用户名: 密码: 验证码:
考虑气候模式影响的径流模拟不确定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于水文模型很难完整地描述现实中的水文过程,不确定性分析是径流模拟中不可缺少的部分。通常,径流模拟的不确定性来源于输入数据,水文模型参数和模型结构。但是,当以全球气候模式下的气象数据作为水文模型的输入数据时,气候模式、降尺度方法以及排放情景的不确定性,将直接影响输入数据,从而间接地影响径流模拟的效果。因此,本文除了对水文模型的参数和结构的不确定性进行分析,还考虑了不同气候模式影响下的输入不确定性,旨在全面地研究气候模式影响下的径流模拟不确定性。论文的主要研究内容和成果如下:
     (1)采用GLUE方法对新安江模型,SMAR模型和SIMHYD模型的参数进行敏感性分析,旨在识别模型参数对模拟精度的影响程度,为流域水文模拟提供参考,从而为后面利用BMA对多个模型的加权平均提供可靠的参数。最后,通过对比三个水文模型参数在两个流域的敏感程度,将参数敏感性分为三类:不敏感参数、敏感参数和流域敏感参数。
     (2)贝叶斯模型加权平均方法(BMA)不仅可以集合不同水文模型结果得到综合径流,而且还能推算出综合径流的不确定性区间,分析多个水文模型内和模型间误差。采用三个水文模型来研究两种BMA方案。在第一种BMA方案中,采用同一个目标函数(确定性系数)来率定三个模型,因而得到三组不同的预报值用来进行BMA综合。在第二种BMA方案中,采用除了确定性系数之外的三个分别在高、中、低水有较好模拟效果的目标函数,来逐一率定三个模型,从而每个模型都可以得到三组不同的优化参数值。由于同一个模型的不同优化参数值会导致不同的预报结果,因此有九组不同的预报值用来进行BMA综合。另外,对单个模型和两种BMA方法均采用蒙特卡洛组合的方法来得到预报不确定性区间。最后对单个模型和两种BMA综合方法得到的预报值的精度和不确定性区间进行分析和比较。
     (3)对气候模式影响下的气象输入数据进行了不确定性分析。研究了三个全球气候模式(BCCR-BCM2.0,CSIRO-MK3.0和GFDL-CM2.0)在20C3M气候场景下的气候输出,并利用三种降尺度方法将全球尺度的降雨降尺度到流域尺度。最后利用BMA方法,分别研究了不同气候模式对降雨模拟的不确定性,以及不同降尺度方法对降雨模拟的不确定性。
     (4)基于BMA方法,提出了两种BMA方案(即单层BMA和双层BMA)用于气候模式影响下径流模拟的不确定性研究。第一种BMA方案,首先将三个GCM和三种降尺度方法组合,然后将组合得到的九组降雨预报分别作为新安江模型的气候输入,最后得到的九组径流预报用BMA方法进行加权平均。由于第一种方案只用到一次BMA方法,称为“单层BMA"。第二种BMA方案,首先将三个GCM和三种降尺度方法组合得到的九组降雨预报用BMA方法进行加权平均,得到BMA(9)综合降雨。然后,将BMA(9)的综合降雨作为水文模型的气候输入,分别用新安江模型、SMAR和SIMHYD三个水文模型进行径流模拟,得到三组模型的径流模拟值。最后,再次利用BMA方法对三组径流值进行加权平均,得到BMA(3)综合径流。由于第二种方案用到了两次BMA方法,这里称为“双层BMA"。最后,将两种方案得到的综合径流与实测径流进行比较,选择最优的方案用于未来气候情景下的径流模拟。
     (5)基于双层BMA方案,利用双层BMA方案得到的权重,对未来三种气候排放情景A1B、A2和B1下的多组降雨和多组径流进行加权平均,最后得到三种气候情景下的BMA(9)综合降雨和BMA(3)综合径流。然后利用对数正态分布,对三种气候情景下的BMA(9)综合降雨和BMA(3)综合径流的频率分布进行拟合,最后比较三种气候情景的降雨和径流预测的频率差异。
As hydrological model is the simplified description of the actual hydrological processes, it cannot capture every aspects of the real world. Uncertainty analysis of the runoff simulated by hydrological models has become a necessary component in runoff prediction. The sources of uncertainties usually arise from the input data, parameters of hydrological models and the model structure. When using climate data derived from GCMs as the input data, the input uncertainty is not only caused by the observation error, but also the uncertainties in climate models, downscaling methods and emission scenarios. These uncertainties will directly affect the precision of the input data, and thus affect the performance of simulated runoff. Therefore, besides the uncertainty analysis of parameters and the structure in hydrological models, the input uncertainties with respect to the climate models were taken into consideration as well. The main contents and results in this paper were summarized as follows:
     (1) In order to check the sensitivities of the parameters in three hydrological models, i.e. Xinanjiang model, SMAR and SIMHYD, GLUE method was used to get the scatter plots of likelihood function. According to the results of scatter plots in two study basins, parameters of three models could be classified into three groups:non-sensitive parameters; sensitive parameters; regional sensitive parameters.
     (2) Since the BMA is a method that can combine the forecasts of different models together to generate a new forecast expected to be better than any individual model's forecast, and also has the ability to provide a uncertainty interval of the quantity to be forecasted, three hydrological models were employed in the investigation of two BMA schemes in this research to see if the BMA could improve the prediction reliability. The first BMA scheme was to calibrate each of the three models under the same Nash-Sutcliffe efficiency objective function, thus providing three different forecasts for the BMA combination. In the second BMA scheme, three different objective functions other than Nash-Sutcliffe efficiency were adopted, each of which is targeted for simulating different parts of flows, i.e. low flow, medium flow, and high flow. All three models were respectively calibrated for each of three objective functions to obtain the optimized parameter sets. As the same model with the different optimized parameter sets would give rise to different forecasts, thus in the second BMA scheme, there were nine different forecasts used for the BMA combination. For each of individual member model as well as both BMA combination schemes, the Monte Carlo method was used to infer the probability distribution of the quantity to be forecasted and determine prediction uncertainty intervals. Then, the model efficiency and uncertainty of each member model and two BMA combination schemes were assessed and compared.
     (3) The uncertainties in rainfall simulation when considering the impact of climate models were analyzed. The output data of three GCMs, i.e. BCCR-BCM2.0, CSIRO-MK3.0and GFDL-CM2.0under the scenario of20C3M was firstly prepared. For each GCM, three downscaling methods were employed to downscale the rainfall data from the global scale to the regional scale. At last, based on BMA method, the uncertainty from climate models and the uncertainty from downscaling methods were discussed respectively.
     (4) For the comprehensive uncertainty analysis of simulated runoff considering the input data uncertainty arose from climate models and downscaling methods, two BMA programs were firstly proposed in this paper. In the first BMA program, three GCMs and three downscaling methods were combined to construct nine sets of rainfall as input data. Therefore, nine sets of simulated runoff were obtained by Xinanjiang model for BMA combination. Because BMA method was only used once in the process of runoff averaging, the first BMA program was named "One-level BMA". In the second BMA program, the first step of constructing nine sets of rainfall was the same as the first BMA program. Secondly, nine-set rainfall were weighted averaged by BMA method to get a set rainfall called BMA(9) rainfall. Thirdly, BMA(9) rainfall was taken as input data respectively for three hydrological models to derive three sets of simulated runoff. At last, BMA method was used for the second time in the process of runoff averaging. As BMA method was used twice in the second BMA program, the second program was named "Two-level BMA". The BMA program which has a better performance in runoff simulation was chosen to be used in the future prediction.
     (5) Based on the BMA weights calculated by Two-level BMA, both averaged rainfall and averaged runoff under three climate scenarios in the future could be computed easily. Using log-normal distribution to fit the frequencies of averaged rainfall and averaged runoff of three scenarios, the differences of three climate scenarios in predicting the future rainfall and runoff were distinguished.
引文
[1]Parry M L. Climate change 2007:impacts, adaptation and vulnerability:contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge:Cambridge University Press,2007.
    [2]Metz B. Climate change 2007:mitigation of climate change:contribution of working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge:Cambridge University Press,2007.
    [3]Mccarthy J J. Climate change 2001:impacts, adaptation, and vulnerability:contribution of Working Group Ⅱ to the third assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge:Cambridge University Press,2001.
    [4]Dore M. Climate change and changes in global precipitation patterns:What do we know? [J]. Environment International.2005,31(8):1167-1181.
    [5]Graham L P, Andreasson J, Carlsson B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods-a case study on the Lule River basin [J]. Climatic Change,2007,811:293-307.
    [6]Christensen N S, Wood A W, Voisin N, et al. The effects of climate change on the hydrology and water resources of the Colorado River basin [J]. Climatic Change,2004, 62(1-3):337-363.
    [7]Regonda S K, Rajagopalan B, Clark M, et al. Seasonal cycle shifts in hydroclimatology over the western United States [J]. Journal of Climate,2005,18(2):372-384.
    [8]Xu C Y, Widen E, Halldin S. Modelling hydrological consequences of climate change-Progress and challenges [J]. Advances in Atmospheric Sciences,2005,22(6):789-797.
    [9]Niemann J D, Eltahir E. Sensitivity of regional hydrology to climate changes, with application to the Illinois River basin [J]. Water Resources Research,2005,41, W07014.
    [10]Steinschneider S, Polebitski A, Brown C, et al. Toward a statistical framework to quantify the uncertainties of hydrologic response under climate change [J]. Water Resources Research,2012,48, W11525.
    [11]Fowler H J, Blenkinsop S, Tebaldi C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling [J]. International Journal of Climatology,2007,27(12):1547-1578.
    [12]van Roosmalen L, Christensen J H, Butts M B, et al. An intercomparison of regional climate model data for hydrological impact studies in Denmark [J]. Journal of Hydrology,2010, 380(3-4):406-419.
    [13]胡和平,田富强.物理性流域水文模型研究新进展[J].水利学报.2007,38(5):511-517.
    [14]武震,张世强,丁永建.水文系统模拟不确定性研究进展[J].中国沙漠.2007,27(5):890-896.
    [15]Goodrich D C, Faures J, Woolhiser D A, et al. Measurement and analysis of small-scale convective storm rainfall variability [J]. Journal of Hydrology,1995,173(1-4):283-308.
    [16]Shah SMS, O'Connell P E, Hosking J R M. Modelling the effects of spatial variability in rainfall on catchment response.2. Experiments with distributed and lumped models[J]. Journal of Hydrology,1996,175(1-4):89-111.
    [17]Shah S M S, O'Connell P E, Hosking J R M. Modelling the effects of spatial variability in rainfall on catchment response.l. Formulation and calibration of a stochastic rainfall field model [J]. Journal of Hydrology,1996,175(1-4):67-88.
    [18]尹雄锐,夏军,张翔,等.水文模拟与预测中的不确定性研究现状与展望[J].水力发电.2006,32(10):27-31.
    [19]Chaubey I, Haan C T, Grunwald S, et al. Uncertainty in the model parameters due to spatial variability of rainfall [J]. Journal of Hydrology,1999,220(1-2):48-61.
    [20]Bronstert A, Bardossy A. Uncertainty of runoff modelling at the hillslope scale due to temporal variations of rainfall intensity [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003,28(6-7):283-288.
    [21]Lopes V L. On the effect of uncertainty in spatial distribution of rainfall on catchment modelling [J]. Catena,1996,28(1-2):107-119.
    [22]Seo D J, Perica S, Welles E, et al. Simulation of precipitation fields from probabilistic quantitative precipitation forecast [J]. Journal of Hydrology,2000,239(1-4):203-229.
    [23]Beven K, Binley A. The future of distributed models:Model calibration and uncertainty prediction [J]. Hydrological Processes,1992,6(3):279-298.
    [24]熊立华,郭生练.分布式流域水文模型[M].北京:中国水利水电出版社,2004.
    [25]Challinor A J, Wheeler T R. Crop yield reduction in the tropics under climate change: Processes and uncertainties [J]. Agricultural and Forest Meteorology,2008,148(3): 343-356.
    [26]Makowski D, Naud C, Jeuffroy M H, et al. Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction[J]. Reliability Engineering & System Safety,2006,91(10-11):1142-1147.
    [27]吴锦,余福水,陈仲新,等.基于EPIC模型的冬小麦生长模拟参数全局敏感性分析[J].农业工程学报.2009(7):136-142.
    [28]Refsgaard J C, van der Sluijs J P, Brown J, et al. A framework for dealing with uncertainty due to model structure error [J]. Advances in Water Resources,2006,29(11):1586-1597.
    [29]Reid D J. Combing three estimates of gross domestic products [J]. Economica,1968,35: 431-444.
    [30]Bates J M, Granger C W J. The combination of forecasts [J]. Operational Research Quarterly,1969,20:451-468.
    [31]Dickinson J P. Some statistical results in the combination of forecasts [J]. Operational Research Quarterly,1973,24(2):253-260.
    [32]Shamseldin A Y, O'Connor K M, Liang G C. Methods for combining the outputs of different rainfall-runoff models [J]. Journal of Hydrology,1997,197(1-4):203-229.
    [33]Xiong L, Shamseldin A Y, O'Connor K M. A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system [J]. Journal of Hydrology,2001,245(1-4):196-217.
    [34]Hoeting J, Raftery A E, Madigan D. A method for simultaneous variable selection and outlier identification in linear regression [J]. Computational Statistics & Data Analysis, 1996,22(3):251-270.
    [35]Neuman S P. Maximum likelihood Bayesian averaging of uncertain model predictions [J]. Stochastic Environmental Research and Risk Assessment,2003,17(5):291-305.
    [36]Ajami N K, Duan Q, Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework:Confronting input, parameter, and model structural uncertainty in hydrologic prediction [J]. Water Resources Research,2007,43(1), W01403.
    [37]Watson R T, Albritton D L. Climate change 2001:synthesis report [M]. Cambridge: Cambridge University Press,2001.
    [38]Houghton J T. Climate change 2001the scientific basis:contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge, U.K.:Cambridge University Press,2001.
    [39]Lebel T, Delclaux F, Le Barbe L, et al. From GCM scales to hydrological scales:rainfall variability in West Africa [J]. Stochastic Encironmental Research and Risk Assessment, 2000,14(4-5):275-295.
    [40]赵宗慈,李晓东.海气耦合模式在东亚地区的可靠性评估[J].应用气象学报.1995,6(1):9-18.
    [41]Ehsanzadeh E, van der Kamp G, Spence C. The impact of climatic variability and change in the hydroclimatology of Lake Winnipeg watershed [J]. Hydrological Processes,2012, 26(18):2802-2813.
    [42]Ardoin-Bardin S, Dezetter A, Servat E, et al. Using general circulation model outputs to assess impacts of climate change on runoff for large hydrological catchments in West Africa [J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2009,54(1): 77-89.
    [43]郭亚男.量化气候变化对水文影响的降尺度方法的不确定性[J].水利水电快报.2012,33(8):15-19,24.
    [44]Ipcc. IPCC第四次评估报告:气候变化减缓[M].英国剑桥出版社,2007.
    [45]Schneider C, Laize C, Acreman M C, et al. How will climate change modify river flow regimes in Europe? [J]. Hydrology and Earth System Sciences,2013,17(1):325-339.
    [46]Hughes S J, Cabecinha E, Dos Santos J, et al. A predictive modelling tool for assessing climate, land use and hydrological change on reservoir physicochemical and biological properties [J]. Area,2012,44(4):432-442.
    [47]董磊华,熊立华,于坤霞,等.气候变化与人类活动对水文影响的研究进展[J].水科学进展.2012,23(2):278-285.
    [48]Houghton J T. Climate change 1994:radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios [M]. Cambridge (England]:Published for the Intergovernmental Panel onClimate Change, Cambridge University Press,1995.
    [49]吴赛男,廖文根,隋欣.气候变化对流域水资源影响评价中的不确定性问题[J].中国水能及电气化.2010(11):14-18.
    [50]Biondi D, Versace P, Sirangelo B. Uncertainty assessment through a precipitation dependent hydrologic uncertainty processor:An application to a small catchment in southern Italy [J]. Journal of Hydrology,2010,386(1-4):38-54.
    [51]Thiemann M, Trosset M, Gupta H, et al. Bayesian recursive parameter estimation for hydrologic models [J]. Water Resources Research,2001,37(10):2521-2535.
    [52]Vrugt J A, Gupta H V, Bastidas L A, et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models [J]. Water Resources Research,2003, 39(8):1214.
    [53]Kuczera G, Parent E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models:the Metropolis algorithm [J]. Journal of Hydrology,1998,211(1-4): 69-85.
    [54]Montanari A, Brath A. A stochastic approach for assessing the uncertainty of rainfall-runoff simulations [J]. Water Resources Research,2004,40, W011061.
    [55]Vrugt J A, Diks C, Gupta H V, et al. Improved treatment of uncertainty in hydrologic modeling:Combining the strengths of global optimization and data assimilation [J]. Water Resources Research,2005,41, W010171.
    [56]Moradkhani H, Hsu K L, Gupta H, et al. Uncertainty assessment of hydrologic model states and parameters:Sequential data assimilation using the particle filter [J]. Water Resources Research,2005,41, W050125.
    [57]Georgakakos K. P, Seo D, Gupta H, et al. Towards the characterization of streamflow simulation uncertainty through multimodel ensembles [J]. Journal of Hydrology,2004, 298(1-4):222-241.
    [58]Jacquin A P, Shamseldin A Y. Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modeling [J]. Water Resources Research,2007,43, W04425.
    [59]Liu Y, Gupta H V. Uncertainty in hydrologic modeling:Toward an integrated data assimilation framework [J]. Water Resources Research,2007,43(7), W07401.
    [60]Reggiani P, Renner M, Weerts A H, et al. Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system [J]. Water Resources Research,2009,45(2),W02428.
    [61]王育礼,王烜,杨志峰,等.水文系统不确定性分析方法及应用研究进展[J].地理科学进展.2011,30(9):1167-1172.
    [62]丁晶,刘权授.随机水文学[M].北京:中国水利水电出版社,1997.
    [63]王文圣,丁晶,金菊良.随机水文学[M].北京:中国水利水电出版社,2008.
    [64]范垂仁,张超英.随机水文学方法在超长期水文预报中的应用[J].东北水利水电.1990(8):9-14.
    [65]王文圣,金菊良,李跃清.水文随机模拟进展[J].水科学进展.2007,18(5):768-775.
    [66]Langousis A, Koutsoyiannis D. A stochastic methodology for generation of seasonal time series reproducing overyear scaling behaviour [J]. Journal of Hydrology,2006,322(1-4): 138-154.
    [67]Abi-Zeid I, Parent E, Bobee B. The stochastic modeling of low flows by the alternating point processes approach:methodology and application [J]. Journal of Hydrology,2004, 285(1-4):41-61.
    [68]Molz F J, Hyden P D. A new type of stochastic fractal for application in subsurface hydrology [J]. Geoderma,2006,134(3-4):274-283.
    [69]Nachabe M H, Morel-Seytoux H J. Perturbation and Gaussian methods for stochastic flow problems [J]. Advances in Water Resources,1995,18(1):1-8.
    [70]Mauersberger P. Basic physical and cybernetic principles contributing to systems analysis in hydrology [J]. Annual Review in Automatic Programming,1985,12, Part 2:58-63.
    [71]Katz A. Principles of statistical mechanics:the information theory approach [M]. San Francisco:W. H. Freeman,1967.
    [72]Jaynes E T. Information theory and statistical mechanics [J]. Physical Review,1957,106(4): 620-630.
    [73]肖可以,宋松柏.最大熵原理在水文频率参数估计中的应用[J].西北农林科技大学学报(自然科学版).2010(02):197-205.
    [74]陈守煜.模糊水文学与水资源系统模糊优化原理[M].大连:大连理工大学出版社,1990.
    [75]吴佳文,王丽学,汪可欣.粗糙集理论在年径流预测中的应用[J].节水灌溉.2008(4):35-37.
    [76]Cloke H L, Pappenberger F, Renaud J P. Multi-Method Global Sensitivity Analysis (MMGSA) for modelling floodplain hydrological processes [J]. Hydrological Processes, 2008,22(11):1660-1674.
    [77]Huang Y, Chen X, Li Y P, et al. A fuzzy-based simulation method for modelling hydrological processes under uncertainty [J]. Hydrological Processes,2010,24(25): 3718-3732.
    [78]夏军.灰色系统水文学[M].武汉:华中理工大学出版社,1998.
    [79]赵璀.灰色系统在瑞丽江长期水文预报中的应用[J].云南水力发电.2007,23(6):5-7.
    [80]闫兴武.利用灰色系统理论研究酒泉市地下水文动态变化规律[J].甘肃水利水电技术.2001,37(4):288-289.
    [81]陶铁林,谢大勇.灰色系统模型在水文预报中的应用[J].吉林水利.2006(1):17-18.
    [82]梁忠民,戴荣,李彬权.基于贝叶斯理论的水文不确定性分析研究进展[J].水科学进展.2010,21(2):274-281.
    [83]舒畅,刘苏峡,莫兴国,等.新安江模型参数的不确定性分析[J].地理研究.2008, 27(2):343-352.
    [84]Freer J, Beven K, Ambroise B. Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data:An Application of the GLUE Approach [J]. Water Resources Research, 1996,32(7):2161-2173.
    [85]Schulz K, Beven K. Data-supported robust parameterisations in land surface-atmosphere flux predictions:towards a top-down approach [J]. Hydrological Processes,2003,17(11): 2259-2277.
    [86]Christiaens K, Feyen J. Constraining soil hydraulic parameter and output uncertainty of the distributed hydrological MIKE SHE model using the GLUE framework [J]. Hydrological Processes,2002,16(2):373-391.
    [87]卫晓婧,熊立华.改进的GLUE方法在水文模型不确定性研究中的应用[J].水利水电快报.2008,29(6):23-25.
    [88]Aronica G, Hankin B, Beven K. Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data [J]. Advances in Water Resources,1998,22(4):349-365.
    [89]Pappenberger F, Cloke H L, Balsamo G, et al. Global runoff routing with the hydrological component of the ECMWF NWP system [J]. International Journal of Climatology,2010, 30(14):2155-2174.
    [90]王育礼,王烜,杨志峰,等.水文系统不确定性分析方法及应用研究进展[J].地理科学进展.2011,30(9):1167-1172.
    [91]张尧庭,陈汉峰.贝叶斯统计推断[M].北京:科学出版社,1991.
    [92]茆诗松.贝叶斯估计[M].北京:中国统计出版社,1999.
    [93]Kyriazis G A, Martins M, Kalid R A. Bayesian recursive estimation of linear dynamic system states from measurement information [J]. Measurement,2012,45(6):1558-1563.
    [94]Renard B, Thyer M, Kuczera G, et al. Bayesian total error analysis for hydrologic models: Sensitivity to error models [J]. MODSIM 2007:International Congress on Modelling and Simulation:Land, Water and Environmental Management:Integrated Systems for Sustainability,2007:2473-2479.
    [95]Kuczera G, Kavetski D, Franks S, et al. Towards a Bayesian total error analysis of conceptual rainfall-runoff models:Characterising model error using storm-dependent parameters [J]. Journal of Hydrology,2006,331(1-2):161-177.
    [96]Hoeting J A, Madigan D, Raftery A E, et al. Bayesian model averaging:a tutorial [J]. Statistical Science,1999,14(4):382-417.
    [97]Singh V P, Woolhiser D A. Mathematical modeling of watershed hydrology [J]. Journal of Hydrologic Engineering,2002,7(4):270-292.
    [98]Zhan C, Song X, Xia J, et al. An efficient integrated approach for global sensitivity analysis of hydrological model parameters [J]. Environmental Modelling & Software,2013,41: 39-52.
    [99]Beven K J. Prophecy, reality and uncertainty in distributed hydrological modeling [J]. Advances in Water Resources,1993,] 6(1):41-51.
    [100]Andrade M G, Fragoso M D, Carneiro A A F M. A stochastic approach to the flood control problem [J]. Applied Mathematical Modelling,2001,25(6):499-511.
    [101]Beven K, Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology [J]. Journal of Hydrology,2001,249(1-4):11-29.
    [102]卫晓婧,熊立华,万民,等.融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用[J].水利学报.2009,40(4):464-473.
    [103]赵人俊.流域水文模拟[M].北京:水利水电出版社,1984.
    [104]Zhao R J, Zhang Y L, Fang L R, et al. The Xinanjiang Model [C]. IAHS AISH Publ.,1980.
    [105]河海大学.工程水文学[M].北京:中国水利水电出版社,2010.
    [106]赵人俊,王佩兰,胡凤彬.新安江模型的根据及模型参数与自然条件的关系[J].河海大学学报:自然科学版.1992(1):52-59.
    [107]Fazal M A, Imaizumi M, Ishida S, et al. Estimating groundwater recharge using the SMAR conceptual model calibrated by genetic algorithm [J]. Journal of Hydrology,2005,303(1-4): 56-78.
    [108]O'Connell P E, Nash J E, Farrell J P. River flow forecasting through conceptual models part Ⅱ-The Brosna catchment at Ferbane [J]. Journal of Hydrology,1970,10(4):317-329.
    [109]王光生,夏士谆.SMAR模型及其改进[J].水文.1998(S1):28-30.
    [110]Wang G Q, Shi Z H, Sun Z Q, et al. SIMHYD Rainfall Runoff Model and its Application in Qingjianhe River Basin of the Middle Yellow River [J]. Proceedings of the 2nd International Yellow River Forum on Keeping Healthy Life of the River, vol III,2005:373-377.
    [111]Chiew F, Mcmahon T A. Modelling the impacts of climate change on Australian streamflow [J]. Hydrological Processes,2002,16(6SI):1235-1245.
    [112]王国庆,王军平,荆新爱,等.SIMHYD模型在清涧河流域的应用[J].人民黄河.2006,28(3):29-30.
    [113]Madigan D, Andersson S A, Perlman M D, et al. Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs [J]. Communications in Statistics-Theory and Methods,1996,25(11):2493-2519.
    [114]Raftery A E. Bayesian model selection in social research [J]. Sociological Methodology, 1995,25:111-163.
    [115]Fernandez C, Ley E, Steel M. Benchmark priors for Bayesian model averaging [J]. Journal of Econometrics,2001,100(2):381-427.
    [116]Yeung K Y, Bumgarner R E, Raftery A E. Bayesian model averaging:development of an improved multi-class, gene selection and classification tool for microarray data [J]. Bioinformatics,2005,21(10):2394-2402.
    [117]Wintle B A, Mccarthy M A, Volinsky C T, et al. The use of Bayesian model averaging to better represent uncertainty in ecological models [J]. Consevation Biology,2003,17(6): 1579-1590.
    [118]Morales K H, Ibrahim J G, Chen C J, et al. Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water [J]. Journal of the American Statistical Association,2006,101(473):9-17.
    [119]Koop G, Tole L. Measuring the health effects of air pollution:to what extent can we really say that people are dying from bad air? [J]. Journal of Envrionmental Economics and Management,2004,47(1):30-54.
    [120]Raftery A E, Zheng Y Y. Discussion:Performance of Bayesian model averaging [J]. Journal of the American Statistical Association,2003,98(464):931-938.
    [121]Viallefont V, Raftery A E, Richardson S. Variable selection and Bayesian model averaging in case-control studies [J]. Statistics in Medicine,2001,20(21):3215-3230.
    [122]Raftery A E, Gneiting T, Balabdaoui F, et al. Using Bayesian model averaging to calibrate forecast ensembles [J]. Monthly Weather Review,2005,133(5):1155-1174.
    [123]Wierenga P A, Meinders M, Egmond M R, et al. Protein exposed hydrophobicity reduces the kinetic barrier for adsorption of ovalbumin to the air-water interface [J]. Langmuir,2003, 19(21):8964-8970.
    [124]Ajami N K, Duan Q Y, Gao X G, et al. Multimodel combination techniques for analysis of hydrological simulations:Application to Distributed Model Intercomparison Project results [J]. Journal of Hydrometeorology,2006,7(4):755-768.
    [125]Duan Q Y, Ajami N K, Gao X G, et al. Multi-model ensemble hydrologic prediction using Bayesian model averaging [J]. Advances in Water resources,2007,30(5):1371-1386.
    [126]Montgomery J M, Nyhan B. Bayesian Model Averaging:Theoretical Developments and Practical Applications [J]. Political Analysis,2010,18(2):245-270.
    [127]Vrugt J A, Robinson B A. Treatment of uncertainty using ensemble methods:Comparison of sequential data assimilation and Bayesian model averaging [J]. Water Resources Research,2007,43, W01411.
    [128]Zhang X S, Srinivasan R, Bosch D. Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging [J]. Journal of Hydrology, 2009,374(3-4):307-317.
    [129]Beven K. Towards integrated environmental models of everywhere:uncertainty, data and modelling as a learning process. Hydrology and Earth System Sciences,2007,11(1): 460-467.
    [130]van Griensven A, Meixner T. Methods to quantify and identify the sources of uncertainty for river basin water quality models [J]. Water Science and Technology,2006,53(1):51-59.
    [131]Marshall L, Nott D, Sharma A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling [J]. Water Resources Research,2004,40, W025012.
    [132]Vrugt J A, Gupta H V, Bouten W, et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters [J]. Water Resources Research,2003,39,12018.
    [133]Hammersley J M, Handscomb D C. Monte Carlo Methods [M]. London:Methuen:1975.
    [134]Duan Q Y, Sorooshian S, Gupta V K. Effective and efficient global optimization for conceptual rainfall-runoff models [J]. Water Resources Research,1992,28(4):265-284.
    [135]Oudin L, Andreassian V, Mathevet T, et al. Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations [J]. Water Resources Research, 2006,42, W07410.
    [136]Xiong L H, Wan M, Wei X J, et al. Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation [J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2009,54(5):852-871.
    [137]Steele-Dunne S, Lynch P, Mcgrath R, et al. The impacts of climate change on hydrology in Ireland [J]. Journal of Hydrology,2008,356(1-2):28-45.
    [138]Abdo K S, Fiseha B M, Rientjes T, et al. Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia [J]. Hydrological Processes,2009,23(26):3661-3669.
    [139]Acharya A, Piechota T C, Tootle G. Quantitative Assessment of Climate Change Impacts on the Hydrology of the North Platte River Watershed, Wyoming [J]. Journal of Hydrologic Engineering,2012,17(10):1071-1083.
    [140]Casimiro W, Labat D, Guyot J L, et al. Assessment of climate change impacts on the hydrology of the Peruvian Amazon-Andes basin [J]. Hydrological Processes,2011,25(24): 3721-3734.
    [141]Chen J, Brissette F P, Chaumont D, et al. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins [J]. Journal of Hydrology,2013,479:200-214.
    [142]Cuo L, Beyene T K, Voisin N, et al. Effects of mid-twenty-first century climate and land cover change on the hydrology of the Puget Sound basin, Washington [J]. Hydrological Processes,2011,25(11):1729-1753.
    [143]D'Agostino D R, Trisorio L G, Lamaddalena N, et al. Assessing the results of scenarios of climate and land use changes on the hydrology of an Italian catchment:modelling study [J]. Hydrological Processes,2010,24(19):2693-2704.
    [144]Einfalt T, Quirmbach M, Langstadtler G, et al. Climate change tendencies observable in the rainfall measurements since 1950 in the Federal Land of North Rhine-Westphalia and their consequences for urban hydrology [J]. Water Science and Technology,2011,63(11): 2633-2640.
    [145]Ficklin D L, Stewart I T, Maurer E P. Effects of projected climate change on the hydrology in the Mono Lake Basin, California [J]. Climatic Change,2013,116(1SI):111-131.
    [146]Grillakis M G, Koutroulis A G, Tsanis I K. Climate change impact on the hydrology of Spencer Creek watershed in Southern Ontario, Canada [J]. Journal of Hydrology,2011, 409(1-2):1-19.
    [147]Lauri H, de Moel H, Ward P J, et al. Future changes in Mekong River hydrology:impact of climate change and reservoir operation on discharge [J]. Hydrology and Earth system Sciences,2012,16(12):4603-4619.
    [148]Tshimanga R M, Hughes D A. Climate change and impacts on the hydrology of the Congo Basin:The case of the northern sub-basins of the Oubangui and Sangha Rivers [J]. Physics and Chemistry of the Earth,2012,50-52(SI):72-83.
    [149]Wilby R L, Wigley T M L Precipitation predictors for downscaling:observed and general circulation model relationships [J]. International Journal of Climatology,2000,20(6): 641-661.
    [150]Hessami M, Gachon P, Ouarda T B M J, et al. Automated regression-based statistical downscaling tool [J]. Environmental Modelling & Software,2008,23(6):813-834.
    [151]Wilby R L, Dawson C W, Barrow E M. SDSM-a decision support tool for the assessment of regional climate change impacts [J]. Environmental Modelling & Software,2002,17(2): 145-157.
    [152]Zorita E, Hughes J P, Lettemaier D P, et al. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation [J]. Journal of Climate,1995,8:1023-1041.
    [153]Ghosh S, Mujumdar P P. Statistical downscaling of GCM simulations to streamflow using relevance vector machine [J]. Advances in Water Resources,2008,31(1):132-146.
    [154]Gemmer M, Becker S, Jiang T. Observed monthly precipitation trends in China 1951-2002 [J]. Theoretical and Applied Climatology,2004,77(1-2):39-45.
    [155]Chen J, Brissette F P, Leconte R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology [J]. Journal of Hydrology,2011,401(3-4):190-202.
    [156]Wilby R L, Conway D, Jones P D. Prospects for downscaling seasonal precipitation variability using conditioned weather generator parameters [J]. Hydrological Processes, 2002,16(6):1215-1234.
    [157]Wilby R L, Wigley T M L, Conway D, et al. Statistical downscaling of general circulation model output:A comparison of methods [J]. Water Resources Research,1998,34(11): 2995-3008.
    [158]Hessami M, Gachon P, Ouarda T, et al. Automated regression-based statistical downscaling tool [J]. Environmental Modelling & software,2008,23(6):813-834.
    [159]van Roosmalen L, Sonnenborg T O, Jensen K H. Impact of climate and land use change on the hydrology of a large-scale agricultural catchment [J]. Water Resources Research,2009, 45, W00A15.
    [160]Vicuna S, Dracup J A. The evolution of climate change impact studies on hydrology and water resources in California [J]. Climatic Change,2007,82(3-4):327-350.
    [161]Wilby R L, Harris I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK [J]. Water Resources Research,2006,42(2), W02419.
    [162]Wu H, Kimball J S, Elsner M M, et al. Projected climate change impacts on the hydrology and temperature of Pacific Northwest rivers [J]. Water Resources Research,2012,48, W11530.
    [163]Xu C C, Chen Y N, Yang Y, et al. Hydrology and water resources variation and its response to regional climate change in Xinjiang [J]. Journal of Geographical Sciences,2010,20(4): 599-612.
    [164]林凯荣,郭生练,陈华,等.基于DEM的汉中流域水文过程分布式模拟[J].人民长江.2008,39(11):18-20.
    [165]Zhang H, Huang G H, Wang D L, et al. Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands [J]. Journal of Hydrology,2011,396(1-2): 94-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700