用户名: 密码: 验证码:
断续节理岩体破裂演化特征与锚固控制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断续节理岩体的破裂演化及锚固控制是岩体力学与工程界研究的热点与难点问题之一,尽管现有的研究成果取得了许多进展,但仍存在大量难题未得到合理解决。本文结合国家自然科学基金项目(51074162,51179189),采用物理模型、数值计算、理论分析与现场验证等研究方法,深入系统地对断续节理岩体破裂演化特征及锚固控制机理这一科学问题进行了研究。主要研究成果与结论如下:
     (1)研制了大尺度(500mm×500mm×480mm)的三维岩体锚固模拟试验系统,该系统具有完备的加载、约束及量测功能,能够真实再现岩体试件的加载、变形及破坏的全过程,同时通过自行研制的高精度微型锚杆端部测力计及光纤光棚测力锚杆,可以实现在试验过程中对锚杆受力全过程进行实时监测;设计了多组节理的制作方法,并成功的制作了模具;研制了较为理想的模拟断续节理岩体的相似材料,具有组分简单、力学性能稳定、参数可调、无毒无污染、价格低廉等优点。
     (2)通过对断续节理岩体的单轴压缩试验,获得了无锚断续节理岩体的破裂演化规律:峰值强度、极限应变和峰后0.7σc时的试件中部核心承载区宽度,均随节理倾角的增大先减小后增加;次生裂隙的起裂位置主要是试件的四周,且以张开型和拉剪型裂隙为主起裂应力随节理倾角呈线性增加关系;节理倾角为60°时的岩体单位体积破坏所消耗的能量最小,小于60°时,角度越小消耗的能量越大,反之则相反;节理倾角小于45°时,岩桥主要以张拉破坏和拉剪破坏为主,随着倾角的增大,岩桥发生剪切破坏的比例增加;低角度(0°≤α<45°)节理岩体主要以拉伸或拉剪破坏为主,高角度(α≥45°)沿预制节理面剪切破坏。
     (3)采用研制的试验系统,对不同倾角的断续节理岩体进行模拟试验研究,发现了锚固体的强度主要由岩体的强度、锚杆预紧力引起的初始等效约束应力(σ3i)以及锚杆变形过程中产生的等效约束应力(σ3b)所贡献的强度组成;建立了岩体峰值强度、残余强度与裂隙倾角、锚杆密度之间的函数关系式,并成功用于巷道工程设计,取得了良好的效果。σρ=4.543+1.412ρ-2.146ρ2+1.564ρ3-0.02146α-8.006×10-4α2+1.307×10-5α3σR=3.624+2.039ρ-2.263ρ2+1.499ρ3-0.005564α-1.41×10-4α2+2.267×10-6α3
     (4)研究了锚固体的弹性模量、泊松效应及体积应变与加锚密度、预制节理倾角之间的关系:即弹性模量随加锚密度总体呈非线性增长;同一倾角情况下应力峰值时的广义泊松比与水平方向应变随锚杆密度增大而增大;岩体的强度峰值点与体积膨胀起始点并不完全一致,多数情况下岩体强度峰值滞后于体积应变峰值;锚杆可明显抑制剪切破坏的发生,但对拉伸破坏的抑制作用偏弱。
     (5)分析了锚杆的受力演化及分布特征,揭示了全长锚固锚杆的群锚机理:低密度锚杆主要由杆体的中外段承载,自身受力和对围岩的约束力都存在明显的分布不均现象锚固体容易出现薄弱的关键部位,而高密度锚杆能充分调动杆体内锚段的承载性能,改善每根锚杆和围岩的受力状态。
Research on the fracture evolution and bolting of intermittently jointed rocks is one of thehotspots and difficulties in the field of rock mechanics and rock engineering. Although someprogresses were made by scholars in this field, there are still many problems that need to besolved properly. Funded by the National Natural Science Foundation of China (51074162,51179189) and using physical simulation, numerical simulation, theoretical analysis and otherresearch methods, this paper made an in-depth study on the fracture evolution characteristics andbolting mechanism of intermittently jointed rocks. The main research findings and conclusionsare as follows:
     (1) A large-scale (500mm×500mm×480mm) three-dimensional testing system wasdeveloped for the simulation of rock bolting. This system has functions of loading, confining andmeasurement, with which the whole process of loading, deformation and failure of jointed rockscan be truly represented. To monitor the real-time anchoring force of bolt, the high-precisionminiature ergometer was developed to measure the anchor end force and the dynamometric boltbased on fiber Bragg grating was made to get the multipoint anchoring force along bolt. A newmethod of making multiple joints was designed and the corresponding molds were fabricated.An ideal similar material of intermittently jointed rocks was developed, which has advantages offew components, stable mechanical properties, adjustable parameters, pollution-free, low priceand so on.
     (2) Fracture evolvement rules of intermittently jointed rocks without bolt were obtained byuniaxial compression tests. The peak strength, ultimate strain and the center bearing core widthof rocks at post-peak stress of0.7σcdecrease first and then increase with the rise of joint angles.The initiation position of secondary cracks is mainly at the periphery of specimen, and most ofthe cracks are tensile or tensile-shear cracks. The crack initiation stress increases linearly withjoint angles. The energy consumed by the destruction of unit volume rocks is the minimum whenthe joint angle is60°; the energy increases with the decrease of joint angle when it is less than60°, and with the increase of joint angle when it is greater than60°. The failure of rock bridges ismainly due to tension and tensile-shear cracks when the joint angle is less than45°. The ratio ofshear cracks increases with the rise of joint angle. The main fracture types of jointed rocks are oftension and tensile-shear fractures when the joint angle is less than45°, and the rocks tend toshear along the joint surfaces when the joint angle is larger than45°.
     (3) Model experiments were made on the intermittently jointed rocks with different jointangles under various bolting parameters by using the self-developed testing system. It was foundthat the strength of bolted rocks comprises the strength of rocks, the additional strength caused by both initial equivalent constraining stress (σ3i) which is aroused by pre-tension force of bolts and the equivalent constraining stress (σ3b) which is generated by deformation of bolts. The functional relations among peak strength and residual strength of bolted rocks, joint angle and bolting density were established and successfully used in the design of bolting parameters for a tunnel, through which good effects were achieved.
     σp=4.543+1.412/ρ-2.146/ρ2+1.564/ρ3-0.02146a-8.0×0610α2+1.307×105α3
     σR=3.624+2.039ρ-2.263ρ2+1.499ρ3-0.005564a-1.41x10-4a2+2.267×10-6α3
     (4) The relations between the elastic modulus, Poisson's ratio, volumetric strain of bolted rocks and the bolting density, the joint angle were obtained. The elastic modulus grows nonlinearly with the bolting density. The generalized Poisson's ratio and the horizontal strain at the peak stress grow with the bolting density for the same joint angle. In general, the position of peak strength of bolted rocks is not the same as the beginning point of volume expansion. In most instances, the peak strength lags behind the volume expansion point of the bolted rocks. Bolts can obviously inhibit shear fracture, but has less effect on tensile fracture.
     (5) The function mechanism of full-length anchoring bolts was revealed by analyzing the evolution and distribution characteristics of bolting force. For sparsely distributed bolts, the force distribution along each bolt is uneven and the force of its central and external sections is much greater than that of internal section in the whole lifetime of the bolt. Consequently, the constraining force of bolts on rocks is unevenly distributed and some weak parts are prone to occur, which is adverse to the stabilization of the rocks. For densely distributed bolts, the force distribution along each bolt is nearly uniform. It can fully mobilize the load-bearing capacity of each bolt and improve the stress state of bolts and rocks. Therefore, it is more conducive to the stability of bolted rocks.
引文
[1]谢和平.21世纪高新技术于我国矿业的发展与展望[J].中国矿业,2002,11(1):15-22.
    [2] JING Hongwen, Xu Guo’an, Ma Shizhi.Numerical Analysis on Displacement Law of Disconinuous RockMass in Broken Rock Zone for Deep Roadways[J]. Journal of China University of Mining&Technology,2001,11(2):132-137.
    [3]靖洪文,李元海,许国安等.深埋巷道破裂围岩位移分析[J].中国矿业大学学报,2006,35(5):565-570.
    [4]靖洪文,吴俊浩,马波等.基于模糊灰色系统的深部巷道围岩变形预测模型及应用[J].煤炭学报,2012,07:1099-1104
    [5] Yang S. Q.,Yang, D. S.,Jing, H. W.et.An Experimental Study of the Fracture Coalescence Behaviour ofBrittle Sandstone Specimens Containing Three Fissures[J].Rock Mechanics and Rock Engineering,2012,45(4):563-582.
    [6] Yang Sheng-Qi,Jing Hong-Wen,Wang Shan-Yong.Experimental Investigation on the Strength,Deformability, Failure Behavior and Acoustic Emission Locations of Red Sandstone Under TriaxialCompression[J],Rock Mechanics and Rock Engineering(SCI),201245(4):583-606.
    [7]王学滨,潘一山,李英杰.围压对巷道围岩应力分布及松动圈的影响[J].地下空间与工程学报,2006,2(6):80-84.
    [8]靖洪文,李元海,梁军起.钻孔摄像测试围岩松动圈的机理与实践[J].中国矿业大学学报,2009,38(5):645-649.
    [9]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [10] Yang Sheng-Qi,Jing Hongwen.Experimental investigation on mechanical behavior of coarse marble undersix different loading paths[J].Experimental Mechanics,2011,51(3):315-334.
    [11]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001:1-2.
    [12]靖洪文,李元海,赵保太等.软岩工程支护理论与技术[M].徐州:中国矿业大学出版社,2008:112-114.
    [13]张晓君,靖洪文.高应力巷道开挖围岩损伤分析[J].采矿与安全工程学报,2009,26(1):45-49.
    [14] Yang Sheng-Qi,Jing Hongwen.Strength failure and crack coalescence behavior of brittle sandstonesamples containing a single fissure under uniaxial compression[J].International Journal of Fracture,2011,168(2):227-250.
    [15]景海河,何满潮,孙晓明等.软岩巷道支护荷载的确定方法[J].中国矿业大学学报,2002,Vol.31No.5:376-378.
    [16] Griffith A A. The Phenomena of rupture and flow in solids. Phil. Trans, Roy. Soc. Lond.,1924. A221,163-170.
    [17] Meclintock F A., Walsh J B. Fraction and Griffith crack in rock under pressure.In:Prco.4th U.S.CongressApplied Mechanics.New York:1962.
    [18] Hoek E. Rock fracture under static stress condition. Mech. Engg. Res. In. Report MEG383, CSIR, S.Africa.1975.
    [19] Kemeny J.Cook N G W. Effective moduli, non-linear deformation of a cracked elastic solid. Int. J.RockMech. Min. Sci&Geomech. Abstr.,1986,23(2):107-118.
    [20] Luis Vallejo&Eddy Pramono. Development of Fracture Regions in Brittle Matreirals, Proc.25th U.SSymp.on Rock Mechannics.1984.
    [21] C.Li,O.Stephansson. Behaviour of Rock joints ang Rock Bridges,Proc.of Int.Symp.of Int. Symp. on RokJoints,1990.
    [22] T.Savilahti,E.Nordlund.Shear box Testing and Modeling of Joint Bridges,Proc.of Int.Symp.on RockJoints,1990.
    [23] Muller L.and Pacher F.Model versuche zur Klarung der Bruchgefahr geklafeter Medirn.RockMech.Eng.Geol.Supplementum No.2.1965.7-24.
    [24] Brown E T..Strength Model of Rock with Intermittent joints. Journal of the Soil Mechanics andFoubdation Diusion.Ascf.Vol.96.No smb(1970).
    [25] Reyes O, Einstein H H. Fracture mechanism of fractured rock-a fracture coalescence moda[A]. In:Proc.7th Int. Conf. On Rock Mech[C].Germany: A.A.Balkema,1991,333-340.
    [26] Shen B, Stephansson O, Einstein H H, el al. Coalescence of fractures under shear stressexperiments[J].Journal of Geophysical Research,1995,100(B4):5979-5990.
    [27] Bobet A,Einsein H H.Fractuer coalescence in rock-type material under uniaxial and biaxialcompression[J].Int.J. Rock Mech.Min.Sci.,1998,35(7):836-888.
    [28]白世伟,任伟中,丰定祥等.平面应力条件下闭合断续节理岩体破坏及强度特性[J].岩石力学与工程学报,1999,18(6):635-640.
    [29]朱维申,王平.节理岩体的等效连续模型及工程应用[J].岩土工程学报,1992,14(2):1-11.
    [30]陈卫忠,朱维申,申晋.雁行裂纹扩展的模型试验及断裂力学机制研究[J].固体力学学报,1998,19(4):355-360.
    [31]张林,范景伟,何江达等.拱坝坝肩含断续节理岩体破坏机理研究[J].四川大学学报(工程科学版),2000,23(1):7-11.
    [32]何江达,范景伟.含一组未闭合断续节理脆性岩体强度特性[J].成都科技大学学报,1990,(6):57-64.
    [33]任伟中,王庚苏,白世伟等.共面闭合断续节理岩体的直剪强度研究[J].岩石力学与工程学报,2003,22(10):1667-1672.
    [34]范景伟,何江达,含定向闭合断续节理岩体的强度特性[J].岩石力学与工程学报,1992,11(2):190-199.
    [35]王同旭,王文斌,杜烨等.节理岩体巷道顶板预应力锚杆加固作用研究[J].中国矿业大学学报,2007,36(5):618-621.
    [36]刘东燕.断续节理岩体的压剪断裂及其强度特性研究[D].重庆:重庆建筑工程学院,1993.
    [37]刘东燕,朱可善.岩石压剪断裂的模型试验研究[J].重庆建筑大学学报,1994,16(1):56-62.
    [38]刘东燕,朱可善,胡本雄.含裂隙岩石受压破坏的声发射特性研究[J].地下空间,1998,18(41):210-215.
    [39]黎立云,刘大安,史孝群等.多裂纹类岩体的双压实验与正交各向异性本构关系[D].山东,山东大学,2007.
    [40]郭少华.岩石类材料压缩断裂的实验与理论研究[D].长沙:中南大学,2003.
    [41]陈蕴生,李宁等.非贯通裂隙介质裂隙扩展规律的CT试验研究[J].岩石力学与工程学报,2005,24(15):2665-2670.
    [42]黄凯珠,林鹏,唐春安等.双轴加载下断续预制裂纹贯通机制的研究[J].岩石力学与工程学报,2002,21(6):808-816.
    [43]张平,李宁,贺若兰等.动载下两条断续预制裂隙贯通机制研究[J].岩石力学与工程学报,2006,25(6):1210-1217.
    [44]衣永亮,曹平,蒲成志.静载下预制裂隙类岩石材料断裂实验与分析[J].湖南科技大学学报(自然科学版),2010,25(1):67-71.
    [45]赵永红,梁晓峰.灰岩平板试件变形过程的试验观测研究[J].岩石力学与工程学报,2004,23(10):1608-1615.
    [46]黄明利,唐春安,朱万成.岩石单轴压缩下破坏失稳过程SEM既是研究[J].东北大学学报(自然科学版),1999,20(4):426-429.
    [47] ZHAO Y H.Crack pattern evolution and fractal damage constitutive model for rock[J].InternationalJournal of Rock Mechanics and Mining Sciences,1998,35(3):349-366.
    [48] FUJII Y,ISHIJIMA Y. Consideration of fracture growth from an inclined slit and inclined initial fractureat the surface of rock and mortar in compression[J]. International Journal of Rock Mechanics and MiningSciences,2004,41(6):1035-1041.
    [49]杨圣奇,戴永浩,韩立军等.断续预制裂隙脆性大理岩变形破坏特性单轴压缩试验研究[J].岩石力学与工程学报,2009,Vol.28No.12:2391-2404.
    [50] LI Y P,CHEN L Z,WANG Y H. Experimental research on precracked marble under compression[J].International Journal of Solids and Structures,2005,42(9/10):2505-2516.
    [51]黄明利,冯夏庭等.多裂纹在不同岩石介质中的扩展贯通机制分析[J].岩土力学,2004,23(2):142-146.
    [52]张连英等.不同裂纹走向岩石在压应力作用下破坏过程的数值模拟[J].徐州工程学院学报,2005,20(5):34-36.
    [53]唐春安,黄明利等.岩石介质中多裂纹扩展相互作用及其贯通机制的数值模拟[J].地震,2001,21(2):53-57.
    [54]朱万成,逄铭璋,唐春安等.含预制裂纹岩石试样在动载荷作用下破裂模式的数值模拟[J].地下空间与工程学报.2005,1(6):856-858.
    [55]王国艳,于广明,宋传旺.初始裂隙几何要素对岩石裂隙扩展演化的影响[J].辽宁工程技术大学学报.2011,30(5):681-684.
    [56]黄明立.岩石多裂纹相互作用破坏机制的研究[J].岩石力学与工程学报.2001,20(3):423-430.
    [57]王学滨.节理倾角对单节理岩样变形破坏影响的数值模拟[J].四川大学学报.2006,38(2):24-29.
    [58]李术才,王刚,王书刚等.加锚断续节理岩体断裂损伤模型在硐室开挖与支护中的应用[J].岩石力学与工程学报,2006,25(8):1582~1590.
    [59]陈卫忠,朱维申,王宝林等.节理岩体中洞室围岩大变形数值模拟及模型试验研究[J].岩石力学与工程学报,1998,17(3):223~229.
    [60]陈胜宏,强晨,陈尚法.加锚岩体的三维复合单元模型研究[J].岩石力学与工程学报,2003,22(1),1~8.
    [61]康天合,郜进海,潘永前.薄层状碎裂顶板综采切眼锚固参数与锚固效果[J].岩石力学与工程学报,2004,23(S2),4930~4935.
    [62]张海波.动、静荷载作用下不同倾角裂隙岩体[D].河海大学,2007.
    [63]宋桂红.加锚裂隙岩体整体力学性质研究与分析[D].武汉理工大学,2006.
    [64]张强勇,朱维申.裂隙岩体弹塑性损伤本构模型及其加锚计算(英文)[J].岩土工程学报,1998,20(6),90~95.
    [65]朱敬民,王林.岩石和锚杆组合材料力学性能的模拟试验研究[J].重庆建筑工程学院学报,1988,NO2:11~18.
    [66] D.伍尔斯莱格.锚固岩体作为一种各向异性连续介质材料的特性与岩体巷道的设计建议[R].1987年第六届国际岩石力学大会论文集:279~283.
    [67]朱维申,张玉军.锚杆加固围岩的效应及其在三峡船闸高边坡中的应用.国际岩土锚固与灌浆新发展[M].中国建设出版社,北京,1996.
    [68]勾攀峰.巷道锚杆支护提高围岩强度和稳定性的研究[D].徐州:中国矿业大学,1998.
    [69]程良奎,范景伦,韩军等.岩土锚固[M].北京:中国建筑工业出版社,2003.
    [70] Fuller, PG, Cox RHT. Mechanics load transfer from steel tendons of cement based grouted [A]. In:Proceedings of the Fifth Australasian Conference on the Mechanics of Structures and Materials [C].Melboume: Published by Australasian Institute of Mining and Metallurgy,1995.
    [71]尤春安,战玉宝.预应力锚索锚固段的应力分布规律分析[J].岩石力学与工程学报,2005,24(6):925~928.
    [72]张瑞良,董燕军,唐乐人等.预应力锚索锚固段周边剪应力分布特性的弹性理论分析[J].岩石力学与工程学报,2004,23(S2):4735~4738.
    [73] KILIC A,YASAR E,ATIS C D.Effect of bar shape on the pull-out capacity of fully grouted rockbolts[J].Tunnelling and Underground Space Technology,2003,18:1-6.
    [74] KILIC A,YASAR E,CELIK A G.Effect of grout properties on the pull-out load capacity of fully groutedrock bolt[J]. Tunnelling and Underground Space Technology,2000,17:355-362.
    [75] Farmer I.W.Stress distribution along a resin grouted rock anchor[J].Int J Rock Mech Min Sci andGeomech Abstr,1975,12:347-351.
    [76] Freeman T. J.The behavior of fully-bonded rock boltsin the Kielder experimental tunnel[J].Tunnelstunneling,1978,10:37-40.
    [77]肖世国,周德培.非全长粘结型锚索锚固段长度的一种确定方法[J].岩石力学与工程,2004,23(9):1530-1534.
    [78] Li.C.Analytical models for rock bolts[J].International Journal of Rock Mechanics and Mining Scirnces,1999,36(18):1013-1029.
    [79]葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报,1998,(1):7-18.
    [80] Kharchafi M,Grassselli G,Egger P.3D behaviour of bolted rock joints;Experimental and numerical[A].In:ROSSMANITH.Mechanics of Jointed and Faulted Rock[C].Rotterdam: Balkema,1998,299-304.
    [81]温进涛,朱维申,李术才.锚索对结构面的锚固抗剪效应研究[J].岩石力学与工程学报,2003,22(10):1699-1703.
    [82]伍右伦,王元汉,古德生.锚杆仰制临空结构面扩展的试验研究[J].岩石力学与工程学报,2006,Vol.25,Supp.1,3046-3050.
    [83] Spang K,Eggre P.Action of fully-grouted bolts rock and factors of influence[J].Rock Mechanics and RockEngineering,1990,23(3):201-229.
    [84]刘长武,郭永峰,姚精明.采矿相似模拟试验技术的发展与问题[J].中国矿业,2003,12(8):6-8.
    [85]詹亚歌,向世清,方祖捷等.光纤光栅传感器的应用[J].物理,2004,01:58-61.
    [86]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子,激光,2002,04:420-430.
    [87]姜峰,陈熙源.光纤光栅传感器在分布式测量系统中的应用[J].舰船电子工程,2005,01:1-3.
    [88]赵勇,李鹏生,浦昭邦.光纤位移传感器进展及其应用[J].传感器技术.1999,02:8-10.
    [89]姜德生,梁磊,周雪芳等. FBG传感技术在工程结构监测中的应用[J].传感器技术.2003(06):33-35.
    [90]柴敬.岩体变形与破坏光纤传感测试基础研究[D].西安:西安科技大学,2003.
    [91] Musa Shah M. Real-time signal processing and hardware development for a wavelength-modulatedoptical fiber sensor system[D]. Blacksburg: Virginia Polytechnic Institute and State University,1997.
    [92]魏世明.相似模拟实验中的光纤光栅传感测试研究[D].西安:西安科技大学,2004.
    [93] Li Xiaochun. Embedded sensors in layered manufacturing[D]. Palo Alto: Stanford University,2001.
    [94] Wang Tong. Modeling of multi-axial Bragg grating fiber optic sensors[D]. Newark: University of81Delaware,2004.
    [95] Baldwin Christopher S. Distributed sensing for flexible structures using a fiber optic sensor system[D].
    [96] Fan Yu. Characterization of fiber Bragg grating sensor array embedded in composite structures[D].Montreal: Concordia University,2004.
    [97] Prabhugoud Mohanraj. Damage assessment in composites using fiber Bragg grating sensors[D]. Raleigh:
    [98]彭一民.岩石声发射技术的应用于进展[J].地质科技情报,8(4):91-98.
    [99] Yamaguchi Ichirou. Speckle Displacement and Decorrelation in the Diffraction and Image Fields forSmall Object Deformation[J]. Optica Acta: International Journal of Optics.1981,28(10):1359-1376.
    [100] Peters W. H., Ranson W. F. Digital image techniques on experimental stress analysis[J]. OpticalEngineering.1982,21(3):427-431.
    [101] Stanier Samuel A. Geotechnical Modelling Using a Transparent Synthetic Soil[R]. Sheffield: Universityof Sheffield,2006.
    [102]刘刚,非连续岩体破裂机理及其工程稳定性研究[D].徐州:中国矿业大学,2006.
    [103]麦倜曾,张玉军.锚固岩体力学性质的研究[J].工程力学,1987,01:106-116.
    [104]李先炜,甘吉庆,徐鸿明.回采巷道锚杆支护参数研究[J].第2届国际采矿科学技术讨论会:949-954.
    [105]勾攀峰.巷道锚杆支护提高围岩强度和稳定性的研究[D].徐州:中国矿业大学,1998.
    [106]顾金才,陈安敏,徐景茂等.在爆炸荷载条件下锚固洞室破坏形态对比试验[J].岩石力学与工程学报,2008,27(7):1315-1320.
    [107]赵震英.洞群开挖围岩破坏过程试验[J].水利学报,1995,(12):24-28.
    [108]陈蕴生,李宁,李爱国等.非贯通节理介质细观损伤力学分析[J].岩石力学与工程学报,1998,17(1):16-23.
    [109]杨为民.锚杆对断续节理岩体的加固作用机理及应用研究[D].济南:山东大学,2009.
    [110]李元海,朱合华,上野胜利等.基于图像相关分析的砂土模型试验变形场量测[J].岩土工程学报,2004.1,26(1):36-41
    [111]李元海.数字照相量测技术及其在岩土工程实验中的应用[M].徐州:中国矿业大学出版社.2009.
    [112]李元海,靖洪文,曾庆有.岩土工程数字照相量测软件系统研发与应用[J].岩石力学与工程学报[J],2006,25(S2):3859-3866.
    [113]李元海,朱合华,靖洪文.基于数字照相的砂土剪切变形模式的试验研究[J].同济大学学报(自然科学版),2007.5,35(5):685-689.
    [114]彭一民.岩石声发射技术的应用与进展[J].地质科技情报.1989,(4):91-98.
    [115]刘学文,林吉中,袁祖贻.应用声发射技术评价材料疲劳损伤的研究[J].中国铁道科学,1997,18(4):74-81.
    [116] Itasca Consulting Group Inc.. FLAC3D(Version2.1) users manual[R].[S.l.]: Itasca Consulting GroupInc.,2003.
    [117]尹尚先,汪益敏.采矿工作面推进的准动态FLAC数值模拟[J].华南理工大学学报(自然科学版),2003,31(1):124-126.
    [118]路聚堂,刘建军,王斌等.厚煤层软煤巷道围岩活动规律及支护数值分析[J].西安科技大学学报,2010,30(3):275-279.
    [119]郭保华,陆庭侃,田采霞.巷道交岔点稳定性影响因素的数值分析[J].采矿与安全工程学报,2008,25(2):192-197.
    [120]熊良宵,杨林德.考虑节理面法向蠕变的节理岩体蠕变模型[J].中南大学学报(自然科学版),2009,40(3):814-821.
    [121]孙书伟,林杭,任连伟.FLAC3D在岩土工程中的应用[M].中国水利水电出版社,2011.
    [122]刘波,韩彦辉.flac原理实例与应用指南[M].人民交通出版社,2005.
    [123]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].中国水利水电出版社,2009.
    [124]朱道建,杨林德,蔡永昌.节理岩体复合型多弱面软化模型的研究及实现[J].岩土工程学报,2010,32(2):185-191.
    [125]王小平,夏雄.岩土类材料率相关性及硬化-软化特性模型研究[J].岩土力学,2011,32(11):3283-3287.
    [126]龚晓南.对岩土工程数值分析的几点思考[J].岩土力学,2011,32(2):321-325.
    [127]康亚明,刘长武,贾延等.岩石的统计损伤本构模型及临界损伤度研究[J].四川大学学报(工程科学版),2009,41(4):42-47.
    [128]张传庆,周辉,冯夏庭.统一弹塑性本构模型在FLAC3D中的计算格式[J].岩土力学,2008,29(3):596-602.
    [129]王启耀,蒋臻蔚,杨林德.层状岩体巷道弯曲变形的有限元模拟[J].岩土力学,2006,27(7):1101-1104.
    [130]谢本贤,陈沅江,傅衣铭.岩土流变本构模型的可辨识研究[J].湖南科技大学学报(自然科学版),2007,22(4):69-73.
    [131]杨峰,阳军生,张学民.基于线性规划模型的极限分析上限有限元的实现[J].岩土力学,2011,32(3):914-923.
    [132]陈沅江,潘长良,曹平等.基于人工神经网络的岩土流变本构模型辨识[J].中国有色金属学报,2002,12(5):1027-1033.
    [133]赵明华,刘敦平,邹新军.横向荷载下桩-土相互作用的无网格分析[J].岩土力学,2008,29(9):2476-2480.
    [134]陆银龙,王连国,杨峰.软弱岩石峰后应变软化力学特性研究[J].岩石力学与工程学报,2011,29(3):640-648.
    [135]许国安,靖洪文.煤矿巷道围岩松动圈智能预测研究[J].中国矿业大学学报,2005,34(2):152-155.
    [136]郑轩.连续桩键结构加固阻滑机理和工程应用关键技术研究[D].北京:中国科学院,2010.
    [137]杨继红,董金玉,刘汉东等.岩体结构控制下的边坡变形破坏模式分析[J].煤炭学报,2011,36(S1):58-62.
    [138]杨蕴明,柴华友,韦昌富.非共轴本构模型的数值计算问题[J].岩土力学,2010,31(S2):373-377.
    [139]王学滨,潘一山.基于梯度塑性理论的岩样单轴压缩扩容分析[J].岩石力学与工程学报,2004,23(5):721-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700