用户名: 密码: 验证码:
个旧锡矿高松矿田裂隙多尺度空间分布模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合云南省三年找矿行动项目滇东南薄竹山地区钨、铅、锌、银多金属矿整装勘查及国家自然科学基金项目“地学中裂隙的多尺度空间分布模拟”(项目编号:40902058)的科研选题。
     裂隙是地壳上部岩石中广泛发育的一种基本构造形式。在矿产资源形成过程中,裂隙的存在为矿液渗透、分散及聚集等提供了有利条件。如何利用现存的构造地质和岩石样品试验等资料对裂隙的空间分布、延伸情况作出科学评价与预测,是地质找矿研究面临的难题。本文在总结前人工作的基础上,以个旧锡矿高松矿田为例,通过系统的野外调查观察,针对如何正确预测裂隙空间分布的难题,借助不同尺度下裂隙建模,建立其相互间联系规律。本文主要取得以下研究成果与创新性认识:
     (1)个旧锡矿高松矿田裂隙特征的标定研究。裂隙属性包括方向、长度、宽度、位置、充填等。通过分析,裂隙位置服从符合泊松分布,裂隙的长度、位移、大小、密度、宽度属性服从幂指数分布、对数正态分布、指数分布、Gamma分布,方向服从Fisher分布及Binghanm分布。在厘定本文大、中、小三个不同尺度的基础上,揭示裂隙属性的尺度不变性规律,并探讨了用盒子计数法和两点相关函数计算的裂隙多尺度联系的方法。
     (2)中尺度裂隙三维网络分布特征模拟理论方法的构建。该方法由普通克里格(OK:Ordinary Kriging)、序贯高斯模拟(SGS:Sequential Gaussian Simulation)、主成分分析(PCA:Principal Component Analysis)方法构成。模拟内容包括收集裂隙资料、分解裂隙属性、进行裂隙密度的估计、裂隙空间位置的生成、裂隙方向(走向和倾向)的主成份分析、裂隙方向分布的地质统计学估值、裂隙属性的综合以及基本裂隙面的连接。
     (3)个旧锡矿区高松矿田裂隙多尺度分布模拟研究。利用遥感、地表、坑道、CT等手段,搜集了不同尺度、不同维数的地质资料和裂隙样本数据。裂隙大尺度模拟主要利用线迹追踪法(Segment Tracing Alogrithm)从云南个旧矿区遥感影像中抽取二维裂隙(线性构造等)的分布,结合地形数据、数字高程模型(DEM)等推定三维裂隙(断裂面等)的分布。裂隙中尺度模拟以矢量数字化技术为主,辅以人工判读,从个旧矿区的坑道、钻孔等编录中提取一维裂隙(断裂、裂隙等)数据,并从岩墙、风化面、工程剖面等提取二维裂隙(裂隙痕迹)数据,在此基础上,模拟了裂隙空间位置分布、对应方向的空间分布,连接了裂隙网络的空间分布。裂隙小尺度模拟利用线迹追踪方法,根据X射线扫描仪(CT)显微图像读取二维裂隙(裂纹等)的分布,显微图像中低维裂隙数据是三维实体与一维和二维截面相交后留下的痕迹,蕴含着三维裂隙的信息,通过体视学技术,从观察到的低维资料反演推断出三维裂隙的分布,实现了小尺度裂隙长度、密度的跨维数转换及属性(方向、长度、宽度)之间关系的建立。
     (4)根据多尺度联系的规律及其中用到的方法,依据上述三个尺度下裂隙网络模拟结果,编制了相应的Matlab计算机程序,最后建立了裂隙密度、长度以及隙宽的多尺度联系。
     (5)通过分析个旧锡矿东区375km2遥感影像和高松矿田地质图,统计断裂体系的空间分布特征,研究裂隙网络与矿体分布关系。根据大尺度和中尺度裂隙对比结果,矿体分布与大尺度第一组裂隙,与中尺度第二组、第三组裂隙分布关系密切,两者具有较好的一致性,结果表明在大、中两个尺度范围内矿田规模及矿体位置与裂隙分布具有尺度不变性。
In the geological research field, fracture is a basic structure form which is widely developed in the upper crust rock. Fractures provide favorable conditions for ore-forming fluid to rise, disperse, penetrate and aggregate during the formation of mineral resources. In order to make scientific predictions of the spatial distribution of fracture extension, how to make use of existing structural geology and rock mechanics test data is a difficult problem in geological prospecting. In this paper the fracture networks is modeled under different scales on the basis of the previous work, and finally their mutual relation is established. This paper conducts research in the following aspects.
     (1) Fracture characteristic's measurement of Gaosong field in Gejiu tin deposit.A variety of fractures exists widely in nature, and contains a number of attributes (such as length, width, direction, position, filling). Fracture position can be considered to meet the Poisson distribution, but the fracture formed in the multiple phrases and by overprint of several geological processes, fracture distribution exhibit complicated characteristics as we see in the field; fracture size (size, diameter length, chord length) has a close relationship with stress intensity and rock properties; unit normal vector of crack surfaces can be used to represent the fracture direction, which is closely related to the stress direction which impacts the rock (body) in the research process; the actual fracture density can use total number fractures per unit to measure, and it is showen a strong nonuniformity in general; fracture width influences the permeability of rock significantly in general, and closely relates with the fracture length; fracture displacement reflects the migration direction and distance in the course of of fracture formation, and it has significance for simulation of fracture formation. Fracture properties, including length, displacement, size, density, width and other major obey power-law distribution, logarithmic normal distribution, exponential distribution, gamma distribution, while direction obeys Fisher distribution and Binghanm distribution. On the basis of previous study, the internal rules of multi-scale fracture attributes through the case study are analysised, and then the method of calculating across-scales law by box counting method and two-point correlation function is discussed, and then sample size, exponential expansion, estimation method, influence factors, the estimation accuracy in the process of estimating the scaling-exponent are detailed analysised. In view of the relationship between the observability of fractre length and other properties, the scale-index of fracture length estimation is especially discussed in detail. According to multi-scale contact law and the used method, the corresponding computer programs are compiled by Matlab.
     (2) In this paper GEOFRAC method are Constructed, which is concluding Ordinary Kriging (OK), Sequential Gauss Simulation (SGS), Principal Component Analysis (PCA) method. Specific content include:decomposition properties, fracture density estimation, fracture position generation, the principal component analysis and inversion of fracture direction (strike and dip), geostatistics estimation of fracture orientation distribution, fracture property valuation comprehension, basic fracture surface connection. Fracture multiple attribute, the same position and scale-invariant features can be considered through making full use of fractured samples data of different dimension and scale.
     (3) Fracture3D distribution in Gaosong ore field.By using acoustic emission, CT, surface, tunnel, remote sensing, the geological data and fracture sample data of different dimensions and different scales are collected. Taking this as the foundation, a3D strata model of Gaosong field by using geological data are constructed, and the relations between small-scale crack length, the density cross-dimension conversion and properties(direction, length, width) are established by using CT data, and then fracture spatial situation distributions, corresponding to the direction of the spatial distribution of fracture network in Gaosong field are simulated by using tunnel, surface data, and fracture elements in the spatial distribution is connected, and then linear structure in Gejiu deposit are extracted by using remote sensing DEM data, multi-scale contact of fracture density and length according to the established fracture network distribution analysis of different scales, the results of these studies are verified in the Gaosong ore field.
     (4) Through stereological analysis, fracture length distributions meet some laws in given certain assumptions. The relationships between the fracture density, one-dimensional, two-dimensional density, three-dimensional density, density, surface density, linear density, bulk density are concluded, then fracture length and chord length are statisticalized, and then fracture direction, the observation surface direction, the trace ray angle are built, and then the relationship between fracture density, length and direction across dimension conversion are established, and the then technique route of the fracture properties of cross dimension conversion are designed, and finally the idea of computer algorithms are conceived, and all of this implementation program was written by Matlab.
     (5) Through analyzing the remote sensing images of a375km2in Gejiu tin deposit and Gaosong ore field geological map, the spatial distribution characteristics of fracture system, and the fracture network distribution relationship with orebody are researched. According to the large scale fracture modeling results, orebody is closely associated with the first set of fracture, and with second, third groups of fracture distribution in mesoscale. The results show they have a good consistency.
引文
[1]柴军瑞,仵彦卿.岩体三维主干裂隙网络渗流分析.水动力学研究与进展.2003.18(4):344-347
    [2]陈剑平,王清,肖树芳.岩体裂隙网络分数维计算机模拟.工程地质学报.1995.3:79-85
    [3]陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理.第一版.吉林:东北师范大学,1995
    [4]陈书平.地质构造对煤与瓦斯突出影响因素分析.能源技术与管理.2010,4:30
    [5]陈征宙,胡伏生.岩体节理网络模拟技术研究.岩土工程学报.1998.1:22-25
    [6]陈志杰,冯曦,李傲松.三维岩体裂隙网络模拟研究及应用.东北水利水电.2011.8:49-52
    [7]成秋明,赵鹏大,陈建国,等.奇异性理论在个旧锡铜矿产资源预测中的应用:成矿弱信息提取和复合信息分解.地球科学-中国地质大学学报.2009.34(2)
    [8]崔中兴,仵彦卿,吕惠民,等.砂岩隙宽变化与CT数变化的相关关系.岩石力学与工程学报.2004.23(20):3484-3488
    [9]杜春国,付广,王安.断裂在乌尔逊凹陷油气成藏中的作用.新疆石油地质.2004.25(5):495-497
    [10]段蔚平.边坡岩体结构面的模拟.金属矿山.1994.6:27-29
    [11]范天佑.断裂理论基础.第一版.北京:科学出版社,2003
    [12]高歆.基于WLs的二维地球化学景观多重分形建模.中国矿业.2010.19(6):111-115
    [13]宫伟力,安里千,赵海燕,等.基于图像描述的煤岩裂隙CT图像多尺度特征.岩土力学,2010.31(2):371-376、381
    [14]郭彦双,林春金,朱维申,等.三维裂隙组扩展及贯通过程的试验研究.岩石力学与工程学报.2008(S1):3191-3195
    [15]何杨,柴军瑞,唐志立.三维裂隙网络非稳定渗流数值分析.水动力学研究与进展,2007.3:338-344
    [16]黄超.断层带破碎区巷道变形破坏规律与控制技术分析.煤矿安全.2012.5:170-173
    [17]季荣生,陈庆寿,王贵和,等.断层裂隙较发育地段硐室爆破.爆破.2005.22(2):42-49
    [18]金曲生,范建军,王思敬.结构面密度计算法及其应用.岩石力学与工程学报.1998,17(3):273-278
    [19]金曲生,王思敬,陈昌彦.一种估计迹长概率密度函数的新方法及其在三峡船闸区的应用.工程地质学报.1997,5(2):150-155
    [20]李洪训.从四川汶川大地震审视核安全.核安全.2008.3:1-13
    [21]李建军,邵生俊,王超.岩质断层地基及其治理措施分析.岩土力学.2009.30(S2):344-353
    [22]李江,金辉,刘伟.基于分形SMOTE重采样集成算法圈定区域化探异常.计算机应用研究.2012.29(10):3744-3747
    [23]李普,孟贤正,陈国红,等.影响坪湖煤矿与瓦斯突出的因素分析.矿业安全与环保.2011,38(1):64-66
    [24]李艳青.基于预裂微震控制爆破技术的隧道断层施工.山西建筑.2012.10:196-197
    [25]李义连,满作武.三峡工程岩体破坏分析中面连通率研究.地质科技情报.1998.(A02):59-72
    [26]李增华,成秋明,谢淑云,等.云南个旧期北山七段玄武岩中磁黄铁矿结构变化分形特征.地球科学-中国地质大学学报.2009.34(2):275-280
    [27]李志厚,杨晓华,来弘鹏,等.公路隧道特大塌方成因分析及综合处治方法研究.工程地质学报,2008.16(6):806-812
    [28]廖建忠,文军.活动断层附近某水电站坝址的选择.西北水电.2012.2:36-38
    [29]刘春学,秦德先,党玉涛,等.个旧锡矿高松矿田综合信息矿产预测.地球科学进展.2003.18(6):921-927
    [30]刘春学.个旧锡矿区高松矿田综合信息成矿预测[博士学位论文],云南.昆明理工大学.2002
    [31]刘建国,彭功勋,韩文峰.岩体裂隙网络的分形特征.兰州大学学报(自然科学版).2002.36(4):96-99
    [32]刘连峰,王泳嘉.三维节理岩体计算模型的建立.岩石力学与工程学报.1997 1:36-42
    [33]刘平,李沛刚,李克庆,等.黔西南金矿成矿地质作用浅析.贵州地质.2006.23(2):83-92
    [34]卢波.陈剑平.葛修润,等.节理岩体结构的分形几何研究.岩石力学与工程学报.2005.24(3):461-467
    [35]马宇,赵阳升.岩体裂隙网络的二维分形仿真.太原理工大学学报.1999.30(5):479-482
    [36]毛昶熙.段祥宝.蔡金傍.堤基渗流无害管涌试验研究.水利学报.2006.4:508-510
    [37]倪春中.刘春学,张世涛.从岩石露头裂隙迹线估算裂隙三维空间方向.石油与天然气地质.2013.34(1):102-106
    [38]潘别桐.岩体结构面网络模拟及应用.第一版.武汉:中国地质大学.1987
    [39]荣冠.周创兵.朱焕春,等.三峡水库某库段岩体裂隙网络模拟研究.岩土力学.2004. (7):1122-1126
    [40]邵江,许吉亮,一种断层影响基岩滑坡的失稳机理和稳定性分析.岩土工程技术.2008.22(6):299-303
    [41]沈成康.断裂力学.第(?)版.上海:同济大学出版社,1996
    [42]苏娜,段永刚.丁春生,微CT扫描重建低渗气藏微观孔隙结构--以新场气田上沙溪庙组储层为例.石油与天然气地质,2011.32(54):792-796
    [43]孙洪泉.谢和年.岩石断裂表面的分形模拟.岩土力学.2008.29(2):347-352
    [44]孙绍有.高松矿田芦塘坝矿段矿床控矿特征新认识--构造溶蚀控矿.中国岩溶.1993.12(4):351-359
    [45]孙绍有,陈永建.高福有.高松矿 田芦塘坝矿段矿床控矿特征新认识-构造溶蚀控矿.中国岩溶.1993.12(4):351-359
    [46]唐辉明.晏同珍.岩岩体断裂力学与土程应用.第版.北京:中国地质大学出版社,1993
    [47]陶振宇.王宏.岩石力学中节理网络模拟技术.长江科学院院报.1990.4:18-26
    [48]万力,李定方.李吉庆. 三维隙网络的多边形单元渗流模型.水利水运科学研究.1993.4:347-353
    [49]汪小刚,陈祖煜.刘文松.应用蒙物卜洛法确定节理岩体的连通率和综合抗剪强度指标.岩石力学与工程学报.1992.(4):345-355
    [50]汪小刚.贾志欣.陈祖煜.等.岩质边坡倾倒破坏的稳定分析方法.水利学报.1996.223(3):7-12.21
    [51]王恩志.岩体裂隙的网络分析及渗流模型.岩石力学与工程学报.1993.12(3):214-221
    [52]王力.个旧锡铜多金属矿集区成矿系列、成矿演化及成矿预测研究[博士学位论文].长沙.中南大学.2004
    [53]王立德,丁年生,肖利强.广西明山金矿床地质特征及找矿方向.矿产与地质.2008.5:381-386
    [54]王帅.王深法.俞建强.构造活动与地质灾害的相关性-浙西南山地滑坡、崩塌、泥石流的分布规律.山地学报.2012.20(1):47-52
    [55]王振,题正义,常志峰.断层破碎带巷道的锚网喷架联合支护技术.有色金属(矿山部分).2012.64(2):30-33
    [56]魏安.岩体裂隙网络的计算机模拟及基应用.西南交通大学学报.1995.30(2):200-205
    [57]邬爱清.周火明.任放.岩体三维网络模拟技术及其在三峡工程中的应用.长江科学院报.1998.15(6):15-18
    [58]向晓辉.王俐.葛修润.基于三维裂隙网络模拟的有限块体面积判断法、.岩体力学.2006.27(9):1633-1636
    [59]谢法桐,李龙.童亭矿区赵口断层对煤层瓦斯赋存规律的研究.淮南职业技术学院学报.2011.11(6):1-3
    [60]谢和平.分形几何及其在岩土力学中的应用.岩土工程学报.1992.14(1):14-24
    [61]谢淑云,成秋明,李增华,等,矿物微观结构的多重分形.地球科学-中国地质大学学报.2009.34(2):263-269
    [62]杨铮,颜家荃.个旧矿区高松矿田锡多金属矿床成矿规律及成矿远景预测.西南矿产地质.1990.3:1-10
    [63]于青春,陈德基.薛果大.岩体非连续裂隙网络水力学特征.中国地质大学学报.1995.4:474-478
    [64]於崇文.蒋耀淞.云南个旧成矿区锡石-硫化物矿床原生金属分带形成的地球化学动力学机制.地质学学报.1990.64(3):226-237
    [65]张发明,王小刚.贾志欣,等.3D裂隙网络随机模拟及其工程应用研究.现代地质.2002.1:100-103
    [66]张佳楠.山东莱州焦家金矿床化富集规律及矿床成因探讨[硕士学位论文],吉林,吉林大学.2012
    [67]张建东.个旧锡矿花岗岩接触-凹陷带空间展布特征、控矿机理及空间信息成矿预测研究[D].长沙.中南 大学.2007
    [68]张鹏,李宁,陈新民.一种新的裂隙三维表面粗糙度表征方法.岩石力学与工程学报.2009.28(S2):3477-3483
    [69]张仕强,焦棣,罗平亚,等.天然岩石裂缝表面形态描述.西南石油学院学报.1998.20(2):19-22
    [70]张文佑.锯齿状断裂的力学形成机制·构造地质问题.第一版.北京:科学出版社,1962
    [71]赵江南,陈守余,左仁广.个旧锡多金属矿集区高松矿田矿化元素局部富集的奇异性特征.吉林大学学报(地球科学版).2012.42(Z1):216-223
    [72]周皓,方勇刚,甘东科.基于Monte-Carlo方法的三维裂隙网络模拟.企业技术开发.2010.6:150-152
    [73]周瑞光,成彬芳,叶贵钧,等,断层破碎带突水的时效特性研究.工程地质学报.2000.8(4):411-415
    [74]周枝华,杜守继.岩石节理表面几何特性的三维统计分析.岩土力学,2005.26(8):1227-1232
    [75]朱红光,谢和平,易成,等.岩石材料微裂隙演化的CT识别.岩石力学与工程学报.2011.30(6):1230-1238
    [76]朱江皇,蒋方媛.断裂活动性及地质灾害效应分析-以深圳市罗湖区F8断裂为例,安全与环境工程.2008.15(1):33-37
    [77]庄永秋,王任重,郑树培,等.云南个旧锡铜多金属矿床.第一版.北京:地震出版社,1996
    [78]Acuna J.,Yortsos Y., Application of fractal geometry to the study of networks of fractures and their pressure transient.Water Resources Research.1995.31 (3):527-540
    [79]Adler P.M.,Thovert.Fractures and Fracture Network.First edition.USA:Kluwer Academic Publishers,1999
    [80]Amitrano D.,Schmittbuhl J.. Fracture roughness and gouge distribution of a granite shear band. Geophys. Res.2002.107 (B12):2375
    [81]Baecher GB.,Lanney N.A.Statistical description of rock properties and sampling.Proceeding of 18th U.S. symposium on rock mechanics.USA:Plenum,1977
    [82]Barton C.A.,Zoback M.D.. Self-similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass scientific drill hole.Geophys.Res.1992.97 (B4):5181-5200
    [83]BartonCC.LarsenE.Fractal geometry of two-dimensional fracture networks at Yucca Mountain,southwestern Nevada.Proceedings of the International Symposium on Fundamentals of Rock Joints.Sweden:Centek.1985
    [84]Berkowitz B.,Alder P.M.. Stereological analysis of fracture network structure in geological formations. Geophys.Res.1998.103 (B7):15339-15360
    [85]Berkowitz B.,Scher H.. Anomalous transport in random fracture networks.Phys.Rev.1997.79:4038-4041
    [86]Billaux D.,Chiles J.P.,Hesti K.,etal,. Three-dimensional statistical modeling of a fractured rock mass-an example from the Fanay-Augres mine.Int. J. Rock Mech. Min. Sci.Geomech.1989.26 (3/4):281-299
    [87]Bingham C.Distribution on Sphere and on the Projective Plane[J], New Haven.Yale University.1964
    [88]Braee W.F.,Bombolakis E.G. A note on brittle crack growth in compression.Geophys.Res.1963.68 (6): 3709-3713
    [89]Bridges M.C.Presentation of Fracture Data for Rock Mechanics.Proceedings 2nd Austrilia-New Zealland Conference on Geomechanics.Brisbane:PCAA,1976
    [90]Burgmann R.,Pollard D.D.,Martel S.J.. Slip distributions on faults:effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction.Journal of Structural Geology.1994.16: 1675-1690
    [91]Cacas M.C.,Ledoux E.,De Marsily G,etal,. Modeling fracture flow with a stochastic discrete fracture network:calibration and validation, The flow model.Water Resources Research.1990.26:479-489
    [92]Carbotte S.M.,Mcdonald K.C., Comparison of seafloor tectonic fabric at intermediate, fast, and super fast spreading ridges:Influence of spreading rate, plate motions, and ridge segmentation on fault pattems.Geophys.Res. 1994.99:13609-13631
    [93]Cartwright J.A.,Trugdill B.D.,Mansfield C.S.. Fault growth by segment linkage:An explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah. Struct.Geol.1995.17: 1319-1326
    [94]Charlaix E.,Guyon E.,Rivier N.. A criterion for percolation threshold in a random array of plates. Solid State Commun.1984.50 (11):999-1002
    [95]Childs C.,Walsh J.J.,Watterson J.. A method for percolation of the density of fault displacements below the limits of seismic resolution in reservoir formations.North Sea Oil and Gas Reservoirs.1990:309-318
    [96]Chiles J.P.. Fractal and geostatistical methods for modeling of a fracture network.Mathematical Geology. 1988.20 (6):631-654
    [97]Clark R.M.,Cox S.J.D.. A modern regression approach to determining fault displacement-length scaling relationships.Journal of Structural Geology.1996.18:147-152
    [98]Clemo T.,Smith L.. A hierarchical model for solute transport in fractured media.Water Resources Research. 1997.33(8):1763-1783
    [99]Cowie P.,Scholz C.H.,Edwards M.,etal,. Fault strain and seismic coupling on mid-ocean ridges. Geophys Res.1993b.98:17911-17920
    [100]Cowie P.A.,Scholz C.H.. Displacement-length scaling relationship for faults:data synthesis and discussion. Journal of Structural Geology.1992b.14:1149-1156
    1101] Cox S.J.D.,Paterson L.. Damage development during rupture of heterogeneous brittle materials: Anumcrical study, in Deformation Mechanisms, Rheology and Tectonics.Geol. Soc. Spec. Publ.1990.54:57-62
    [102]Cruden D.M.. Describing the size of discontinuities.Rock Mech. Min. Sci.Geomech.1977.14:133-137
    [103]Cvetkovic V.,Painter S.,Outters N.,etal.. Stochastic simulation of radionuclide migration in discretely fractured rock near the Aspo Hard Rock Laboratory.Water Resour. Res.2004:14
    [104]Davy P.. On the frequency-length distribution of the San Andreas fault system.Geophys. Res.1993.98: I2141-12151
    [105]Davy P.,Sornette A.,Sornette D.. Some consequences of a proposed fractal nature of continental faulting. Nature.1990.348:56-58
    [106]Dawers N.H., Anders M.H.,Scholz C.H.. Growth of normal faults:displacement-length scaling.Geology. 1993.21:1107-1110
    [107]De Arcangelis L.,Herrmann H.J.. Scaling and multiscaling laws in random fuse networks.Phys. Rev. 1989.39:2678-2684
    [108]De Dreuzy J.R.,Darcel C.,Davy P.,etal,. Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law lengthdistribution. Water Rcsour. Re 2004.40
    [109]Dershowitz W.S..Einstein H.H.. Characterizing rock joint geometry with joint system models. Rock Mech. Rock Engng.1988.21:21-51
    [110]Dowd P.A.,Martin J.A.,Xu C.,etal,. A three-dimensional fracture network data set for a block of granite. International Journal of Rock Mechanics & Mining Sciences.2009.46:811-818
    [111]Einstein H.H.,Beacher G.B.. Probabilistic and statistical methods in engineering geology.Rock Mech. Rock Eng.1983.16:39-72
    [112]Gaziev E.G.Tiden E.N.. Probabilistic Approach to the study of jointing in Rock Masses. Assoe.of Engineering Geology.1979.20:178-181
    [113]Gertsch L.S.. Three-dimensional fracture network models from laboratory-scale rock samples.Int. J.Rock Mech. Min. Sci. Geomech.1995.32:85-91
    [114]Gervais F.,Genter S.Tridimensional geometrical description of the fracture pattern of a stratified rock mass. Proceedings of the International Congress on Rock Mechanics.Germany:Aachen,1991
    [115]Gillespie P. A., Walsh J.J.,Watterson J.. Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation.Journal of Structural Geology.1992.14:1157-1172
    [116]Gonzalez-Garcia R.,Huseby O.,Thovert J.F.,etal,. Three-dimensional characterization of a fractured granite and transport properties.Geophys Res.2000.105 (B9):387-401
    [117]Hatton C.G.,Main I.G.,Meredith P.G.. Nonuniversal scaling of fracture length and opening displacement. Nature.1994,367:160-162
    [118]Helmig R.,Braun C.,Manthey S.. Upscaling of two-phase flow processes in heterogeneous porous media:determination of constitutive relationships.Iash-Aish Publ.2002.277:28-36
    [119]Hoek E.. Estimating Mohr-Coulomb Friction and Cohesion Values from the Hoek-Brown Failure Criterion. Rock Mech. Min. Sci.& Geomech.1990,27 (3):227-229
    [120]Hudson J.A.,Priest S.D., Discontinuity Frequency in Rock Mass.Rock Mech Min Sci & Geomech. 1983.1:20
    [121]Huseby O.,Thovert J.F.,Alder P.M.. Geometry and topology of fracture systems.Phys. Rev.1997.30 (5): 1415-1444
    [122]Kagan Y.Y.. Seismic moment-frequency relation for shallow earthquakes:Reegonal comparison-Geophys. Res.1997.102:2835-2852
    [123]Kosakowski G.,Kasper H.,Taniguchi T.,etal,. Analysis of groundwater flow and transport in fractured rock-geometric complexity of numerical modelling.Geol..1997.43 (2):81-84
    [124]Kulatilake P.H.S.W.,Wu T.H.. Estimation of mean trace length discontinuities.Rock Mech. Rock Eng. 1984.1(3):215-232
    [125]Ledesert B.,Dubois J.,Velde B.,etal,. Geometrical and fractal analysis of a three-dimensional hydrothermal vein network in a fractured granite.Volcan Geotherm Res.1993.56 (267-80)
    [126]Lee J.J.,Bruhn R.. Structural anisotropy of normal fault surfaces.Struct. Geol.1996.18:1043-1059
    [127]Liu H.H.,Bodvarsson G.S.. Constitutive relations for unsaturated flow in a fracture network.Journal of Hydrology.2001.252:116
    [128]Lockner D.A.,Moore D.E.,Reches Z.Fraction of fracture shear.Microcracks interaction leading to shear fracture. Rock Mechanics:Proceedings of the 33rd U.S. Symposium on Rock Mechanics.USA:PCAA,1992
    [129]Long J.C.S.,Billaux D.M.. From field data to fracture network modeling:an example incorporating spatial structure. Water Resources Research.1987.23 (7):1201-1216
    [130]Long J.C.S.,Witherspoon P.A.. The relationship of the degree of interconnection to permeability in fracture networks.Geophys. Res.1985.90 (B4):3087-3097
    [131]Main I.G.. Statistical physics, seismogenesis, and seismic hazard.Geophys.1996.34:433-462
    [132]Main I.G.,Burton P.W.. Information theory and the earthquake frequency magnitude distribution.Bull. Seismol. Soc. Am.1984.74:1409-1426
    [133]Marrett R.. Aggregate properties of fracture populations.Struct. Geol.1996.18 (2-3):169-178
    [134]Marrett R.,Allmendinger R.W.. Estimates of strain due to brittle faulting:sampling of fault populations. Journal of Structural Geology.1991.13:735-738
    [135]Marsan D.. Can coseismic stress variability suppress seismicity shadows? Insights from a rate-and-state friction model.Geophys. Res.2006. 111:B06305
    [136]Mc Dermott C.I.,Kolditz O.. Geomechanical model for fracture deformation under hydraulic, mechanical and thermal loads.Hydrogeol.2006.14 (4):485-498
    [137]Mourzenko V.V.,Thovert J.F.,Adler P.M.. Macroscopic permeability of three-dimensional networks with power-law size distribution.Phys. Rev.2004.5 (69):066307
    [138]Nur A., The origin of tensile fracture lineaments.Struct. Geol.1982,4:31-40
    [139]Odling N.E., Network Properties of a Two-dimensional Natural Fracture Pattern.Pageoph.1992.138 (1):95-114
    [140]Odling N.E.. Scaling and connectivity of joint system in sandstones from western Norway.Struct. Geol. 1997.19:1257-1271
    [141]Peacock D.C.P.,Sanderson D.J.. Displacements, segment linkage and relay ramps in normal fault zones.Struct. Geol.1991.13:721-733
    [142]Peyrat S..Olsen K.B..Madariaga R., Which Dynamic Rupture Parameters Can Be Estimated from Strong Ground Motion and Geodetic Data?Pure and Applied Geophysics.2004,11-12:2155-2169
    [143]Power W.L.,Durham W.B.. Topography of natural and artificial fractures in granitic rocks:Implications for studies of rock friction and fluid migration.Rock Mech Min Sci & Geomech.1997.34 (979-989)
    [144]Power W.L.,Tullis T.E.. Euclidean and fractal models for the description of rock surface.Geophys.Res. 1991. 11 (3):1436-1451
    [145]Power W.L.,Tullis T.E.,Brown S.R..etal.. Roughness of natural fault surfaces.Geophys.Res.1987.14: 29-32
    [146]Power W.L., Tullis T.E..Weeks J.D.. Roughness and wear during brittle faulting.Geophys. Res.1988.93 (15):268-15.278
    [147]Priest S.D.,Hudson J.A.. Eatimation of discontinuity spacing and trace length using scanline surveys.Rock Mech. Min. Sci.& Geomech.1981.18:183-197
    [148]Pyrak-Nolte I..J.,Montemagno C.D..Nolte D.D.. Volumetric imaging of aperture distributions in connected fracture networks.Geophys. Res.1997.24:2343-2346
    [149]Renard F.,Voision C..Marsan D..etal., High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales.Geophys. Res.2006.33:1-11
    [150]Renshaw C.E..Park J.C.. Effect of mechanical interactions on the scaling of fracture length and aperture. Nature.1997.386:482-484
    [151]I Riley M.S.. An algorithm for generating rock fracture patterns:mathematical analysis.Mathematical Geology.2004.36 (6):683-702
    [152]Robertson A.M.. The Interpretation of Geological Factors for Use in Slope Theory.Geophys. Res.1970. (96):77-92
    [153]Rouleau A.,Gale J.E.. Statistical characterization of the fracture system in the Stripa granite, Sweden.Rock Mech. Min. Sci.1985.22:353-367
    [154]Sagy A.,Brodsky E.E.,Axcn GJ.. Evolution of fault-surface roughness with slip.Geology.2007.35: 283-286
    [155]Schlische R.W.,Young S.S.,Ackermann R.V.etal,. Geometry and scaling relations of a population of very small rift-related normal faults.Geology.1996.24:683-686
    [156]Schmittbuhl J.,Chambon G.,Hansen A.,etal,. Are stress distributions along faults the signature of asperity squeeze Geophys. Res.2006.33:L13307
    [157]Schmittbuhl J.,Gentier S.,Roux R.. Field measurements of the roughness of fault surfaces.Geophys. Res.1993.20:639-641
    [158]Scholz C.H.,Dawers N.H.Yu J.Z.,etal,. Fault growth and fault scaling laws:preliminary rcsults.Journal of Geophysical Research.1993.98:21951-21961
    [159]Schultz R.A.,Fossen H.. Displacement-length scaling in three-dimensions:the importance of aspect ratio and application to deformation bands.Journal of Structural Geology.2002.24:1389-1411
    [160]Shanley R.J.,Mahtb M.A.. Delineation and Analysis of Clusters in Orientation Data.Mathematical Geology.1976.8(1):9-23
    [161]Snow D.T.. The Freqency and Apertures of Fracture in Rock.Int. J. of Rock Mechanics and Ming Science.1990.7 (1):23-40
    [162]SnowDT. Anisotropic permeability of fractured media. Water Resources Research.1969.5 (6):1273-1289
    [163]SnowDT. The Freqency and Apertures of Fracture in Rock.Int. J. of Rock Mechanics and Ming Science. 1990.7(1):23-40
    [164]Sornette D.,Sornette A.. General theory of the modified Gutenberg-Richter law for large seismic moments. Seismol. Soc,1999.89:1121-1130
    [165]Terzaghi R.. Sources of errors in joint surveys.Geotechnique.1965.15:287-303
    [166]Tran N.H.,Chen Z.,Rahman S.S.. Integrated conditional global optimization for discrete fracture network modeling.Computers & Geosciences,2006,32 (1):17-27
    [167]Villemin T.,Sunwoo C.. Distribution logarithmique self similaire des rejets et longueurs de failles: Exemple du bassin Houiller Lorrain.Acad. Sci,1987.305:1309-1312
    [168]Walmann T.,Malthe Sorensen A.,Feder J.,etal,. Scaling relations for the lengths and widths of fractures. Phys. Rev.1996.77 (27):5393-5396
    [169]Walsh J.J.,Watterson J.. Analysis of the relationship between the displacements and dimensions of faults. Journal of Structural Geology.1988.10:239-247
    [170]Watterson J.. Fault dimensions, displacements and growth.Pure and Applied Geophysics.1986.124: 365-373
    [171]Willemse E.J.M.. Segmented normal faults:correspondence between three-dimensional mechanical models and field data.Journal of Geophysical Research.1997.102:675-692
    [172]Willemse E.J.M.,Pollard D.D.,Aydin A.. Three-dimensional analyses of slip distributions on normal fault arrays with consequences for fault scaling.Journal of Structural Geology.1996.18 (295-309)
    [173]Wojtal S.F.. Changes in fault displacement populations correlated to linkage between faults.Journal of Structural Geology.1996.18:265-279
    [174]Wojtal S.F.. Scaling laws and the temporal evolution of fault systems.Journal of Structural Geology. 1994.16:603-612
    [175]Wu H.,Pollard D.D.. An experimental study of the relationship between joint spacing and layer thickness. Struct. Geol.1995.17:887-905
    [176]Yeomans J.M.. Characterizing rock joint geometry with joint system models.Rock Mech. Rock Engng.1992.21:21-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700