用户名: 密码: 验证码:
植物蒸腾耗水量检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代农业生产中,传感器应用越来越广。随着植物生理研究的深入,各种植物生理传感器不断涌现。我国是一个人均、地均水资源极不丰富的国家,一方面农业用水总量较大,另一方面农业用水的产出率很低。解决这一矛盾,唯有靠发展节水农业。管理节水是节水农业的一个重要的发展方向,关键是要回答对作物“何时浇,浇多少”的问题。以往人们决定是否对植物进行灌溉是根据土壤湿度、天气和所种植的作物等间接指标进行判断。随着植物生理学及植物生理传感器技术的发展,以植物生理参数为灌溉指标的节水调控技术迅速发展起来,植物生理参数作为控制指标,更能反映植物的水分状况。
     茎流或称液流是植物茎中水分的流动。植物吸收的水分99%以上通过蒸腾作用散失到大气中,通过精确测算茎流量,可以确定植物蒸腾失水量。茎流检测是指通过加入和测定示踪信号(主要是热信号)来计算液流的流速,并由此推断植物的蒸腾耗水量。本文在总结前人对植物茎流检测方法研究的基础上,在第二章提出了以植物表面热脉冲的方式进行植物茎流检测,实验结果表明,单日内,植物单位时间的耗水量与其表面热脉冲速度之间有显著的相关性,观测两天的数据表明其决定系数分别为R2=0.6541和R2=0.5658本文在第三章提出了基于PID和PWM控制方式的变功率热平衡方式对植物进行耗水检测,实验数据表明耗水量与耗能量之间的决定系数达R2=0.7925,采用建立的回归方程进行耗水估计,其相对误差为10%左右。在第四章,本文设计了一种可区分并同时检测植物耗水量与吸水量的检测方法和装置,建立了水分在两个水筒之间进行动态分配的响应方程,结果表明该方法和装置可以用于检测植物的吸水量和耗水量。利用该装置在第五章检测室内水生植物的耗水量与环境因子之间的关系,结果表明照度和相对湿度是影响室内水生植物耗水的主要因素。第六章中提出了基于恒定功率进行植物蒸腾耗水检测的方式,结果表明,植物的单位时间耗水量、吸水量均与温差成相反的变化趋势,进行相关分析表明耗水量、吸水量均与温差有明显的相关关系,但建立的回归方程决定系数很低,对单日内植物单位时间的耗水量、吸水量均与温差进行回归分析表明,其决定系数较高,但每日之间的决定系数差别较大。
Sensor technology is used more and more widely in modern agriculture. With the increasing study of plant physiology in-depth, various new sensors are emerging which can be used to measure parameters of plant physiology. The water resource in China is extremely poor per capita and per acre. On the one hand, a large amount of water is used in agriculture; on the other hand WUE (water use efficient) is very low in agriculture. Developing water saving agriculture to solve this contradiction is the only way. The management of water-saving is an important direction in water-saving agriculture. Its key issues are:when and how much water should be irrigated. In the past, people decide when and how much water should be irrigated in crop irrigation according to indirect indicators, including soil moisture, weather and crop species planted. With the progress in plant physiology and the sensors technology in plant physiology, the industry of water-saving regulation develops rapidly. It uses the plant physiological parameters as indicators since these parameters can better reflect water status of plant.
     Sap flow is the flow of water in plant stems. More than99%of water absorbed by roots loses to atmosphere through transpiration. By measuring sap flow accurately, we can determine the amount of water loss by transpiration. Sap flow measurement was performed by adding tracer (mainly thermal signal) in stem and then detecting the tracers. Through the tracers we can infer the water consumption of plant transpiration. This paper first summarized the previous research on plant sap flow detection and presentd our work on measurement of the sap flow through the release of heat pulses to the plant surface. The results showed that there was significant correlation between the moving speed of heat pulse and the water loss per day. The coefficients of determination calcultaed by data recorded in two days were R2=0.6541and R2=0.5658. In charpter3, the control method using PID and PWM was adopted. We constructed a variable power temperature control sysytem to measure the water loss and energy consumption. The results showed that the coefficient of determination between water consumption and energy consumption was R2=0.7925. Water loss was estimated through the regression equation established, with the relative error of about10%obtained. In charpter4a new device was designed to measure plant water absoption and water consumption simultaneously. The dynamic allocation response equation was established and the result showed that the device was suitable for detecting water consumption and absoiption. In chapter5, the correlation between water consumption, absoiption and environment factors was done using indoor aquatic plant as the model. The results showed that the main factors affecting plant water consumption were illumination and relative humidity. In charpter6, a constant control system was developed to measure the water loss and temperature difference. The results showed that the trend between plant water consumption per unit time and the temperature difference was opposite. Although water consumption, water absorption and temperature difference had a significant correlation, the coefficient of determination for regression equation was very low. The coefficients of determination between plant water consumption, absorption per unit time, and temperature difference were high every day, but there was a big difference between these coefficients.
引文
1 21 ideas for the 21st century. Business Week.1999,8:78-167.
    2 10 emerging technologies that will change the world. Technology Review.2003,1:34-49.
    3 张付杰,彭争,齐亚峰.无线传感器网络研究进展.现代农业科技.2010,(1):16-17,20.
    4 Wang, N., Zhang, N., Wang, M. Wireless sensors in agriculture and food industry--Recent development and future perspective. Computers and Electronics in Agriculture.2006,50(1):1-14.
    5 Coates, R. W., Delwiche, M. J. Wireless mesh network for irrigation control and sensing. Transactions of the Asabe. 2009,52(3):971-981.
    6 Ghobakhlou, A., Shanmuganthan, S., Sallis, P. Wireless sensor networks for climate data management systems. Univ Western Australia, Nedlands.2009:959-965.
    7 Lopez Riquelme, J. A., Soto, F., Suardiaz, J., Sanchez, P., Iborra, A., Vera, J. A. Wireless sensor networks for precision horticulture in Southern Spain. Computers and Electronics in Agriculture.2009,68(1):25-35.
    8 O'Shaughnessy, S. A., Evett, S. R. Developing wireless sensor networks for monitoring crop canopy temperature using a moving sprinkler system as a platform. Applied Engineering in Agriculture.2010,26(2):331-341.
    9 Park, D. H., Kang, B. J., Cho, K. Y., Shin, C. S., Cho, S. E., Park, J. W., Yang, W. M. A study on greenhouse automatic control system based on wireless sensor network. Wireless Personal Communications.2011,56(1):117-130.
    10 Akshay, C., Kamwal, N., Abhfeeth, K.. A., Khandelwal, R., Govindraju, T., Ezhilarasi, D., Sujan, Y., leee. Wireless sensing and control for precision Green house management.2012 Sixth International Conference on Sensing Technology,2012:52-56.
    11 Brasa Ramos, A., Montero Riquelme, F., Montero Garcia, F., Orozco, L., Roncero, J. J. Precision viticulture using a wireless sensor network. In Xxviii International Horticultural Congress on Science and Horticulture for People.2012: 307-313.
    12 Song, J. Measurement and control system based on wireless senor network for granary. In International Conference on Applied Physics and Industrial Engineering 2012.2012:566-571.
    13 Cai, B., Li, M., Qiu, X., Bi, Q., Dun, W., Jia, S., Yuan, C. Design on cotton precision irrigation and monitoring system based on Zigbee wireless sensor networks for microvariation of stem diameter. Journal of Henan Agricultural University.2013,47(4):430-435.
    14 Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Ignacio Robla, J. A review of wireless sensor technologies and applications in agriculture and food industry:state of the art and current trends. Sensors.2009,9(6):4728-4750.
    15 屈永华,王锦地,董健,姜富斌.农作物冠层结构参数自动测量系统设计与试验.农业工程学报.2012,(2):160-165.
    16 邹金秋,周清波,杨鹏,吴文斌,黄青.无线传感网获取的农田数据管理系统集成与实例分析.农业工程学报.2012,(2):142-147.
    17 黄建清,王卫星,姜晟,孙道宗,欧国成,卢康榉.基于无线传感器网络的水产养殖水质监测系统开发与试验.农业工程学报.2013,(4):183-190.
    18 李颖慧,李民赞,邓小蕾,孙红,郑立华.基于无线传感器网络的温室栽培营养液电导率监测系统.农业工程学报.2013,(9):170-177.
    19 徐焕良,张灏,沈毅,任守纲.基于低功耗传输方法的设施花卉环境监测系统.农业工程学报.2013,(4):237-244.
    20 徐兴,洪添胜,岳学军,林涛,蔡坤,刘永鑫.山地橘园无线环境监测系统优化设计及提高监测有效性.农业工程学报.2013,(11):147-155.
    21 蒋建明,史国栋,李正明,史兵,宦娟.基于无线传感器网络的节能型水产养殖自动监控系统.农业工程学报.2013,(13):166-174.
    22 Gao, F., Lu, S., Xu, Q., Jiang, Q. Wireless sensor networks and its application in facility agriculture. Journal of Zhejiang Forestry College.2010,27(5):762-769.
    23 Barcelo-Ordinas, J. M., Chanet, J. P., Hou, K. M., Garcia-Vidal, J. A survey of wireless sensor technologies applied to precision agriculture.9th European Conference on Precision Agriculture.2013:801-808.
    24 Atzori, L., Iera, A., Morabito, G. The internet of things:a survey. Computer Networks.2010,54(15):2787-2805.
    25 Zhang, F. Research on applications of Internet of things in agriculture, In International Conference on Informatics and Management Science.2012:69-75.
    26 张长利,沈维政.物联网在农业中的应用.东北农业大学学报.2011,(5):1-5.
    27 Grange, R. I., Andrews, J. Respiration and growth of tomato fruit. Plant Cell and Environment.1995,18(8):925-930.
    28 Lee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D., Li, C. Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture.2010,74(1):2-33.
    29 Sankaran, S., Mishra, A., Ehsani, R., Davis, C. A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture.2010,72(1):1-13.
    30 Farahani, H. J., Howell, T. A., Shuttleworth, W. J., Bausch, W. C. Evapotranspiration:Progress in measurement and modeling in agriculture. Transactions of the Asabe.2007,50(5):1627-1638.
    31 Tyree, M. T., Dixon, M. A. Cavitation Events in Thuja occidentalis:Utrasonic acoustic emissions from the sapwood can be measured. Plant Physiol.1983,72(4):1094-1099.
    32 杨世凤,钱东平,等.作物水胁迫声发射检测及视情灌溉系统的研究.农业工程学报.2001,17(5):150-152.
    33 高晓红,李东升,赵军,谢作品.基于植物器官尺寸检测的新型智能节水灌溉系统.林业机械与木工设备.2004,32(11):17-20.
    34 王忠义,陈端生,黄岚.温室植物生理指标监测及应用研究.农业工程学报.2000,(2):101-104.
    35 李东升,汤晓华,刘九庆,高晓红.精量灌溉中的植物水分精密诊断技术.中国计量学院学报.2003,14(1):11-14.
    36 李东升,高晓红,张文卓,王彦春.植物叶片厚度和果径精密测量传感器的设计.传感器技术.2004,23(12):43-46.
    37 张燕.植物生命需水信息诊断研究进展一作物叶生理指标http://www.chinawsi.com.cn/data/2007/0518/article_648.html.
    38 邱兆美,张昆,毛鹏军.我国植物生理传感器的研究现状.农机化研究.2013,(8):236-240.
    39 黄红光.灌溉农业发展的制度性推进机制研究[博士学位论文]泰安山东农业大学2012:30-35.
    40 许迪,康绍忠.现代节水农业技术研究进展与发展趋势.高技术通讯.2002,12(12):103-108.
    41 康绍忠,梁银丽.节水农业中作物水分管理基本理论问题的探讨.水利学报.1996,(5):9-17.
    42 康绍忠,李永杰.21世纪我国节水农业发展趋势及其对策.农业工程学报.1997,13(4):1-7.
    43 何俊仕,曹丽娜,逄立辉,刘琳琳,李崇.现代农业节水技术.节水灌溉.2005,(4):36-39.
    44 金宏智,严海军,钱一超,国外节水灌溉工程技术发展分析.农业机械学报.2010,(S1):59-63.
    45 高传昌,王兴,汪顺生,史尚.我国农艺节水技术研究进展及发展趋势.南水北调与水利科技.2013,(1):146-150.
    46 山仑,邓西平,张岁岐.生物节水研究现状及展望.中国科学基金.2006,(2):66-71.
    47 陈兆波.生物节水研究进展及发展方向.中国农业科学.2007,(7):1456-1462.
    48 张建军,王勇,李尚忠.农业生物节水研究进展.作物杂志.2006,(6):4-8.
    49 李云开,杨培岭,刘洪禄.保水剂农业应用及其效应研究进展.农业工程学报.2002,(2):182-187.
    50 张坚强,刘作新.化学制剂在节水农业中的应用效果.灌溉排水.2001,(3):73-75.
    51 刘拉平.化学调控技术在农业抗旱中的应用.陕西农业科学(自然科学版).2000,(7):33-34.
    52 杨培岭,廖人宽,任树梅,李云开.化学调控技术在旱地水肥利用中的应用进展.农业机械学报.2013,(6):100-109.
    53 Giacomelli, G. A. Monitoring plant water requirements within integrated crop production systems. Acta Hort.1998, 304(1):21-28.
    54 张士功,刘国栋,刘更另.植物营养与作物抗旱性.植物学通报.2001,(1):64-69.
    55 Jones, H. G. Irrigation scheduling:advantages and pitfalls of plant-based methods. Journal of Experimental Botany. 2004,55(407):2427-2436.
    56 张寄阳,段爱旺,孟兆江,刘祖贵.基于茎直径微变化的棉花适宜灌溉指标初步研究.农业工程学报.2006,(12):86-89.
    57 李秧秧,王全九.几种基于植物生理活动的节水灌溉指标研究进展.节水灌溉.2009,(2):32-35.
    58 罗中岭.热量法茎流测定技术的发展及应用.中国农业气象.1997,18(3):52-56.
    59 申卫军,彭少麟.热脉冲(Heat pulse)法原理及其应用.资源生态环境网络研究动态.2000,11(2):22-27.
    60 Smith, D. M., Allen, S. J. Measurement of sap flow in plant stems. Journal of Experimental Botany.1996,47(305) 1833-1844.
    61 岳广阳,张铜会,刘新平,移小勇.热技术方法测算树木茎流的发展及应用.林业科学.2006,42(8):102-108.
    62 Swanson, R. H. Significant historical developments in thermal methods for measuring sap flow in trees. Agricultural and Forest Meteorology.1994,72(1-2):113-132.
    63 HuBer B. S. E., Eine Kompensationsmethode zur thermoelektrischen messung langsmner saftstrome. Dtseh Bot.Ges.Ber.1937,55:514-529.
    64 Marshall, D. C. Measurement of sap flow in conifers by heat transport. Plant physiology.1958,33:385-396.
    65 Swanson, R. H., Whitfield, D. W. A. A numerical analysis of heat pulse velocity theory and practice. Journal of Experimental Botany.1981,32(126):221-239.
    66 Cohen, Y., Fuchs, M., Green, G. C. Improvement of the heat pulse method for determining sap flow in trees. Plant, Cell and Environment.1981,4:391-397.
    67 Alarcon, J. J., Ortuno, M. F., Nicolas, E., Torres, R., Torrecillas, A. Compensation heat-pulse measurements of sap flow for estimating transpiration in young lemon trees. Biologia Plantarum.2005,49(4):527-532.
    68 Green, S., Clothier, B., Jardine, B. Theory and practical application of heat pulse to measure sap flow. Agron J.2003, 95(6):1371-1379.
    69 Burgess, S. S. O., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K.., Khan, A. A. H., Bleby, T. M. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology.2001,21(9): 589-598.
    70 Green, S. R., Clothier, B. E. Water use of kiwifruit vines and apple trees by the heat-pulse technique. J. Exp. Bot.1988, 39(1):115-123.
    71 Bauerle, W. L., Whitlow, T. H., Pollock, C. R., Frongillo, E. A. A laser-diode-based system for measuring sap flow by the heat-pulse method. Agricultural and Forest Meteorology.2002,110(4):275-284.
    72 Cermak, J., Deml, M., Penka, M. A new method of sap flow rate determination in trees. Biologia Plantarum.1973, 15(3):171-178.
    73 Vieweg, G. H., Ziegler, H.. Thermoelektrische registrierung der geschwindigkeit des transpirationsstromes. Berichte der Deutschen Botanischen Gesellschaf.1960,73(6):221-226.
    74 Daum, C. R. A method for determining water transport in trees. Ecology.1967,48(3):425-431.
    75 T, S. A heat balance method for measuring water flux in the stem of intact plants. Journal of Agricultural Meteorology. 1981,37(1):9-17.
    76 Valancogne, C., Nasr, Z. Measuring sap flow in the stem of small trees by a heat balance method. HortScience.1989, 24(2):383-385.
    77 Weibel, F. P., Vos, J. A. Transpiration measurements on apple trees with an improved stem heat balance method. Plant and Soil.1994,166(2):203-219.
    78 J.M., B., C.H.M., V. B. Measurement of mass flow of water in the stems of herbaceous plants. Plant.Cell and Environment.1987,10:777-782.
    79 Steinberg, S. L., Van Bavel, C. H. M., McFarland, M.J. Improved sap flow gauge for woody and herbaceous plants. Agronomy Journal.1990,82(4).
    80 Senock, R. S., Ham, J. M. Heat balance sap flow gauge for small diameter stems. Plant, cell and environment.1993, 16(5):593-601.
    81 S.Chandra, P. A. L, N.L.Bassuk. A gauge to measure the mass flow rate of water in trees. Plant, Cell and Environment. 1994,17:867-874.
    82 Cermak, J., Kucera, J., Nadezhdina, N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees-Structure and Function.2004,18(5): 529-546.
    83 Kucera, J., Cermak, J., Penka, M. Improved thermal method of continual recording the transpiration flow rate dynamics. Biologia Plantarum.1977,19:1833-1844.
    84 Tatarinov, F. A., Kucera, J., Cienciala, E. The analysis of physical background of tree sap flow measurements based on thermal methods. Measurement Science and Technology.2005,16(5):1157-1169.
    85 Jmes, S. A., Clearwater, M. J., Meinzer, F. C., Goldstein, Q., James, S. A., Clearwater, M. J., Meinzer, F. C, Goldstein, G. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiology.2002,22:277-283.
    86 Lu, P., Woo, K.. C., Liu, Z. T. Estimation of whole-plant transpiration of bananas using sap flow measurements. Journal of Experimental Botany.2002,53(375):1771-1779.
    87 Lakatos, T. Effects of crop load on tree water use in apple, In Proceedings of the International Symposium on Irrigation and Water Relations in Grapevine and Fruit Trees,2004,55-61.
    88 Gonzez-Altozano, P., Pavel, E. W., Oncins, J. A., Doltra, J., Cohen, M., Pa, T., Massai, R., Castel, J. R. Comparative assessment of five methods of determining sap flow in peach trees. Agricultural Water Management.2008,95(5): 503-515.
    89 Do, F. C., Ayutthaya, S. I. N., Rocheteau, A. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe. Tree Physiology.2011,31(4):369-380.
    90 Coelho, R. D., Vellame, L. M., Fraga, E. F. Estimation of transpiration of the 'valencia' orange young plant using thermal dissipation probe method. Engenharia Agricola.2012,32(3):573-581.
    91 Clearwater, M. J., Meinzer, F. C., Andrade, J. L., Goldstein, G., Holbrook, N. M. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology.1999,19(10):681-687.
    92 Nadezhdina, N., Tributsch, H., Cennak, J. Infra-red images of heat field around a linear heater and sap flow in stems of lime trees under natural and experimental conditions. Annals of Forest Science.2004,61(3):203-213.
    93 Tributsch, H., Nadezhdina, N., Cennak, J. Infrared images of heat fields around a linear heater in tree trunks:what can be learned about sap flow measurement? Annals of Forest Science.2006,63(7):653-660.
    94 Nadezhdina, N., Nadezhdin, V., Ferreira, M. I., Pitacco, A. Variability with xylem depth in sap flow in trunks and branches of mature olive trees. Tree Physiology.2007,27(1):105-113.
    95 Helfter, C., Shephard, J. D., Martinez-Vilalta, J., Mencuccini, M., Hand, D. P. A noninvasive optical system for the measurement of xylem and phloem sap flow in woody plants of small stem size. Tree Physiology.2007,27(2): 169-179.
    96 王忠,植物生理学,北京:中国农业出版社,2009
    97 Boyer, J. S. Water transport. Annual Review of Plant Physiology and Plant Molecular Biology.1985,36:473-516.
    98 邓东周,范志平,王红,孙学凯,高俊刚,曾德慧.林木蒸腾作用测定和估算方法.生态学杂志.2008,27(6):1051-1058.
    99 田砚亭,满荣州.利用氘水测量树木蒸腾量和生物量方法的介绍.北京林业学院学报.1984,(3):59-72.
    100王剑平,张付杰,盖玲.基于激光热脉冲的植物茎流及蒸腾耗水检测装置,中国,发明专利,2011,ZL201110045062.0.
    101王剑平,张付杰,盖玲.一种基于激光热脉冲的植物茎流及蒸腾耗水检测装置,中国,实用新型专利,2011,ZL201120046922.8.
    102王剑平,张付杰,盖玲.基于激光热脉冲的无线植物茎流检测装置,中国,发明专利,2008,ZL 200810162122.5.
    103王剑平,张付杰,盖玲.一种基于激光热脉冲的无线植物茎流检测装置中国,实用新型专利,2008,ZL200820167759.9.
    104万永革数字信号处理的MATLAB实现,科学出版社,北京,2011.
    105 Grime, V. L., Morison, J.1. L., Simmonds, L. P. Sap flow measurements from stem heat balances:a comparison of constant with variable power methods. Agricultural and Forest Meteorology.1995,74(1-2):27-40.
    106田清远,张付杰.一种适用于茎流检测的PID温度控制系统设计.安徽农业科学.2013,(2):476-478.
    107[日]远坂俊昭测量电子电路设计滤波器篇,科学出版社,北京2006.
    108夏德钤,翁贻方.自动控制理论,机械工业出版社,北京,2007.
    109刘金琨先进PID控制及其MATLAB仿真,电子工业出版社,北京2003.
    110 PID控制的原理和特点.http://wenku.baidu.com/view/e63e76b8c77da26924c5b005.html.
    111张兴,PWM整流器及其控制,机械工业出版社,北京,2012.
    112田清远.基于热平衡方式的植物茎流检测系统研究[硕士学位论文],昆明,昆明理工大学,2013:35-50.
    113马玲,赵平,饶兴权,蔡锡安,曾小平.乔木蒸腾作用的主要测定方法.生态学杂志.2005,24(1):88-96.
    114 Berbigier, P., Bonnefond, J. M., Loustau, D., Ferreira, M. I., David, J. S., Pereira, J. S. Transpiration of a 64-year old maritime pine stand in portugal. Oecologia.1996,107(1):43-52.
    115杨启良,张富仓,刘小刚,王玺,张楠,戈振扬.植物水分传输过程中的调控机制研究进展.生态学报.2011,31(15)4427-4436.
    116屈艳萍,康绍忠,张晓涛,张宝忠,李思恩.植物蒸发蒸腾量测定方法述评.水利水电科技进展.2006,(03):72-77.
    117王剑平,张付杰,盖玲.一种基于连通器方式的植株吸水量与耗水量的检测方法与装置,中国,实用新型专利,2012,ZL 201220638672.1.
    118王剑平,张付杰,盖玲.基于连通器方式的植株吸水量与耗水量的检测方法与装置,中国,发明专利,2012,201210493107.5.
    119汪小,丁为民,罗卫红,李式军,陈丽青,戴剑峰.温室小气候测量试验设计及其夏季蒸腾研究.农业机械学报.2003,34(4):86-89.
    120赵云,沈剑英.湿帘风机系统温室夏季蒸腾与微气候试验.农业机械学报.2008,39(8):109-113.
    121 Grime, V. L., Sinclair, F. L. Sources of error in stem heat balance sap flow measurements. Agricultural and Forest Meteorology.1999,94(2):103-121.
    122谢平,陈晓宏,王兆礼,钟来元.气象因子的变化对参考作物蒸发蒸腾量的影响.灌溉排水学报.2011,(5):12-16.
    123程嘉翎,王亚君,王娜,吴福安,张信龙.桑树的蒸腾作用及其与气象因子的关系分析.蚕业科学.2004,(2):123-128.
    124孙雨婷,叶茂,武胜利,王霄,李宏.枣树茎流量与气象因子关系模型研究.北京农业.2013,(9):32-33.
    125梁丽乔,李丽娟,张丽,李九一,姜德娟,胥铭兴,宋文献.松嫩平原西部生长季参考作物蒸散发的敏感性分析.农业工程学报.2008,(5):1-5.
    126 Lan-gong, H., Hong-lang, X., Song-bing, Z., Yong-gang, Y. Sensitivity of reference evapotranspiration during growing season to major climatic variables in the Ejina Oasis. Journal of desert research.2011,31(5):1255-1259.
    127赵明.沙生植物的蒸腾耗水与气象因素的关系研究.干旱区资源与环境.2003,17(6).
    128吴坚.一种非侵入式热脉冲茎流计,中国,发明专利,2007,200710067985.X.
    129 Vandegehuchte, M. W., Steppe, K. Interpreting the heat field deformation method:Erroneous use of thermal diffusivity and improved correlation between temperature ratio and sap flux density. Agricultural and Forest Meteorology.2012, 162-163(0):91-97.
    130 Vandegehuchte, M. W., Steppe, K. A triple-probe heat-pulse method for measurement of thermal diffusivity in trees. Agricultural and Forest Meteorology.2012,160(0):90-99.
    131 De Swaef, T., Verbist, K., Comelis, W., Steppe, K. Tomato sap flow, stem and fruit growth in relation to water availability in rockwool growing medium. Plant and Soil.2012,350(1-2):237-252.
    132 Steppe, K., De Pauw, D. J. W., Doody, T. M., Teskey, R. O. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural and Forest Meteorology.2010,150(7-8):1046-1056.
    133 De Lorenzi, F., Nadezhdina, N., Cermak, J., Nadezhdin, V., Pitacco, A. Branch sap flow in a mature olive tree: dynamics and relation to architectural traits, In Vii International Workshop on Sap Flow.2009:315-322.
    134 Clearwater, M. J., Luo, Z. W., Mazzeo, M., Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell and Environment.2009,32(12): 1652-1663.
    135 Zweife, R., F. Zeugin. Ultrasonic acoustic emissions in drought-stressed trees-more than signals from cavitation? New Phytologist.2008,179:1070-1079.
    136 Yunusa, I., Nuberg, I., Fuentes, S., Lu, P., Eamus, D. A simple field validation of daily transpiration derived from sapflow using a porometer and minimal meteorological data. Plant and Soil.2008,305(1):15-24.
    137 Xu, H., Zhang, X. M., Yan, H. L., Liang, S. M., Shan, L. S. Plants water status of the shelterbelt along the Tarim Desert Highway. Chinese Science Bulletin.2008,53:146-155.
    138 Steppe, K.., Lemeur, R., De Pauw, D. J. W. A novel methodology for irrigation scheduling using plant-based measurements and mathematical modelling, In Proceedings of the Fifth International Symposium on Irrigation of Horticultural Crops.2008:631-638.
    139 Steppe, K., De Pauw, D. J. W., Lemeur, R. A step towards new irrigation scheduling strategies using plant-based measurements and mathematical modelling. Irrigation Science.2008,26(6):505-517.
    140 Silva, R. M., Paco, T. A., Ferreira, M. I., Oliveira, M. Transpiration of a kiwifruit orchard estimated using the granier sap flow method calibrated under field conditions, In Proceedings of the Fifth International Symposium on Irrigation of Horticultural Crops.2008:593-600.
    141 Li, X. Y., Yang, P. L., Ren, S. M., Zhang, S. Y. Study on the influence of super absorbent polymer on transpiration and quality of fruit for apricot based on TDP, In 2008 Proceedings of Information Technology and Environmental System Sciences.2008,2:670-674.
    142 Hornbuckle, J. W., Christen, E. W., Smith, D., Faulkner, R. D., Mounzer, O. Investigation of vine and vineyard evapotranspiration under drip and flood irrigation, In Proceedings of the Fifth International Symposium on Irrigation of Horticultural Crops.2008,347-353.
    143 Green, S. R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigation scheduling, In Proceedings of the Fifth International Symposium on Irrigation of Horticultural Crops.2008:321-332.
    144 Glenn, E. P., Morino, K.., Didan, K., Jordan, F., Carroll, K. C., Nagler, P. L., Hultine, K., Sheader, L., Waugh, J. Sealing sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing. Ecohydrology.2008,1(4):316-329.
    145 Fuentes, S., Conroy, J., Camus, C., Mercenaro, L., Rogers, G., Jobling, J., Dalton, M. A soil-plant-atmosphere approach to evaluate the effect of irrigation/fertigation strategy on grapevine water and nutrient uptake, grape quality and yield, In Proceedings of the Fifth International Symposium on Irrigation of Horticultural Crops.2008:297-303.
    146 Fernandez, J. E., Romero, R., Montano, J. C., Diaz-Espejo, A., Muriel, J. L., Cuevas, M. V., Moreno, F., Giron, I. F., Palomo, M. J. Design and testing of an automatic irrigation controller for fruit tree orchards, based on sap flow measurements. Australian Journal of Agricultural Research.2008,59(7):589-598.
    147 Fernandez, J. E., Green, S. R., Caspari, H. W., Diaz-Espejo, A., Cuevas, M. V. The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant and Soil.2008,305(1-2):91-104.
    148 Fernandez, J. E., Diaz-Espejo, A., Cuevas, M. V., Montano, J. C., Romero, R., Muriel, J. L. A device for scheduling irrigation in fruit tree orchards from sap flow readings, In Proceedings of the Fifth International Symposium on Irrigation of Horticultural Crops 2008,283-290.
    149 Dzikiti, S., Steppe, K_., Lemeur, R. Partial rootzone drying of drip irrigated 'Navel' orange trees Citrus sinensis (L.) Osbeck under semi-arid tropical conditions, In Proceedings of the Fifth International Symposium on Irrigation of Horticultural Crops.2008:249-256.
    150 Deng, D. Z., Fan, Z. P., Wang, H., Sun, X. K.., Gao, J. G., Zeng, D. H. Determination and estimation methods of tree transpiration:A review. Shengtaixue Zazhi.2008,27(6):1051-1058.
    151 Buendia, B., Allende, A., Nicolas, E., Alarcon, J. J., Gil, M. I. Effect of regulated deficit irrigation and crop load on the antioxidant compounds of peaches. Journal of Agricultural and Food Chemistry.2008,56(10):3601-3608.
    152 Nagler, P., Jetton, A., Fleming, J., Didan, K.., Glenn, E., Erker, J., Morino, K.., Milliken, J., Gloss, S. Evapotranspiration in a cottonwood (Populus freinontii) restoration plantation estimated by sap flow and remote sensing methods. Agricultural and Forest Meteorology.2007,144(1-2):95-110.
    153 Liu, H. J., Huang, G. H., Cohen, S., Tanny, J. Transpiration measurement of banana plants with granier method. In International Conference on Effective Utilization of Agricultural Soil and Water Resources and Protection of Environment.2006:2344-2347.
    154 Takagi, K., Harazono, Y., Noguchi, S.-i., Miyata, A., Mano, M., Komine, M. Evaluation of the transpiration rate of lotus using the stem heat-balance method. Aquatic Botany.2006,85(2):129-136.
    155 Goodwin, I., Whitfield, D. M., Connor, D. J. Effects of tree size on water use of peach (Prunus persica L. Batsch). Irrigation Science.2006,24(2):59-68.
    156 Gibert, D., Le Mou, J. L., Lambs, L., Nicollin, F., Perrier, F. Sap flow and daily electric potential variations in a tree trunk. Plant Science.2006,171(5):572-584.
    157 Chang, X., Zhao, W., Zhang, Z., Su, Y. Sap flow and tree conductance of shelter-belt in arid region of China. Agricultural and Forest Meteorology.2006,138(1-4):132-141.
    158 Chabot, R., Bouarfa, S., Zimmer, D., Chaumont, C, Moreau, S. Evaluation of the sap flow determined with a heat balance method to measure the transpiration of a sugarcane canopy. Agricultural Water Management.2005,75(1): 10-24.
    159 Nagler, P. L, Glenn, E. P., Lewis Thompson, T. Comparison of transpiration rates among saltcedar, cottonwood and willow trees by sap flow and canopy temperature methods. Agricultural and Forest Meteorology.2003,116(1-2): 73-89.
    160 Giorio, P., d'Andria, R. Sap flow estimated by compensation heat-pulse velocity technique in olive trees under two irrigation regimes in southern Italy, In Proceedings of the Fourth International Symposium on Olive Growing.2002, (1-2):401-404.
    161 Wullschleger, S. D., Meinzer, F. C., Vertessy, R. A., Xy. A review of whole-plant water use studies in trees. Tree Physiology.1998,18(8-9):499-512.
    162 Kostner. B., Granier, A., Cermak, J. Sapflow measurements in forest stands:methods and uncertainties. Ann. For. Sci. 1998,55(1-2):13-27.
    163 Blaikie, S. J., Chacko, E. K.. Sap flow, leaf gas exchange and chlorophyll fluorescence of container-grown cashew (Anacardium occidentale L.) trees subjected to repeated cycles of soil drying. Australian Journal of Experimental Agriculture.1998,38(3):305-311.
    164 Zhang, H., Simmonds, L. P., Morison, J., Payne, D. Estimation of transpiration by single trees:comparison of sap flow measurements with a combination equation. Agricultural and Forest Meteorology.1997,87(2-3):155-169.
    165 Wullschleger, S. D., Meinzer, F. C., Vertessy, R. A. A review of whole-plant water use studies in trees, In Internationa] Symposium on Forests at the Limit-Environmental Constraints on Forest Function.1997,499-512.
    166 Herzog, K. M., Thum, R., Zweifel, R., Hler, R. Heat balance measurements-to quantify sap flow in thin stems only? Agricultural and Forest Meteorology.1997,83(1-2):75-94.
    167 Xuan, C., Chen, Z., Wu, P., Wang, Y., Liu, H., Ma, Y. Study on wind erosion wireless supervision system of grassland wind farm in Northern China. Journal of China Agricultural University.2013,18(4):196-201.
    168 Xu, H., Zhang, H., Shen, Y., Ren, S. Environment monitoring system for flowers in greenhouse using low-power transmission. Transactions of the Chinese Society of Agricultural Engineering.2013,29(4):237-244.
    169 Liang, K., Shen, M., Lu, S., Liu, Z., Li, X. Real-time monitoring system for grain moisture content based on equilibrium moisture model. Transactions of the Chinese Society of Agricultural Machinery.2013,44(1):125-130.
    170 Li, Y., Li, M., Deng, X., Sun, H., Zheng, L. Monitoring system for electrical conductivity of greenhouse nutrient solutions based on WSN. Transactions of the Chinese Society of Agricultural Engineering.2013,29(9):170-177.
    171 Li, X., Zang, Y., Luo, X., Li, T., Liu, Y., Kong, Q. Experiment of propagation characteristics based on 433MHz channel of WSN in orchid greenhouse. Transactions of the Chinese Society of Agricultural Engineering.2013,29(13): 182-189.
    172 Li, L., Yu, Y., Huang, R., Huo, L. Henhouse carbon dioxide real-time monitoring system based on wireless sensor network (WSN). Guangdong Agricultural Sciences.2013,40(14):189-191,195.
    173 Li, L., Chen, H., Yu, Y., Huang, R., Huo, L. Dynamic monitoring device of hens temperature based on wireless transmission. Transactions of the Chinese Society of Agricultural Machinery.2013,44(6):242-245,226.
    174 Leonardo Reyes-Acosta, J., Lubczynski, M. W. Mapping dry-season tree transpiration of an oak woodland at the catchment scale, using object-attributes derived from satellite imagery and sap flow measurements. Agricultural and Forest Meteorology.2013,174:184-201.
    175 Iida, S. i., Ito, E., Shimizu, A., Nobuhiro, T., Shimizu, T., Kabeya, N., Tamai, K.., Araki, M., Chann, S., Keth, N. Year-to-year differences in sap flow and crown-level stomatal conductance of two species in a lowland evergreen forest, central cambodia. Jarq-Japan Agricultural Research Quarterly.2013,47(3):319-327.
    176 Galindo, A., Rodriguez, P., Mellisho, C. D., Torrecillas, E., Moriana, A., Cruz, Z. N., Conejero, W., Moreno, F., Torrecillas, A. Assessment of discretely measured indicators and maximum daily trunk shrinkage for detecting water stress in pomegranate trees. Agricultural and Forest Meteorology.2013,180:58-65.
    177 De Swaef, T., Hanssens, J., Cornelis, A., Steppe, K. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling. Annals of Botany.2013,111 (2):271-282.
    178 Cuevas, M. V., Martin-Palomo, M. J., Diaz-Espejo, A., Torres-Ruiz, J. M., Rodriguez-Dominguez, C. M., Perez-Martin, A., Pino-Mejias, R., Fernandez, J. E. Assessing water stress in a hedgerow olive orchard from sap flow and trunk diameter measurements. Irrigation Science.2013,31(4):729-746.
    179 Cammalleri, C., Rallo, G., Agnese, C., Ciraolo, C., Minacapilli, M., Provenzano, G. Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard. Agricultural Water Management.2013,120:89-97.
    180 Boehringer, D., Zolnier, S., Ribeiro, A., Steidle Neto, A. J. Sugarcane sap flow determination by the energy balance method. Engenharia Agricola.2013,33(2):237-248.
    181 Ballester, C., Castel, J., Testi, L., Intrigliolo, D. S., Castel, J. R. Can heat-pulse sap flow measurements be used as continuous water stress indicators of citrus trees? Irrigation Science.2013,31(5):1053-1063.
    182 Ballester, C., Castel, J., Jimenez-Bello, M. A., Castel, J. R., Intrigliolo, D. S. Thermographic measurement of canopy temperature is a useful tool for predicting water deficit effects on fruit weight in citrus trees. Agricultural Water Management.2013,122:1-6.
    183 Urban, J., Krofta, K., Kucera, J. Calibration of stem heat balance sensors upon a study of water balance of the hop plantation, In Viii International Symposium on Sap Flow 2012,79-86.
    184 Trcala, M., Cennak, J. Sap flow and heat conductivity measurement and their interaction, In Viii International Symposium on Sap Flow.2012:95-100.
    185 Tognetti, R., Giovannelli, A., d'Andria, R., Fragnito, F., Lavini, A., Morelli, G., Sebastiani, L. Monitoring sap flow as indicator of transpiration and water status of an experimental olive tree orchard, In Viii International Symposium on Sap Flow.2012:167-174.
    186 Takeuchi, S. Application of sap flow measurement in real-time soil moisture management and examination of supplemental irrigation using automatic drip system under high atmospheric demand conditions, In Viii International Symposium on Sap Flow.2012:39-45.
    187 Steppe, K.., Teskey, R. O., De Pauw, D. J. W. A mariotte-based verification system for heat-based sap flow sensors, In Viii International Symposium on Sap Flow.2012:55-61.
    188 Sellier, D., Harrington, J. J. Phloem sap flow and carbohydrate transport in vascular plants:a generic surface model. IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). 2012:332-339.
    189 Roddy, A. B., Dawson, T. E. Determining the water dynamics of flowering using miniature sap flow sensors, In Viii International Symposium on Sap Flow.2012:47-53.
    190 Poblete-Echeverria, C., Ortega-Farias, S., Zuniga, M. Estimation of dual crop coefficients over a drip-irrigated merlot vineyard using sap flow sensors and eddy covariance system, In Viii International Symposium on Sap Flow.2012, 269-275.
    191 Nadezhdina, N. A simplified equation for sap flow calculation based on the heat-field deformation (HFD) measurements, In Viii International Symposium on Sap Flow.2012:117-120.
    192 Liu, C., Du, T., Li, F., Kang, S., Li, S., Tong, L. Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of northwest China. Agricultural Water Management.2012, 104:193-202.
    193 Kucera, J., Urban, J. History of the Development of the trunk heat balance method in last forty years, In Viii International Symposium on Sap Flow.2012:87-94.
    194 Er-Raki, S., Khabba, S., Erraji, T., Ezzahar, J., Jarlan, L., Lepag, M., Chehbouni, A., Hanich, L. Evaluation of the sap flow measurements determined with heat balance method for citrus orchards in semi-arid region, In Viii Internationa) Symposium on Sap Flow.2012:259-267.
    195 Di Baccio, D., Minnocci, A., Sebastiani, L., Carraro, V., Grani, F., Anfodillo, T., Tognetti, R. Sap flow measurements for the evaluation of poplar clone performance in remediation of soil polluted with olive mill wastewater, In Viii International Symposium on Sap Flow.2012:175-181.
    196 De Swaef, T., Steppe, K. Sap flow, stem diameter variations and mechanistic modelling have potential to assess root pressure, In Viii International Symposium on Sap Flow.2012:111-115.
    197 Biel, C., Abdelfatah, A., de Herralde, F., Save, R., Aranda, X. Relationship between sap flow, maximum daily shrinkage and other ecophysiological parameters in prunus avium subjected to water Stress, In Viii International Symposium on Sap Flow.2012:153-159.
    198 Ballester, C., Castel, J., Intrigliolo, D. S., Castel, J. R., Testi, L. Sap flow measurements to assess regulated deficit irrigation strategies on citrus trees, In Viii International Symposium on Sap Flow.2012:71-78.
    199 Araujo, M. C., Esteves, B. d. S., de Sousa, E. F. The heat dissipation method for sap flow determination in green-dwarf coconut plants. Bragantia.2012,71(4):558-562.
    200 Zhou, Cm., Zhao, P., Ni, G.y., Zhu, L.w., Wang, Q., Mei, T.t., Zhang, J.y., Cai, X.-a. Whole-tree water use characteristics of Schima superba in wet and dry seasons based on sap flow and soil-leaf water potential gradient analysis. Shengtaixue Zazhi.2011,30(12):2659-2666.
    201 Yamane, T., Hamana, Y., Nakano, M. Detection of water-deficit Stress from daily sap flow profiles in peach. Journal of the Japanese Society for Horticultural Science.2011,80(4):383-389.
    202 Wullschleger, S. D., Childs, K. W., King, A. W., Hanson, P. J. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes. Tree Physiology.2011,31(6):669-679.
    203 Nourtier, M., Chanzy, A., Granier, A., Huc, R. Sap flow measurements by thermal dissipation method using cyclic heating:a processing method accounting for the non-stationary regime. Annals of Forest Science.2011,68(7): 1255-1264.
    204 Nasr, Z., Woo, S. Y., Zineddine, M., Khaldi, A., Rejeb, M. N. Sap flow estimates of Quercus suber according to climatic conditions in north Tunisia. African Journal of Agricultural Research.2011,6(20):4705-4710.
    205 Masmoudi, C. C., Masmoudi, M., Abid-Karray, J., Ben Mechlia, N. Sap flow measurements in young olive trees (Olea europaea L.) cv. Chetoui under Tunisian conditions. Scientia Horticulturae.2011,129(4):520-527.
    206 Lambs, L., Saenger, A. Sap flow measurements of Ceriops tagal and Rhizophora mucronata mangrove trees by deuterium tracing and lysimetry. Rapid Communications in Mass Spectrometry.2011,25(19):2741-2748.
    207 Iwanami, H., Moriya, S., Okada, K., Abe, K. Effects of temperature and solar radiation on sap flow in dwarfing apple rootstocks. Journal of Horticultural Science & Biotechnology.2011,86(3):241-244.
    208 Enrique Fernandez, J., Moreno, F., Jose Martin-Palomo, M., Victoria Cuevas, M., Manuel Torres-Ruiz, J., Moriana, A. Combining sap flow and trunk diameter measurements to assess water needs in mature olive orchards. Environmental and Experimental Botany.2011,72(2):330-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700