, et al. Selective amine cross-coupling using iridium-catalyzed "borrowing hydrogen" methodology [J]. Angewandte Chemie International Edition,2009,48 (40):7375-7378.
    [61]WOCHNER F, ZSOLNAI L, HUTTNER G, et al. ansa-Metallocene derivatives:Ⅷ. Syntheses and crystal structures of ethylene-bridged titanocene and zirconocene derivatives with permethylated ring ligands [J]. Journal of Organometallic Chemistry,1985,288 (1): 69-77.
    [62]TOBITA H, HABAZAKI H, SHIMOI M, et al. Synthesis and crystal structure of a dinuclear iron tetracarbonyl complex containing a ligand,η5,η5-CsMe4CH2CH2CH2C5Ne4 [J]. Chemistry letters,1988,17(6):1041-1044.
    [63]CECCON A, BISELLO A, CROCIANI L, et al. Synthesis, structure and reactivity of homobimetallic Rh(Ⅰ) and Ir(Ⅰ) complexes of s- and as-indacene-diide [J]. Journal of Organometallic Chemistry,2000,600 (1-2):94-111.
    [64]KOMATSU H, YAMAZAKI H. Synthesis of homo -and heterodinuclear metal complexes with dimethylsilylene bridged unsymmetrical bis(cyclopentadienyl) ligand [J]. Journal of Organometallic Chemistry,2001,634 (2):109-121.
    [65]TEWS D, GAEDE P E. Syntheses of dinuclear metal complexes of rhodium, iridium, iron, molybdenum, and cobalt with novel bridged 2,2'-bis(indenyl) systems [J]. Organometallics, 2004,23 (5),968-975.
    [66]WERNER H, TREIBER M, NESSEL A, et al. Bis(cyclopentadienyl)methane-bridged dinuclear complexes, Ⅳ. - synthesis, structure, and reactivity of dinuclear rhodium and iridium complexes in the oxidation state+Ⅰ and+Ⅲ with the bis(cyclopentadienyl)methane dianion as bridging ligand [J]. Chemische Berichte,1992,125 (2):337-346.
    [67]WERNER H, WOLF J, NESSEL A, et al. Novel binuclear doubly vinyl-bridged iridium complexes formed by olefinic C-H activation [J]. Canadian Journal of Chemistry,1995,73 (7):1050-1057.
    [68]NESSEL A, NURNBERG O, WOLF J, et al. Formation of doubly vinyl-bridged binuclear iridium complexes by C-H activation [J]. Angewandte Chemie International Edition,1991, 30(8):1006-1008.
    [69]HOU X, LIU S, WANG H, et al. Binuclear half-sandwich cobalt(Ⅲ) and rhodium(Ⅲ) ortho-carboranedichalocogenolato complexes with ether chain-bridged bis(cyclopentadienyl) ligand [J]. Dalton Transaction,2006, (44):5231-5239.
    [70]CHIN R M, MAURER D, PARR M, et al. Syntheses and characterization of iridium and rhodium ethylene complexes containing a doubly linked cyclopentadienyl ligand [J]. Inorganica Chimica Acta,2009,362 (2):389-394.
    [71]MAHR A, NURNBERG O, WERNER H Z. Halfsandwich-type complexes of iridium with tetramethylcyclopentadienyl as ligand [J]. Zeitschrift fur anorganische und allgemeine Chemie,2003,629(1):91-98.
    [72]PARK-GEHRKE L S, FREUDENTHAL J, KAMINSKY W, et al. Synthesis and oxidation of Cp*IrⅢ compounds:functionalization of a Cp* methyl group [J]. Dalton Transactions, 2009,(11):1972-1983.
    [73]HERDE J L, LAMBERT J C, SENOFF C V. Cyclooctene and 1,5-cyclooctadiene complexes of fridium(I) [M]. Inorganic Synthesis,1974,15:18-20.
    [74]BLACKER A J, STIRLING M J, PAGE M I. Catalytic racemisation of chiral amines and application in dynamic kinetic resolution [J]. Organic Process Research & Development, 2007,11 (3):642-648.
    [75]YANAGI T, SUZUKI H. Rational construction of oligomeric polymetallic ensembles consisting of RU2H4 subunits interconnected by flexible carbon chains [J]. Organometallics, 2010,29 (10):2357-2366.
    [76]LARROSA M, GUERRERO C, RODRfGUEZ R, et al. Selective copper-promoted cross-coupling of aromatic amines with alkyl boronic acids [J]. Synlett,2010, (14): 2101-2105.
    [77]REDDY T J, LECLAIR M, PROULX M. Reductive alkylation of aromatic amines with enol ethers [J]. Synlett,2005, (4):583-586.
    [1]TOGNI A, HALTERMAN R L. Metallocenes:synthesis, reactivity, applications [M]. Wiley-VCH:Weinheim, Germany,1998.
    [2]CALHORDA M J, VEIROS L F. Ring slippage in indenyl complexes:structure and bonding [J]. Coordination Chemistry Reviews,1999,185-186:37-51.
    [3]CADIERNO V, DIEZ J, GAMASA M P, et al. Indenyl complexes of Group 8 metals [J]. Coordination Chemistry Reviews,1999,193-195:147-205.
    [4]RESCONI L, CAVALLO L, FAIT A, et al. Selectivity in propene polymerization with metallocene catalysts [J]. Chemical Reviews,2000,100 (4):1253-1345.
    [5]STRADIOTTO M, MCGLINCHEY M J.η1-Indenyl derivatives of transition metal and main group elements:synthesis, characterization and molecular dynamics [J]. Coordination Chemistry Reviews,2001,219-221:311-378.
    [6]CALHORDA M J, FELIX V, VEIROS L F. Bonding and structural preferences of indenyl complexes:MInd2Ln (n=0-3) [J]. Coordination Chemistry Reviews,2002,230 (1-2):49-64.
    [7]ZARGARIAN D. Group 10 metal indenyl complexes [J]. Coordination Chemistry Reviews, 2002,233-234:157-176.
    [8]WANG, B. Ansa-metallocene polymerization catalysts:effects of the bridges on the catalytic activities [J]. Coordination Chemistry Reviews,2006,250 (1-2):242-258.
    [9]REREK M E, JI L N, BASOLO F. The indenyl ligand effect on the rate of substitution reactions of dicarbonyl(η-indenyl)rhodium and tricarbony(η-indenyl)manganese [J]. Journal of the Chemical Society, Chemical Communications,1983, (21):1208-1209.
    [10]CALHORDA M J, ROMAO C C, VEIROS L F. The nature of the indenyl effect [J]. Chemistry-A European Journal,2002,8 (4):868-875.
    [11]CHEN D, ZHANG X, XU S, et al. Pyridyl-substituted indenyl ruthenium complexes: synthesis, structures, and reactivities [J]. Organometallics,2010,29 (15):3418-3430.
    [12]CHEN D, XU S, SONG H, et al. reactions of pyridyl side chain functionalized indenes with Ru,(CO),2 [J]. European Journal of Inorganic Chemistry,2008, (11):1854-1864.
    [13]ZHANG C, LUO F, CHENG B, et al. Reactions of indenyl-functionalized imidazolium salts and N-heterocyclic carbenes with Ru3(CO)12 [J]. Dalton Transactions,2009, (35): 7230-7235.
    [14]LUG AN N, LAVIGNE G, BONNET J J. Reaction mechanisms of metal-metal bonded carbonyls.20. Substitution and fragmentation reactions of undecacarbonyl(triphenylphosphine)triruthenium and decacarbonylbis(triphenylphosphine)triruthenium [J]. Inorganic Chemistry,1978,17 (6): 1484-1488.
    [15]LAVIGNE G, KAESZ H D. Effects of highly dissociated salts in stoichiometric and catalytic reactions on ruthenium cluster complexes [J]. Journal of the American Chemical Society,1984,106 (16):4647-4648.
    [16]LAVIGNE G, LUG AN N, BONNET J J. Catalytic displacement of CO by phosphine ligands from Ru3(CO)12 promoted by salts of various hydrido anions:[PPN][HRu3(CO)11], [PPN][HRu(CO)4], and K-selectride [J]. Inorganic Chemistry,1987,26 (15):2345-2347.
    [17]SHEN J K, SHI Y L, GAO Y C, et al. Oxygen atom transfer reactions to metal carbonyls. Kinetics and mechanism of CO substitution reactions of M3(CO)12 (M= Fe, Ru, Os) in the presence of (CH3)3NO [J]. Journal of the American Chemical Society,1988,110 (8): 2414-2418.
    [18]CHIN-CHOY T, K.EDER N L, STUCKY G D, et al. The crystal structure of bis(triphenylphosphine)decacarbonyltriruthenium, Ru3(CO)10(PPh3)2:an example of unsymmetrical semibridging carbonyls in a substituted cluster [J]. Journal of Organometallic Chemistry,1988,346 (2):225-236.
    [19]BRUCE M I, LIDDELL M J. Cluster chemistry. LV. Stereochemistry of Group 15 ligand-substituted derivatives of M3(CO)12(M= ruthenium, osmium). A. X-ray structures of six complexes M3(CO)11(L) [M= ruthenium, L= PPh(OMe)2, P(OCH2CF3)3, P(OCH2)3CEt, AsPh3; M= osmium, L= PPh3, PPh(OMe)2] [J]. Journal of Organometallic Chemistry, 1988,347(1-2):157-180.
    [20]DEEMING A J, FORTH C S, HYDER M I, et al. Mechanisms of concurrent hydride migration processes in a triruthenium cluster capped by a phenylphosphinidene (PPh) ligand [J]. European Journal of Inorganic Chemistry,2005, (21):4352-4360.
    [21]CULLEN W R, RETTIG S J, ZHENG T C. Naphthyne:osmium and ruthenium cluster derivatives [J]. Organometallics,1995,14 (3):1466-1470.
    [22]BRUCE M I, HUMPHREY P A, SCHMUTZLER R, et al. Ruthenium carbonyl clusters containing PMe2(nap) and derived ligands (nap= 1-naphthyl):generation of naphthalyne derivatives [J]. Journal of Organometallic Chemistry,2005,690 (3):784-791.
    [23]LUGAN N, LAVIGNE G, BONNET J J. Cluster-promoted cleavage of a phosphorus-carbon bond under ambient conditions. Synthesis, structure, and stereospecific substitution reactions of the acyl cluster complex Ru3[μ-η2-C(O)(C6H5)][μ3-η2-P(C6H5)(C5H4N)](CO)9[J]. Inorganic Chemistry,1987,26 (4): 585-590.
    [24]NUCCIARONE D, MACLAUGHLIN S A, TAYLOR N J, et al. Chemical transformations on phosphido-bridged clusters. Synthesis of the 48-and 50-electron acetylide complexes Ru3(CO)n[μ3-η2-C≡C(CHMe2)](μ-PPh2) (n= 8,9) and their reactions with diazomethane. Carbon-carbon bond forming reactions and the conversion of acetylide to allenyl clusters [J]. Organometallics,1988,7 (1):106-117.
    [25]ARCE A J, SANCTIS Y D, MACHADO R, et al. Ring opening with phosphorus-carbon bond cleavage and coupling in the reaction of 1,2,3-triphenylphosphirene (C2Ph3P) with [Ru3(CO)12]:X-ray structure of [Ru3(CO)8(μ3-C4Ph6P2)] [J]. Organometallics,1995,14 (7): 3592-3595.
    [26]Blenkiron P, Enright G D, Low P J, et al. Polycarbon ligand complexes:synthesis, molecular structures, and selected EHMO studies of Ru4, Ru5, and Ru6 clusters with carbon ligands derived from phosphinodiynes [J]. Organometallics,1998,17 (12):2447-2458.
    [27]BRUCE M I, SHAW G, STONE F G A. Chemistry of metal carbonyls. LXV. Reactions between dodecacarbonyltriruthenium and tertiary phosphines or arsines [J]. Journal of the Chemical Society, Dalton Transactions:Inorganic Chemistry,1972, (19):2094-2099.
    [28]KNOX S A R, LLOYD B R, ORPEN A G, et al. Coordination of benzyne at tetra-and pentaruthenium centers:a model for dissociative chemisorption of benzene on a stepped metal (111) surface [J]. Journal of the Chemical Society, Chemical Communications,1987, (19):1498-1500.
    [29]EINSTEIN F W B, JONES R H. Preparation and structure of Ru,(CO)7(μ3-η2-C6H4)(m-PPhFc)2 [J]. Organometallics,1988,7 (11):2273-2278.
    [30]KNOX S A, LLOYD B R, MORTON D A, et al. Benzyne complexes of ruthenium:models for dissociative chemisorption of benzene on a metal surface. Crystal structures of [Ru4(CO)10(μ-CO)(μ4-PR)(μ4-η4-C6H4)] (R= Ph and CH2NPh2), [Ru5(CO)13(μ4-PPh)(μ5-η6-C6H4)] and [Ru6(CO)12(μ4-PMe)2(μ3-η2-C6H4)2] [J]. Journal of Organometallic Chemistry,1990,394 (1-3):385-415.
    [31]CULLEN W R, RETTIG S J, ZHANG H. (Benzyne)chromium tricarbonyl. Preparation and structure of Ru,(CO)9{μ3-P[C6H5Cr(CO)3]}[μ3-C6H4Cr(CO)3] and Ru3(CO)7(μ3-C6H4){μ-PPh[C6H5Cr(CO)3]}2 [J]. Organometallics,1991,10 (8):2965-2969.
    [32]Cullen, W. R.; Rettig, S. J.; Zhang, H. An unprecedented derivative of benzynechromium tricarbonyl, Ru3(CO)s[μ3-C6H4Cr(CO)3][μ3-PBu-tert] [J]. Organometallics,1992,11 (2): 1000-1002.
    [33]DEEMING A J, SMITH M B. Cleavage of phosphorus-phenyl and phosphorus-2-pyridyl bonds in the reactions of mixed phenyl(2-pyridyl)phosphines with triruthenium dodecacarbonyl [J]. Journal of the Chemical Society, Dalton Transactions:Inorganic Chemistry,1993, (13):2041-2046.
    [34]ZHENG T, CULLEN W R, RETTIG S J. Multinuclear complexes derived from ferrocenylphosphines and triruthenium dodecacarbonyl [J]. Organometallics,1994,13 (9): 3594-3604.
    [35]DEEMING A J, MARTIN C M. Coordination of an anthracene-derived ligand through eight carbon atoms in the pentaruthenium bow-tie cluster [Ru5(CO)13(μ5-η1:η2:η3: η3-C14H8-η1-PPh)] [J].Chemical Communications,1996,(1):53-54.
    [36]DEEMING A J, JAYASURIYA S N, ARCE A J, et al. Incorporation of thiophene rings into tri-and tetraruthenium clusters via cyclometalation and C-P Bond cleavage of the ligand diphenyl-2-thienylphosphine [J]. Organometallics,1996,15 (2):786-793.
    [37]ARCE A J, DEEMING A J, SANCTIS Y D, et al. Isomeric clusters [Ru4(μ4-PPh)(μ4-C4H3N)(CO)11] containing diagonal C,C and parallel C,N bonded pyrrolyne ligands [J]. Chemical Communications,1998, (2):233-234.
    [38]DEEMING A J, MARTIN C M. Multiple coordination of metal atoms to arenes:the coordination of six ruthenium atoms to naphthalene-1,8-diyl in [Ru6(μ6-C10H6)(μ3-PPh)(CO)14] [J]. Angewandte Chemie International Edition,1998,37 (12):1691-1694.
    [39]LAM E, FARRAR D H, BROWNING C S, et al. Reactions of 2-indolylphosphines with Ru3(CO)12:cluster capping with μ3,η2-indolylphosphine as an anionic six-electron P,N-donor ligand [J]. Dalton Transactions,2004, (20):3383-3388.
    [40]MANOJLOVIC-MUIR L, BRANDES D A, PUDDEPHATT R J. Carbon-hydrogen and phosphorus-carbon bond cleavage of bis(dimethylphosphino)methane in triruthenium clusters:the molecular structure of [Rui(CO)9(μ-H)(μ3-η3-Me2PCHPMe2)] [J]. Journal of Organometallic Chemistry,1987,332 (1-2):201-211.
    [41]CABEZA J A, DAMONTE M, GARCIA-ALVAREZ P, et al. Reactivity of [Ru,(CO)12] with a phosphine-functionalized imidazol-2-ylidene and its imidazolium salt [J]. Organometallics,2011,30 (4):826-833.
    [42]DEEMING A J, KABIR S E, POWELL N I, et al. Intermediates in the conversion of [Os3(CO)11(PRPh2)] (R=Me or Ph) into [Os3(μ3-C6H4)(μ3-PR)(CO)9]:crystal and molecular structures of nonacarbonyl-1,2-μ-hydrido-μ3-{o-[methyl(phenyl)phosphino]phenyl}-triangulo-triosmiu m and μ-carbonylnonacarbonyl-μ3-[o-(methylphosphido)phenyl]-triangulo-triosmium [J]. Journal of the Chemical Society, Dalton Transactions:Inorganic Chemistry,1987, (6): 1529-1534.
    [43]DEEMING A J. Some studies on a μ3-indyne complex of triosmium relating to alkyne rotation in M3C2 clusters [J]. Journal of Organometallic Chemistry,1978,150 (1):123-128.
    [44]LUNNISS J, MACLAUGHLIN S A, TAYLOR N J, et al. Skeletal reactivity of metallophosphorus clusters. Nido-Ru4(CO)10(μ-CO)2[PhPC(Ph)C(Ph)] and closo-Ru4(CO)9(μ-CO)2(PhP)[C(Ph)C(Ph)] via acetylene incorporation into the nido framework of the phosphinidene cluster Ru4(CO)13(μ3-PPh) [J]. Organometallics,1985,4 (11):2066-2068.
    [45]CHEN H, JOHNSON B F G, LEWIS J, et al. Isolation and x-ray structure determination of [Os4(CO)12(C9H6)], an indyne butterfly cluster [J]. Journal of the Chemical Society, Chemical Communications,1990, (5):373-374.
    [46]EISENSTADT A, FROLOW F, EFRATY A. [Ru4(CO)7(μ-CO)2(η2,η2,η2-indenyl)(η5-dihydroindenyl)]:a novel planar cluster with a three-way bridging indenyl ligand [J]. Journal of the Chemical Society, Chemical Communications,1982, (11):642-643.
    [47]SCHOOLER P, JOHNSON B F G, SCACCIANOCE L, et al. The synthesis and characterisation of some indenylophane clusters [M4H(CO)9(L-H)] (M= Ru or Os) [J]. Journal of the Chemical Society, Dalton Transactions,2000, (2):199-204.
    [48]CHEN D, MU B, XU S, et al. Synthesis and structures of the silyl bridged bis(indenyl) diruthenium complexes and a novel indenyl nonanuclear ruthenium cluster Ru9(μ6-C)(CO)14(μ3-η5:η2:η2-C9H7)2 [J]. Journal of Organometallic Chemistry,2006,691 (18):3823-3833.
    [49]XU K, LI B, XU S, et al. Reactions of dihydrooctamethyl-s-indacene and 1,2,3,4,7-pentamethylindene with Ru3(CO)12:intramolecular sp3 C-H activation [J]. Organometallics,2009,28 (15):4438-4442.
    [50]ARCE A J, MACHADO R, SANCTIS Y D, et al. Synthesis, structures, isomerism, and dynamic behavior of metalated derivatives of methyl-substituted pyrroles in triruthenium clusters [J]. Organometallics,1997,16(8):1735-1742.
    [51]CABEZA J A, SILVA I D, DEL RIO I, et al. Activation of all bonds of a methyl group attached to an organic fragment [J]. Angewandte Chemie International Edition,2004,43 (26):3464-3467.
    [52]CABEZA J A, DEL RIO I, MIGUEL D, et al. Easy activation of two C-H bonds of an N-heterocyclic carbene N-methyl group [J]. Chemical Communications,2005, (31): 3956-3958.
    [53]CABEZA J A, DEL RIO I, MARTINEZ-MENDEZ L, et al. Ruthenium-cluster-mediated activation of all bonds of a methyl group of 6,6'-dimethyl-2,2'-bipyridine and 2,9-dimethyl-1,10-phenanthroline:transformation of the latter into a 2-alkenyl-9-methyl-1,10-phenanthroline ligand [J]. Chemistry-A European Journal,2006, 12(5):1529-1538.
    [54]CABEZA J A, DEL RIO I, MIGUEL D, et al. From an N-methyl N-heterocyclic carbene to carbyne and carbide ligands via multiple C-H and C-N bond activations [J]. Angewandte Chemie International Edition,2008,47 (10):1920-1922.
    [55]CABEZA J A, DEL RIO I, MIGUEL D. Activation of two C-H bonds of NHC N-methyl groups on triosmium and triruthenium carbonyl clusters [J]. Dalton Transactions,2008, (14):1937-1942.
    [56]FALLIS K A, ANDERSON G K, RATH N P. Synthesis of two isomers of (diphenylphosphino)indene and their platinum(II) complexes [J]. Organometallics,1992,11 (2):885-888.
    [57]KAZUL'KIN D N, RYABOV A N, IZMER V V, et al. Zirconium domplexes involving 2-phosphorus-substituted indenyl fragments [J]. Organometallics,2005,24 (12): 3024-3035.
    [58]CURNOW O J, FERN G M, HAMILTON M L, et al. Synthesis, structures and rac/meso isomerization behavior of bisplanar chiral bis(phosphino-η5-indenyl)iron(II) complexes [J]. Journal of Organometallic Chemistry,2004,689 (11):1897-1910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700