用户名: 密码: 验证码:
碳量子点的化学修饰及功能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳量子点是指尺寸小于10nm,具有准球形的结构,能稳定发光的一种纳米碳材料。碳量子点具有独特的荧光性质,如:发光具有尺寸和激发波长依赖性,发光稳定、且无光漂白现象。碳量子点还具有低毒性和良好的生物兼容性。因此,在生物成像,荧光传感,光催化和有机光伏器件等方面具有广泛的应用。本论文对碳量子点表面化学修饰与功能复合物,发光性能的调控以及表面增强拉曼效应进行了系统研究,主要结果如下:
     利用重氮化学的方法在碳量子点上接枝了不同的芳基(如苯基、4-羧基苯基、4-磺酸基苯基和5-磺酸基萘基)。每个碳量子点上接枝的4-羧基苯基、4-磺酸基苯基和5-磺酸基萘基个数分别为21,21和12。芳基修饰的碳量子点平均大小为2~4nm、平均厚度小于1nm,具有好的结晶。芳基修饰后,碳量子点的荧光在418~447nm范围内实现了调控,且荧光量子效率也明显改善,最大可提高6倍。芳基修饰后的碳量子点在pH1~11范围内荧光基本不变,具有更好的耐pH性。同时,对芳基修饰后碳量子点的发光机理进行了讨论。修饰前碳量子点的发光归因于边缘卡宾结构的三重态,芳基修饰后形成了新的缺陷态发光。
     用碳量子点在加热条件下还原氯金酸制备了具有2nm厚碳量子点壳层的金/碳量子点核壳纳米粒子。通过调节原料比或反应温度,核壳纳米粒子的大小可在8~44nm范围内调控。将24nm的核壳纳米粒子用作表面增强拉曼的基底检测罗丹明6G分子,比同样大小的纯金纳米粒子表现出更好的表面增强拉曼效应。主要归因于制备的核壳纳米粒子能更强地吸附芳香性探针分子。
     利用水热法对不同碳素材料(如碳纤维、石墨粉、氧化石墨烯和还原氧化石墨烯)制备的碳量子点进行后处理。水热后碳量子点的荧光都蓝移至440nm,且荧光的半峰宽明显变窄,荧光量子效率也提高了2倍。这主要是由于碳量子点表面含有的含氧基团(如羧基、羰基、羟基和环氧基等)在水热处理后主要保留了羰基相关的含氧基团(羧基和羰基)。水热处理后,大量的羰基相关的含氧基团(羧基和羰基)更有利于碳量子点进一步的化学修饰和功能化。
Carbon quantum dots (CQDs) are quasispherical nanocarbons with sizes below10nm that possess stable photoluminescence (PL). CQDs exhibit excellent fluorescentproperties, such as photoluminescence of size-and excitation wavelength-dependentproperties, good stability and no photobleaching. CQDs also have low-toxicity andexcellent biocompatibility. These excellent properties make them have wideapplications in bioimaging, fluorescent sensing, photocatalysis and organic photovoltaicdevices, etc. In this dissertation, we focus on the research of some key questions relatedto surface chemical modification, functional composites, PL modulation and surfaceenhanced Raman scattering (SERS) effects of CQDs. The main results are summarizedas follows:
     A versatile diazonium chemistry method was used to graft aryl groups includingphenyl (P),4-carboxyphenyl (CP),4-sulfophenyl (SP) or5-sulfonaphthyl (SN) to CQDs.The number of CP, SP and SN groups grafted onto each thermally treated CQD(TT-CQD) was21,21and12, respectively. The aryl-modified CQDs are graphiticnanocrystals with lateral dimensions in the range of24nm and an average thicknesslower than1nm. Upon chemical modification with aryl groups, the PL bands of CQDswere tuned in the range of418and447nm, and their fluorescent quantum yields (QYs)were increased greatly with a maximum improvement about6times. Furthermore, thearyl-modified CQDs exhibited excellent pH tolerance. PL intensity and peak positionwere almost unchanged in a wide pH window of111. Meanwhile, we also discussedthe PL mechanism of CQDs with aryl-modification. After aryl-modification, PL ofCQDs was originated from defect states, which was different from triplet-ground-stateof carbene structure for TT-CQDs.
     Gold@carbon quantum dots (Au@CQDs) nanoparticles with ultrathin CQDs shellsof2nm were prepared by reducing HAuCl_4with CQDs. By adjusting the reactiontemperature and the feeding mass ratio of HAuCl_4to CQDs, the average diameter ofAu@CQDs can be modulated from8to44nm. Au@CQDs nanoparticles with anaverage diameter of24nm were applied as a substrate for SERS and it exhibited a higher SERS effect for rhodamine6G than pure gold nanoparticles with nearly the samesize. The excellent SERS effect of Au@CQDs is mainly attributed to their improvedcapability of adsorbing the aromatic probe molecules.
     Hydrothermal method was used to regulate the surface states of various CQDsobtained from different carbonaceous materials such as carbon fiber, graphitic powder,graphene oxide and reduced graphene oxide. All the fluorescence peaks of CQDs wereblue-shifted to440nm after hydrothermal treatment. Furthermore, the full widths at halfmaxima (FWHM) of fluorescent peaks were narrowed, and fluorescent QYs wereincreased by about2times. The improved PL properties are mainly attributed to the factthat hydrothermal treatment kept only the carbonyl related groups (carboxyl, carbonyl)among various oxygenated groups (carboxyl, carbonyl, hydroxyl and epoxy group) onoriginal CQDs. After hydrothermal treatment, mass carbonyl related groups (carboxyl,carbonyl) of CQDs benefit for their further chemical modification and functionalization.
引文
[1] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene. Nature,1985,318:162-163.
    [2] Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms. Science,2004,306(5696):666-669.
    [4] Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescentsingle-walled carbon nanotube fragments. J Am Chem Soc,2004,126(40):12736-12737.
    [5] Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorfulphotoluminescence. J Am Chem Soc,2006,128(24):7756-7757.
    [6] Liu H P, Ye T, Mao C D. Fluorescent carbon nanoparticles derived from candle soot. AngewChem Int Ed,2007,46(34):6473-6475.
    [7] Zhou J G, Booker C, Li R Y, et al. An electrochemical avenue to blue luminescentnanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc,2007,129(4):744-745.
    [8] Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescentcarbon nanocrystals by electrooxidation of graphite. Chem Commun,2008,5116-5118.
    [9] Zheng L Y, Chi Y W, Dong Y Q, et al. Electrochemiluminescence of water-soluble carbonnanocrystals released electrochemically from graphite. J Am Chem Soc,2009,131(13):4564-4565.
    [10] Lu J, Yang J X, Wang J Z, et al. One-pot synthesis of fluorescent carbon nanoribbons,nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano,2009,3(8):2367-2375.
    [11] Li H T, He X D, Kang Z H, et al. Water-soluble fluorescent carbon quantum dots andphotocatalyst design. Angew Chem Int Ed,2010,49(26):4430-4434.
    [12] Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbonnanodots and their photocatalytic property. Dalton Trans,2012,41:9526-9531.
    [13] Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantumdots as potential electron-acceptors for photovoltaics. Adv Mater,2011,23:776-780.
    [14] Bao L, Zhang Z L, Tian Z Q, et al. Electrochemical tuning of luminescent carbon nanodots:from preparation to luminescence mechanism. Adv Mater,2011,23(48):5801-5806.
    [15] Long Y M, Zhou C H, Zhang Z L, et al. Shifting and non-shifting fluorescence emitted bycarbon nanodots. J Mater Chem,2012,22:5917-5920.
    [16] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Surface functionalized carbogenic quantumdots. Small,2008,4(4):455-458.
    [17] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Photoluminescent carbogenic dots. ChemMater,2008,20(14):4539-4541.
    [18] Liu R L, Wu D Q, Liu S H, et al. An aqueous route to multicolor photoluminescent carbondots using silica spheres as carriers. Angew Chem Int Ed,2009,48(25):4598-4601.
    [19] Pan D Y, Zhang J C, Li Z, et al. Observation of pH-, solvent-, spin-, and excitation-dependentblue photoluminescence from carbon nanoparticles. Chem Commun,2010,46,3681-3683.
    [20] Bourlinos A B, Zbo il R, Petr J, et al. Luminescent surface quaternized carbon dots. ChemMater,2012,24(1):6-8.
    [21] Lai C W, Hsiao Y H, Peng Y K, et al. Facile synthesis of highly emissive carbon dots frompyrolysis of glycerol; gram scale production of carbon dots/mSiO2for cell imaging and drugrelease. J Mater Chem,2012,22:14403-14409.
    [22] Zhu H, Wang X L, Li Y L, et al. Microwave synthesis of fluorescent carbon nanoparticleswith electrochemiluminescence properties. Chem Commun,2009,5118-5120.
    [23] Wang X H, Qu K G, Xu B L, et al. Microwave assisted one-step green synthesis ofcell-permeable multicolor photoluminescence carbon dots without surface passivationreagents. J Mater Chem,2011,21,2445-2450.
    [24] Zhai X Y, Zhang P, Liu C J, et al. Highly luminescent carbon nanodots by microwave-assistedpyrolysis. Chem Commun,2012,48:7955-7957.
    [25] Jiang J, He Y, Li S Y, et al. Amino acids as the source for producing carbon nanodots:microwave assisted one-step synthesis, intrinsic photoluminescence property and intensechemiluminescence enhancement. Chem Commun,2012,48:9634-9636.
    [26] Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets intoblue-luminescent graphene quantum dots. Adv Mater,2010,22(6):734-738.
    [27] Zhang B, Liu C Y, Liu Y. A novel one-step approach to synthesize fluorescent carbonnanoparticles. Eur J Inorg Chem,2010,2010(28):4411-4414.
    [28] Shen J H, Zhu Y H, Yang X L, et al. One-pot hydrothermal synthesis of graphene quantumdots surface-passivated by polyethylene glycol and their photoelectric conversion undernear-infrared light. New J Chem,2012,36:97-101.
    [29] Pan D Y, Guo L, Zhang J C, et al. Cutting sp2clusters in graphene sheets into colloidalgraphene quantum dots with strong green fluorescence. J Mater Chem,2012,22:3314-3318.
    [30] Yang Y H, Cui J H, Zheng M T, et al. One-step synthesis of amino-functionalized fluorescentcarbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun,2012,48:380-382.
    [31] Hsu P C, Chang H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds:role of functional groups. Chem Commun,2012,48:3984-3986.
    [32] Sahu S, Behera B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbondots from orange juice: application as excellent bio-imaging agents. Chem Commun,2012,48:8835-8837.
    [33] Zhu S J, Meng Q N, Wang L, et al. Highly Photoluminescent carbon dots for multicolorpatterning, sensors, and bioimaging. Angew Chem Int Ed,2013,52(14):3953-3957.
    [34] Yan X, Cui X, Li L S. Synthesis of large, stable colloidal graphene quantum dots with tunablesize. J Am Chem Soc,2010,132(17):5944-5945.
    [35] Li L S, Yan X. Colloidal graphene quantum dots. J Phys Chem Lett,2010,1(17):2572-2576.
    [36] Yan X, Cui X, Li B S, et al. Large, solution-processable graphene quantum dots as lightabsorbers for photovoltaics. Nano Lett,2010,10(5):1869-1873.
    [37] Yan X, Li Q Q, Li L S. Formation and stabilization of palladium nanoparticles on colloidalgraphene quantum dots. J Am Chem Soc,2012,134(39):16095-16098.
    [38] Li Q Q, Zhang S, Dai L M, et al. Nitrogen-doped colloidal graphene quantum dots and theirsize-dependent electrocatalytic activity for the oxygen reduction reaction. J Am Chem Soc,2012,134(46):18932-18935.
    [39] Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots fromcarbohydrates. Chem Mater,2009,21(23):5563-5565.
    [40] Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers. NanoLett,2012,12(2):844-849.
    [41] Baker S N, Baker G A. Luminescent carbon nanodots: emergent nanolights. Angew Chem IntEd,2010,49(38):6726-6744.
    [42] Yu S J, Kang M W, Chang H C, et al. Bright fluorescent nanodiamonds: no photobleachingand low cytotoxicity. J Am Chem Soc,2005,127(50):17604-17605.
    [43] Krueger A. Diamond nanoparticles: jewels for chemistry and physics. Adv Mater,2008,20(12):2445-2449.
    [44] Krueger A. The structure and reactivity of nanoscale diamond. J Mater Chem,2008,18:1485-1492.
    [45] Krueger A. New carbon materials: biological applications of functionalized nanodiamondmaterials. Chem Eur J,2008,14(5):1382-1390.
    [46] Shen J H, Zhu Y H, Yang X L, et al. Graphene quantum dots: emergent nanolights forbioimaging, sensors, catalysis and photovoltaic devices. Chem Commun,2012,48:3686-3699.
    [47] Zhang Z P, Zhang J, Chen N, et al. Graphene quantum dots: an emerging material forenergy-related applications and beyond. Energy Environ Sci,2012,5:8869-8890.
    [48] Zhu S J, Tang S J, Zhang J H, et al. Control the size and surface chemistry of graphene for therising fluorescent materials. Chem Commun,2012,48:4527-4539.
    [49] Ray S C, Saha A, Jana N R, et al. Fluorescent carbon nanoparticles: synthesis,characterization, and bioimaging application. J Phys Chem C,2009,113(43):18546-18551.
    [50] Zhu S J, Zhang J H, Qiao C Y, et al. Strongly green-photoluminescent graphene quantum dotsfor bioimaging applications. Chem Commun,2011,47:6858-6860.
    [51] Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc,2007,129(37):11318-11319.
    [52] Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc,2009,131(32):11308-11309.
    [53] Yang S T, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performancefluorescence imaging agents. J Phys Chem C,2009,113(42):18110-18114.
    [54] Zhao H X, Liu L Q, Liu Z D, et al. Highly selective detection of phosphate in verycomplicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots.Chem Commun,2011,47:2604-2606.
    [55] Qu Q, Zhu A W, Shao X L, et al. Development of a carbon quantum dots-based fluorescentCu2+probe suitable for living cell imaging. Chem Commun,2012,48(44):5473-5475.
    [56] Zhu A W, Qu Q, Shao X L, et al. Carbon-dot-based dual-emission nanohybrid produces aratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem IntEd,2012,124(29):7297-7301.
    [57] Yu C M, Li X Z, Zeng F, et al. Carbon-dot-based ratiometric fluorescent sensor for detectinghydrogen sulfide in aqueous media and inside live cells. Chem Commun,2013,49:403-405.
    [58] Shi W, Li X H, Ma H M. A tunable ratiometric pH sensor based on carbon nanodot for thequantitative measurement of the intracellular pH of whole cells. Angew Chem Int Ed,2012,124(26):6538-6541.
    [59] Gupta V, Chaudhary N, Srivastava R, et al. Luminscent graphene quantum dots for organicphotovoltaic devices. J Am Chem Soc,2011,133(26):9960-9963.
    [60] Guo X, Wang C F, Yu Z Y, et al. Facile access to versatile fluorescent carbon dots towardlight-emitting diodes. Chem Commun,2012,48:2692-2694.
    [61] Wang F, Chen Y H, Liu C Y, et al. White light-emitting devices based on carbon dots’electroluminescence. Chem Commun,2011,47:3502-3504.
    [62] Cao L, Sahu S, Anikumar P, et al. Carbon nanoparticles as visible-light photocatalysts forefficient CO2conversion and beyond. J Am Chem Soc,2011,133(13):4754-4757.
    [63] Zhang X, Wang F, Huang H, et al. Carbon quantum dot sensitized TiO2nanotube arrays forphotoelectrochemical hydrogen generation under visible light. Nanoscale,2013,5:2274-2278.
    [64] Li Y, Zhao Y, Cheng H H, et al. Nitrogen-doped graphene quantum dots with oxygen-richfunctional groups. J Am Chem Soc,2012,134(1):15-18.
    [65] Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laserirradiation. J Mater Chem,2009,19:484-488.
    [66] Shen J H, Zhu Y H, Chen C, et al. Facile preparation and upconversion luminescence ofgraphene quantum dots. Chem Commun,2011,47:2580-2582.
    [67] Bae Y, Myung N, Bard A J. Electrochemistry and electrogenerated chemiluminescence ofCdTe nanoparticles. Nano Lett,2004,4(6):1153-1161.
    [68] Myung N, Bae Y, Bard A J. Effect of surface passivation on the electrogeneratedchemiluminescence of CdSe/ZnSe nanocrystals. Nano lett,2003,3(8):1053-1055.
    [69] Luo P G, Sahu S, Yang S T, et al. Carbon “quantum” dots for optical bioimaging. J MaterChem B,2013,1:2116-2127.
    [70] Lu J, Emmeline Yeo P S, Gan C K, et al. Transforming C60molecules into graphene quantumdots. Nat Nanotechnol,2011,6,247-252.
    [71] Bottini M, Balasubramanian C, Dawson M I, et al. Isolation and characterization offluorescent nanoparticles from pristine and oxidized electric arc-produced single-walledcarbon nanotubes. J Phys Chem B,2006,110(2):831-836.
    [72] Xu J, Sahu S, Cao L, et al. Carbon nanoparticles as chromophores for photo harvesting andphotoconversion. ChemPhysChem,2011,12(18):3604-3608.
    [73] Sun Y P, Wang X, Lu F S, et al. Doped carbon nanoparticales as a new platform for highlyphotoluminescent dots. J Phys Chem C,2008,112(47):18295-18298.
    [74] Wang X, Cao L, Lu F S, et al. Photoinduced electron transfers with carbon dots. ChemCommun,2009,3774-3776.
    [75] Hu S L, Dong Y G, Yang J L, et al. Simultaneous synthesis of luminescent carbonnanoparticles and carbon nanocages by laser ablation of carbon black suspension and theiroptical limiting properties. J Mater Chem,2012,22:1957-1961.
    [76] Yang F, Zhao M L, Zheng B Z, et al. Influence of pH on the fluorescence properties ofgraphene quantum dots using ozonation pre-oxide hydrothermal synthesis. J Mater Chem,2012,22:25471-25479.
    [77] Zhou X J, Zhang Y, Wang C, et al. Photo-fenton reaction of grapheme oxide: a new strategy toprepare graphene quantum dots for DNA cleavage. ACS Nano,2012,6(8):6592-6599.
    [78] Liu R L, Wu D Q, Feng X L, et al. Bottom-up fabrication of photoluminescent graphenequantum dots with uniform morphology. J Am Chem Soc,2011,133(39):15221-15223.
    [79] Liu Y, Liu C Y, Zhang Z Y. Synthesis and surface photochemistry of graphitized carbonquantum dots. J Colloid Interface Sci,2011,356(2):416-421.
    [80] Tang L B, Ji R B, Cao X K, et al. Deep ultraviolet photoluminescence of water-solubleself-passivated graphene quantum dots. ACS Nano,2012,6(6):5102-5110.
    [81] Bottini M, Mustelin T. Carbon materials: Nanosynthesis by candlelight. Nat Nanotechnol,2007,2(10):599-600.
    [82] Rahy A, Zhou C, Zheng J, et al. Photoluminescent carbon nanoparticles produced by confinedcombustion of aromatic compounds. Carbon,2012,50(3):1298-1302.
    [83] Tian L, Ghosh D, Chen W, et al. Nanosized carbon particles from natural gas soot. ChemMater,2009,21(13):2803-2809.
    [84] Mao X J, Zheng H Z, Long Y J, et al. Study on the fluorescence characteristics of carbon dots.Spectrochim Acta A,2010,75(2):553-557.
    [85] Zhang S R, He Q, Li R J, et al. Study on the fluorescence carbon nanoparticles. Mater Lett,2011,65(15-16):2371-2373.
    [86] Vinci J C, Colon L A. Fractionation of carbon-based nanomaterials by anion-exchange HPLC.Anal Chem,2012,84(2):1178-1183.
    [87] Li X Y, Wang H Q, Shimizu Y, et al. Preparation of carbon quantum dots with tunablephotoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun,2011,47:932-934.
    [88] Wang X, Cao L, Yang S T, et al. Bandgap-like strong fluorescence in functionalized carbonnanoparticles. Angew Chem Int Ed,2010,49(31):5310-5314.
    [89] Zhu S J, Zhang J H, Tang S J, et al. Surface chemistry routes to modulate thephotoluminescence of graphene quantum dots: from fluorescence mechanism toup-conversion bioimaging applications. Adv Funct Mater,2012,22(22):4732-4740.
    [90] Tetsuka H, Asahi R, Nagoya A, et al. Optically tunable amino-functionalized graphenequantum dots. Adv Mater,2012,24(39):5333-5338.
    [91] Jin S H, Kim D H, Jun G H, et al. Tuning the photoluminescence of graphene quantum dotsthrough the charge transfer effect of functional groups. ACS Nano,2013,7(2):1239-1245.
    [92] Kong B, Zhu A W, Ding C Q, et al. Carbon dot-based inorganic-organic nanosystem fortwo-photon imaging and biosensing pH variation in living cells and tissues. Adv Mater,2012,24(43):5844-5848.
    [93] Wang F, Xie Z, Zhang H, et al. Highly luminescent organosilane-functionalized carbon dots.Adv Funct Mater,2011,21(6):1027-1031.
    [94] Dong Y Q, Wang R X, Li H, et al. Polyamine-functionalized carbon quantum dots forchemical sensing. Carbon,2012,50(8):2810-2815.
    [95] Dong Y Q, Chen C Q, Zheng X T, et al. One-step and high yield simultaneous preparation ofsingle-and multi-layer graphene quantum dots from CX-72carbon black. J Mater Chem,2012,22:8764-8766.
    [96] Anikumar P, Wang X, Cao L, et al. Toward quantitatively fluorescent carbon-based “quantum”dots. Nanoscale,2011,3:2023-2027.
    [97] Kwon W, Lim J, Lee J, et al. Sulfur-incorporated carbon quantum dots with a stronglong-wavelength absorption band. J Mater Chem C,2013,1:2002-2008.
    [98] Deng L, Liu L, Zhu C Z, et al. Hybrid gold nanocube@silica@graphene-quantum-dotsuperstructures: synthesis and specific cell surface protein imaging applications. ChemCommun,2013,49:2503-2505.
    [99] Markova Z, Bourlinos A B, Safarova K, et al. Synthesis and properties of core-shellfluorescent hybrids with distinct morphologies based on carbon dots. J Mater Chem,2012,22:16219-16223.
    [100] Li C Y, Zhu Y H, Zhang X Q, et al. Metal-enhanced fluorescence of carbon dots adsorbedAg@SiO2core-shell nanoparticles. RSC Adv,2012,2:1765-1768.
    [101] Cui J H, Hu C F, Yang Y H, et al. Facile fabrication of carbonaceous nanospheres loaded withsilver nanoparticles as antibacterial materials. J Mater Chem,2012,22:8121-8126.
    [102] Li J, Zhang B, Wang F, et al. Silver/carbon-quantum-dot plasmonic luminescent nanoparticles.New J Chem,2011,35,554-557.
    [103] Li H T, Liu R H, Liu Y, et al. Carbon quantum dots/Cu2O composites with protrudingnanostructures and their highly efficient (near) infrared photocatalytic behavior. J MaterChem,2012,22:17470-17475.
    [104] Zhang H C, Ming H, Lian S Y, et al. Fe2O3/carbon quantum dots complex photocatalysts andtheir enhanced photocatalytic activity under visible light. Dalton Trans,2011,40:10822-10825.
    [105] Yu B Y, Kwak S Y. Carbon quantum dots embedded with mesoporous hematite nanospheresas efficient visible light-active photocatalysts. J Mater Chem,2012,22:8345-8353.
    [106] Dutta M, Sarkar S, Ghosh T, et al. ZnO/graphene quantum dot solid-state solar cell. J PhysChem C,2012,116(38):20127-20131.
    [107] Zhang H C, Huang H, Ming H, et al. Carbon quantum dots/Ag3PO4complex photocatalystswith enhanced photocatalytic activity and stability under visible light. J Mater Chem,2012,22:10501-10506.
    [108] Xie Z, Wang F, Liu C Y, et al. Organic-inorganic hybrid functional carbon dot gel glasses.Adv Mater,2012,24(13):1716-1721.
    [109] Luk C M, Tang L B, Zhang W F, et al. An efficient and stable fluorescent graphene quantumdots-agar composite as a converting material in white light emitting diodes. J Mater Chem,2012,22:22378-22381.
    [110] Begum A, Sonkar S K, Saxena M, et al. Nanocomposites of carbon quantum dots-nick(Ⅱ)dithiolene as nanolights. J Mater Chem,2011,21:19210-19213.
    [111] Dai H, Yang C P, Tong Y J, et al. Label-free electrochemiluminescent immunosensor forα-fetoprotein: performance of nafion-carbon nanodots nanocomposite films as antibodycarriers. Chem Commun,2012,48:3055-3057.
    [112] Gao X H, Yang L, Petros J A, et al. In vivo molecular and cellular imaging with quantum dots.Curr Opin Biotechnol,2005,16(1):63-72.
    [113] Jaiswal J K, Simon S M. Potentials and pitfalls of fluorescent quantum dots for biologicalimaging. Trends Cell Biol,2004,14(9):497-504.
    [114] Liu C J, Zhang P, Zhai X Y, et al. Nano-carrier for gene delivery and bioimaging based oncarbon dots with PEI-passivation enhanced fluorescence. Biomaterials,2012,33(13):3604-3613.
    [115] Qiao Z A, Wang Y F, Gao Y, et al. Commercially activated carbon as the source for producingmulticolor photoluminescent carbon dots by chemical oxidation. Chem Commun,2011,46:8812-8814.
    [116] Liu J M, Lin L P, Wang X X, et al. Highly selective and sensitive detection of Cu2+with lysineenhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst,2012,137:2637-2642.
    [117] Barman S, Sadhukhan M. Facile bulk production of highly blue fluorescent graphitic carbonnitride quantum dots and their application as highly selective and sensitive sensors for thedetection of mercuric and iodide ions in aqueous media. J Mater Chem,2012,22:21832-21837.
    [118] Zhou L, Lin Y H, Huang Z Z, et al. Carbon nanodots as fluorescence probes for rapid,sensitive, and label-free detection of Hg2+and biothiols in complex matrices. Chem Commun,2012,48:1147-1149.
    [119] Wei W L, Xu C, Ren J S, et al. Sensing metal ions with ion selectivity of a crown ether andfluorescence resonance energy transfer between carbon dots and graphene. Chem Commun,2012,48:1284-1286.
    [120] Zhang Y L, Wang L, Zhang H C, et al. Graphitic carbon quantum dots as a fluorescent sensingplatform for highly efficient detection of Fe3+ions. RSC Adv,2013,3:3733-3738.
    [121] Dong Y Q, Li G L, Zhou N N, et al. Graphene quantum dot as a green and facile sensor forfree chlorine in drinking water. Anal Chem,2012,84(19):8378-8382.
    [122] Liu J M, Lin L P, Wang X X, et al. Zr(H2O)2EDTA modulated luminescent carbon dots asfluorescent probes for fluoride detection. Analyst,2013,138:278-283.
    [123] Fan L S, Hu Y W, Wang X, et al. Fluorescence resonance energy transfer quenching at thesurface of graphene quantum dots for ultrasensitive detection of TNT. Talanta,2012,101:192-197.
    [124] Lin Z, Xue W, Chen H, et al. Peroxynitrous-acid-induced chemiluminescence of fluorescentcarbon dots for nitrite sensing. Anal Chem,2011,83(21):8245-8251.
    [125] Li H T, Kang Z H, Liu Y, et al. Carbon nanodots: synthesis, properties and applications. JMater Chem,2012,22:24230-24253.
    [126] Si Y C, Samulski E T. Synthesis of water soluble graphene. Nano Lett,2008,8(6):1679-1682.
    [127] Lomeda J R, Doyle C D, Kosynkin D V, et al. Diazonium functionalization ofsurfactant-wrapped chemically converted graphene sheets. J Am Chem Soc,2008,130(48):16201-16206.
    [128] Lu Y Z, Jiang Y Y, Wei W T, et al. Novel blue light emitting graphene oxide nanosheetsfabricated by surface functionalization. J Mater Chem,2012,22:2929-2934.
    [129] Bahr J L, Yang J P, Kosynkin D V, et al. Functionalization of carbon nanotubes byelectrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc,2001,123(27):6536-6542.
    [130] Fuentes O A d, Ferri T, Frasconi M, et al. Highly-ordered covalent anchoring of carbonnanotubes on electrode surfaces by diazonium salt reactions. Angew Chem Int Ed,2011,50(15):3457-3461.
    [131] Heald C G R, Wildgoose G G, Jiang L, et al. Chemical derivatisation of multiwalled carbonnanotubes using diazonium salts. ChemPhysChem,2004,5(11):1794-1799.
    [132] Loh K P, Bao Q L, Ang P K, et al. The chemistry of graphene. J Mater Chem,2010,20:2277-2289.
    [133] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, andapplications. Adv Mater,2010,22(35):3906-3924.
    [134] No l J M, Sj berg B, Marsac R, et al. Flexible strategy for immobilizing redox-activecompounds using in situ generation of diazonium salts. Investigations of the blocking andcatalytic properties of the layers. Langmuir,2009,25(21):12742-12749.
    [135] Zheng H Z, Wang Q L, Long Y J, et al. Enhancing the luminescence of carbon dots with areduction pathway. Chem Commun,2011,47:10650-10652.
    [136] Park S, Ruoff R S. Chemical methods for the production of graphenes. Nature Nanotech,2009,4:217-224.
    [137] Vallés C, Drummond C, Saadaoui H, et al. Solutions of negatively charged graphene sheetsand ribbons. J Am Chem Soc,2008,130(47):15802-15804.
    [138] Lin L X, Zhang S W. Creating high yield water soluble luminescent graphene quantum dotsvia exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun,2012,48:10177-10179.
    [139] Kumar N A, Choi H J, Shin Y R, et al. Polyaniline-grafted reduced graphene oxide forefficient electrochemical supercapacitors. ACS Nano,2012,6(2):1715-1723.
    [140] Jeon I Y, Choi H J, Jung S M, et al. Large-scale production of edge-selectively functionalizedgraphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygenreduction reaction. J Am Chem Soc,2013,135(4):1386-1393.
    [141] Zhang X Y, Huang Y, Wang Y, et al. Synthesis and characterization of a graphene-C60hybridmaterial. Carbon,2009,47(1):334-337.
    [142] Radovic L R, Bockrath B. On the chemical nature of graphene edges: origin of stability andpotential for magnetism in carbon materials. J Am Chem Soc,2005,127(16):5917-5927.
    [143] Huang C C, Li C, Shi G Q. Graphene based catalysts. Energy Environ Sci,2012,5:8848-8868.
    [144] Nie S M, Emory S R. Probing single molecules and single nanoparticles by surface-enhancedRaman scattering. Science,1997,275:1102-1106.
    [145] Camden J P, Dieringer J A, Zhao J, et al. Controlled plasmonic nanostructures forsurface-enhanced spectroscopy and sensing. Acc Chem Res,2008,41:1653-1661.
    [146] Tian Z Q, Ren B, Li J F, et al. Expanding generality of surface-enhanced Raman spectroscopywith borrowing SERS activity strategy. Chem Commun,2007,(34):3514-3534.
    [147] Ko H, Singamaneni S, Tsukruk V V. Nanostructured surfaces and assemblies as SERS media.Small,2008,4(10):1576-1599.
    [148] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse goldsuspensions. Nat Phys Sci,1973,241:20-22.
    [149] Zhang N N, Qiu H X, Liu Y, et al. Fabrication of gold nanoparticle/graphene oxidenanocomposites and their excellent catalytic performance. J Mater Chem,2011,21:11080-11083.
    [150] Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive chemical analysis by Raman spectroscopy.Chem Rev,1999,99:2957-2975.
    [151] Guthmuller J, Champagne B. Resonance Raman spectra and Raman excitation profiles ofrhodamine6G from time-dependent density functional theory. ChemPhysChem,2008,9:1667-1669.
    [152] Ganbold E O, Park J H, Dembereldorj U, et al. Charge-dependent adsorption of rhodamine6G on gold nanoparticle surfaces: fluorescence and Raman study. J Raman Spectrosc,2011,42(8):1614-1619.
    [153] Le Ru E C, Blackie E, Meyer M, et al. Surface enhanced Raman scattering enhancementfactors: a comprehensive study. J Phys Chem C,2007,111(37):13794-13803.
    [154] Roca M, Haes A J. Silica-void-gold nanoparticles: temporally stable surface-enhanced Ramanscattering substrates. J Am Chem Soc,2008,130(43):14273-14279.
    [155] Huang J M, Sun Y H, Huang S S, et al. Crystal engineering and SERS properties of Ag-Fe3O4nanohybrids: from heterodimer to core-shell nanostructures. J Mater Chem,2011,21:17930-17937.
    [156] Cao L, Meziani M J, Sahu S, et al. Photoluminescence properties of graphene versus othercarbon nanomaterials. Acc Chem Res,2013,46(1):171-180.
    [157] Hummers W S, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc,1958,80(6):1339-1339.
    [158] Gilje S, Han S, Wang M S, et al. A chemical route to graphene for device applications. NanoLett,2007,7(11):3394-3398.
    [159] Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-solublenonvalent functionalized graphene sheets. J Am Chem Soc,2008,130(18):5856-5857.
    [160] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. NatNanotechnol,2008,3:101-105.
    [161] He H K, Gao C. General approach to individually dispersed, highly soluble, and conductivegraphene nanosheets functionalized by nitrene chemistry. Chem Mater,2010,22(17):5054-5064.
    [162] Zhang M, Bai L L, Shang W H, et al. Facial synthesis of water-soluble, highly fluorescentgraphene quantum dots as a robust biological label for stem cells. J Mater Chem,2012,22:7461-7467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700