用户名: 密码: 验证码:
拖缆式石油勘探导航定位数据处理关键技术研究及系统实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油天然气资源是国家经济发展的命脉。石油天然气己成为超越经济问题之外的关乎国家安全,尤其是能源安全的战略问题。随着我国经济、社会的发展,对石油天然气资源的需求也不断增加,截止2012年,我国石油天然气对外依存度己达到60%。世界范围内60%的海洋油气资源主要分布在大陆架,但深水和超深水域油气资源潜力也十分可观,约占30%。据估算,我国南海地区的石油地质储量约占油气总量的1/3,其中有70%蕴藏在深海区域。
     由于陆地和浅水地区石油勘探开发程度较高,油气产量己接近峰值,深水海域必将成为未来油气资源勘探开发的接替区域,同时深水海域的油气勘探也面临着资金、技术和装备的挑战。近年来,通过中外合作开发和技术引进,我国深水海域勘探开发的力度不断加大,取得了较大的进步,但深水区域油气勘探的核心技术(软件、装备等)仍然高度依赖进口,需要迫切发展具有我国自主知识产权的深水区域油气勘探核心技术。深海油气勘探离不开与勘探方法相关的导航与定位技术。相关资料表明,国内尚无个人和研究机构从事深水区油气勘探导航定位技术的研究工作,因此本文主要针对拖缆式海洋石油勘探的需求,开展与其相关的导航定位数据处理技术研究,以期打破国外垄断,实现拥有自主知识产权的深海拖缆式石油勘探导航与定位数据处理相关技术和系统软件。
     本文首先围绕拖缆式海洋石油勘探的基本原理,分析了拖缆式海洋石油勘探的作业模式和技术特点,给出了海洋拖缆式石油勘探对导航定位的总体要求,在此基础上研究了海洋拖缆式勘探导航定位过程中各传感器布局和相关测量技术,首次研究并给出了深海拖缆式石油勘探导航定位数据处理技术的算法体系。其次,分析了复杂海洋环境下各种观测值粗差分布的物理意义,并根据观测值类型,定制了有效的、个性化的粗差探测方法,给出了具有海洋环境下普遍适用意义的粗差探测方法,即基于选权迭代的硕大粗差探测方法和改进的一阶滞后滤波小粗差滤除方法。另外,针对深海拖缆式石油勘探导航定位网络的特点,提出了“结构约束”和基于“派生距离观测值”,并应用到声学网平差中,解决了由于定位位网络约束条件限制带来平差结果失真的问题,以及由于前、中、后网相互独立平差带来平差结果不吻合的问题,大大提高了网平差的可靠性和精度。同时,由于检波点处于被拖曳的水下非刚性电缆中,本文给出了一种基于“电缆模型约束”的检波点位置计算方法,保证了网平差结果与检波点计算成果的一致性。最后开发了一套实用的深海拖缆式石油勘探导航定位数据处理系统软件MEPS。本文的具体工作为:
     1、在研究深海拖缆式石油勘探作业过程相关测量技术的基础上,首次建立了整套拖缆式海上石油地震勘探导航定位数据处理算法体系,包括数据读取、数据质量控制、多类型数据融合导航定位平差和检波点计算等:
     2、分析了复杂海洋环境下导航定位观测数据粗差特性及其物理意义,根据不同观测值类型,定制了诸如连续粗差、设备故障数据粗差探测方法,同时给出了基于选权迭代稳健估计的硕大粗差探测方法,以及改进的一阶滞后滤波小粗差滤除方法,解决了拖缆式海洋石油勘探导航定位复杂数据的“净化”问题;
     3、由于前网和后网约束条件的限制,导致平差结果失真;前、中、后网相互独立,会导致网间平差结果不吻合。本文根据石油勘探拖缆定位拖缆上传感器分布特点,提出了将“派生距离观测值”应用到声学网平差中,并将“结构约束”引入网平差,改善了网的约束条件,解决了罗经观测值参与平差计算的问题,使所有观测值都在网平差中发挥作用,提高了网平差成果精度,同时也确保了前、中、后网平差结果的一致;
     4、针对声学节点平差结果和电缆模型推算结果不吻合的问题,给出了基于“电缆模型约束”的检波点计算方法,解决了动态环境中非刚性电缆上检波点位置的精确确定问题,使电缆模型计算的坐标与统一网平差结果吻合,消除了数据之间的矛盾;
     5、开发了深海拖揽式石油地震勘探导航定位数据处理系统MEPS,并在多个国外项目中得到了应用。系统的研发与应用,对于我国打破国外技术封锁,建立具有独立产权的深海拖揽式导航定位系统,进一步发展我国深海拖揽式石油勘探技术具有重要的理论和现实意义。
The resource of oil and gas, as the lifeblood of nation's economic development, has become strategic issues of national security, especially of energy security rather than simple economic ones. With the development of China's economy and society, the demand for oil and natural gas resources is also increasing rapidly, and till the end of2012, more than60%of the demand needs to be imported. Around the world, about60%of the offshore oil and gas resources are mainly located in the continental shelf, but potential of oil and gas resource in the deep water area is also very impressive, accounting for about30%. It is estimated that approximately1/3of the total reserves of oil and gas are in the South China Sea in China,70%of which are in the deep-sea area.
     With the increase of development degree of the oil exploration and mining on land and in shallow water areas, the volume of oil and gas production is approaching to the peak; deep water areas will become the future region for the oil and gas exploration and development while it is facing the challenges of capital, technology and equipment. In recent years, via the technology import and the cooperation with international company, the intensity of E&P in China's deep water increase continuously, and we have made a great progress. Howerver, the core technology of the deep water oil and gas exploration (such as software, equipment, etc.) still highly depends on imports, so it is urgent to develop the core technology of deep water oil and gas exploration and development with our own intellectual property. E&P of oil and gas in deep sea area cannot be separated from the technology of navigation and positioning. It's shown that up to now there is no such research of navigation and positioning for oil and gas exploration. This article is mainly to carry out the research of data processing technology of navigation and positioning in towed-streamer oil exploration, to develop of deep-sea exploration and navigation and positioning data processing technology and system software with our own independent intellectual property rights.
     Firstly, around the basic principles of towed-streamers petroleum exploration, this article analyzes the operation models and the technical characteristics of the offshore oil exploration, gives the general requirements of navigation and positioning in the towed-streamer petroleum exploration. Based on the study of sensors layout and technology of relative measurement in the processing of navigation and positioning in towed-streamers petroleum exploration, proposes the algorithm of navigation and positioning data processing technology in deep-sea towed-streamer oil exploration. Secondly, this article analyze the physical meaning of all kinds of distribution of the gross error in observations under the complex marine environment, and according to the type of observations, customize an effective, personalized method of gross error detection, and give out with the marine environment under the generally applicable significance, namely huge gross error detection method based on iteration method with variable weights and the improved method of first-order lag filtering for the elimination of small gross error. In addition, on the basis of the least squares adjustment discussion, aimed at the characteristics of towed-streamer navigation and positioning network, the "structural constraints" and "derived distance observations" are applied to the acoustic network adjustment, and it greatly improves the reliability of the network adjustment. In the meantime, due to the geophysical receiver points within the non-rigid streamers and being dragged underwater, a method based on the streamer constraints model is given out, to ensure the consistency of the results of the network adjustment and geophysical receiver point calculation. Finally, a set of practical system software of navigation and positioning data processing in deep-sea towed-streamer exploration is developed. Specific works have done as follows:
     1.Based on the study of deep-sea oil exploration operations and the measurement technology, a complete set of algorithm of navigation and positioning data processing used in the offshore oil seismic exploration is established, includes data reading, data quality controlling, multi-type data integration of navigation and positioning adjustment, the calculation of geophysical receiver point, etc.
     2. Analyzes the characteristic and physical meaning of gross error under the complex marine environment,, and according to the type of observations, customized methods of detecting gross error, such as gross error caused by equipment failure and continuous gross error,Huge gross error detection method based on iteration method with variable weights and the improved method of first-order lag filtering for the elimination of small gross error are given out, and the problem of data "purifying" of the lowed-streamer navigation and positioning.has been solved.
     3, According to the distribution characteristics of sensors on the streamer in the towed-streamer oil exploration, the limitation of the front network and the tail network constraints results in distortion of the adjustment results; the independence of the front, middle and tail network will lead to conflicting of the adjustment results. To solve these problems,'derived distance observations'arc applied to the acoustic network adjustment, and the "structural constraints" is brought in as well. This improves the network constraints, especially beacuse the compass observations are used for the calculation, that means all observations play a role in the network adjustment;
     4, As for the non-coincidence of the adjustment result of the acoustic node and the result of geophysical receiver points calculated by the streamer fitted model, the "model constraint" method has given out for the geophysical receiver point calculation. This solves the problem of accurate determination of the position of non-rigid carrier geophysical receiver point under the dynamic environment, so that the curve integral model calculated geophysical receiver points position and the acoustic node network adjustment results are fitted well. the contradiction between results is well eliminated;
     5, MEPS, namely set of navigation and positioning data processing system in deep-sea seismic exploration, and have been applied in a number of foreign projects. For our country this breaks the blockade of foreign technology, establishes a deep-sea towed-streamer navigation and positioning system with our own independent intellectual property rights, and has an important academic&practical significance.
引文
[1]江怀友.世界海洋油气资源勘探现状与展望[J].世界石油工业,2007.6
    [2]潘继平等.全球海洋勘探开发状况与发展趋势[J].中国矿业,2006.11
    [3]李晓兰.海洋油气勘探开发的新特点[J].海洋石油,2008.(02)
    [4]中国石化新闻网.世界海洋石油勘探现状与展望[OL], http://www.sinopecnews.com.cn/info/content/2009-03/30/content_621402.shtml, 2012
    [5]李晓东.海洋石油勘探多缆定位[J].海洋测绘,1997.01
    [6]ION Company.02 Sprint 3D Basic Training (Linux) [EB]
    [7]李国栋等.海上地震勘探多缆定位技术研究[J].石油地球物理勘探,2009.8,第44卷第四期
    [8]LI Guo-dong. Study and simulation of the positioning model of underwater multi-streamer[J]. Technical Acoustics, Vol 2, No.2 Apr.2009
    [9]毛宁波.海洋石油地震勘探概论[EB],2012
    [10]秦政.石油地球物理勘探[M],北京:石油工业出版社,1987.06
    [11]SY/T100152006.海上拖缆式地震资料采集技术规程[S],北京:石油工业出版社,2007.1
    [12]赵建虎.现代海洋测绘[M],武汉:武汉大学出版社,2007.12
    [13]王惠南.GPS导航原理与应用[M],北京:科学出版社,2003.8
    [14]刘基余.GPS卫星导航定位原理与方法[M],北京:科学出版社,2003.8
    [15]刘经南.广域差分原理与方法[M],北京:测绘出版社,1999
    [16]李炜等.基于PPP技术的伪距多路径效应分析[J].大地测量与地球动力学,2011年第3期
    [17]杜强等.基于StarFire星站差分GPS系统的精密静态解研究[J].海洋测绘,Vol 31,No.52011.9
    [18]徐秀梅OMNIStar定位系统介绍[J].水运工程,2011年第5期
    [19]Pigem, Jordi, GPS[EB],2012
    [20]SeaMap Company. http://www.seamap.com/docs/Buoylink_Ex_PS.pdf [OL],2012
    [21]田坦.水下导航与定位技术[M].北京:国防工业出版社,2009年1月
    [22]张红梅等.水下导航定位技术[M].武汉:武汉大学出版社,2010年11月[23] ION Company. http://www.iongeo.com/Products_Services/Marine_Systems/Towed_Streamer/Posit ioning_Systems/Acoustic_Ranging/[OL],2012
    [24]IONCompany. http://www.iongeo.com/Products_Services/Marine_Systems/Towed_Streamer/Positioning S ystems/Depth_Control/[OL],2012
    [25]刘雁春等.海道测量学概论[M].北京:测绘出版社,2006年11月
    [26]J. G. Morgan, L. H. Spradley, G. A. Worthington, and I. J. McClelland. SEG standard exchange formats for positional data[OL], http://www.seg.org/resources/publications/misc/technical-standards,1982
    [27]James H. McClollan, Ronald W. Schafer, Mark A. Yoder信号处理引论[M],北京:电子工业出版社,2005
    [28]赵长胜.有色噪声滤波理论与算法[M].北京:测绘出版社,2011.5
    [29]崔希璋.广义测量平差[M].武汉:武汉大学出版社,2005.11
    [30]潘仲明.随机信号分析与最优估计理论[M].长沙:国防科技大学出版社,2012.1
    [31]路德曼.随机过程:滤波估计与检测[M].北京:电子工业出版社,2005.02
    [32]R. N. Bracewell. The Fourier Transform and Its Applications[M]. Xi'an:Xi'an Jiaotong University Press.2005.9
    [33]麦克莱伦.信号处理引论[M].北京:电子工业出版社,2005.04
    [34]GEOS 585A, Applied Time Series Analysis, Note_8, GEOS 585A, Spring 2011[OL],2012
    [35]何书元.应用时间序列分析[M],北京:北京大学出版社,2003.9
    [36]Jonathan D. Cryer/Kung-Sik Chan. Time Series Analysis with Applications in Second Edition[M], Beijing:China Machine Press,2011.1
    [37]魏武雄.时间序列分析[M].北京:中国人民大学出版社,2009.4
    [38]姚宜斌.粗差的定性分析[J].测绘信息与工程,2002,27(1)
    [39]王新洲.高等测量平差[M].北京:测绘出版社,2006.8
    [40]姚宜斌等.稳健回归分析及其应用研究[J].大地测量与地球动力学,2002(2)
    [41]宋力杰,杨元喜.论粗差修正与粗差剔除[J].测绘通报,1999(6)
    [42]胡广书.数字信号处理导论[M].北京:清华大学出版社,2005.1
    [43]郑慧娆等.数值计算方法[M].武汉:武汉大学出版社,2002.10
    [44]陶本藻,邱卫宁.误差理论与测量平差[M].武汉大学出版社,2012.7
    [45]陶本藻.自由网平差与变形分析[M].武汉,武汉测绘科技大学出版社,2001.1
    [46]易昌华等.深海拖缆勘探电缆形状确定方法研究[J].武汉大学学报(信息科学版),2010 年6月第35卷第六期
    [47]姚宜斌等.深海拖缆导航勘探数据处理算法研究[J].武汉大学学报(信息科学版),2010年6月第35卷第六期
    [48]姚宜斌,刘经南,施闯.相关稳健估计及其在测量数据处理上的应用[J].测绘信息与工程,2001,26(3)
    [49]刘大杰.实用测量数据处理[M].北京:测绘出版社,2004.4
    [50]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉:武汉大学出版社,2003.1
    [51]武汉测绘科技大学测量平差教研室.测量平差基础[M].北京:测绘出版社,1996.5
    [52]李德仁,袁修孝.误差处理与可靠性理论[M].武汉:武汉大学出版社,2002.7
    [53]黄维彬.近代平差理论及其应用[M].北京:解放军出版社,1992
    [54]程正兴 李水根.数值逼近与常微分方程数值解[M].西安:西安交通大学出版社,2000
    [55]萨默维尔.软件工程[M].北京:机械工业出版社,2007.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700