用户名: 密码: 验证码:
原卟啉原IX氧化酶及其机制的计算化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原卟啉原Ⅸ氧化酶(PPO)催化氧化原卟啉原Ⅸ成为原卟啉Ⅸ,广泛存在于动物、植物、真菌和细菌中,是生物体内叶绿素和亚铁血红素合成途径中的一个关键酶。
     在人体中,PPO的缺损会造成显性遗传疾病混合型卟啉症(Variegated Porphyria,VP)。目前,VP患者的数量和发病地域在不断扩大。同时,PPO也被利用于光动力学对于癌症的治疗,因此对PPO的研究具有重要的医学意义。植物体内的PPO的活性被抑制剂所抑制会导致绿色植物组织的干枯与白化,最终使得植物死亡,因而PPO是一大类除草剂的作用靶标。因PPO非植物所特有,考虑到人畜及环境安全,种属选择性是针对该靶标设计、开发除草剂的关键问题。而且,开发抗PPO抑制剂除草剂的转基因作物,能够减少农药的使用,降低农业生产成本,具有重大的经济价值。因此对PPO的研究具有重要农学意义。另外,PPO是植物光信号转导过程中的重要因子;PPO的多底物特性、催化底物的电子转移功能,也使得底物的结合与催化机制的研究非常具有研究价值。
     鉴于PPO在生物体内的重要性,以及在医学和农学上的应用,本文选择了PPO作为主要的研究对象。在本论文中我们主要进行了以下五方面的工作:
     一、多种属的PPO生物信息学研究。通过对不同种属的PPO的序列和结构的比较,识别了PPO活性位点保守残基和差异残基,揭示导致不同种属PPO在细胞内的定位方式与聚集状态差异的序列因素和结构因素,从原子水平上认识了不同种属对抑制剂选择性及天然抗性的序列因素和结构因素,为选择性抑制剂的设计提供最直接的信息。
     二、PPO与底物相互作用的研究。运用计算化学中分子对接、分子动力学模拟等方法,系统研究了底物在三个种属PPO(烟草线粒体、枯草芽孢杆菌和人体)中的结合方式,为PPO催化机制的研究提供了结构基础,也为进一步的定点突变实验提供了指导。
     三、PPO功能的计算结构生物学的研究。结合定点突变实验、结构生物学研究和分子动力学模拟,识别出人体PPO和枯草芽孢杆菌PPO中,对于PPO活性的保持有重要作用的极性作用网络。发现这个极性作用网络通过稳定FAD的异咯嗪环的结合环境,进而稳定底物与FAD之间的相互作用以维持酶的催化活性。另外,还对人体PPO活性空腔的残基功能进行定义,阐述了这些残基对于底物与PPO的结合的贡献。这些结果为进一步改造PPO,利用PPO发展抗除草剂转基因作物提供了关键信息。
     四、卟啉症分子致病机制的研究。结合分子动力学模拟和统计学方法,阐释了PPO致病突变体酶功能的丧失与平衡态构象的关系,通过引入定量描述PPO平衡态构象的参数--优势构象概率,建立了预测PPO催化活性的方法(Prezyme),并准确预测了44个卟啉症突变体的催化活性,阐述了其分子致病机制。该方法也对不同种属PPO的催化活性有较好的预测。
     五、PPO与抑制剂相互作用的研究。我们获取了人体PPO与两个二苯醚类抑制剂除草剂,乙氧氟草醚和氟磺胺草醚复合物的晶体结构,其分辨率分别为2.3A和2.0A。针对抑制剂三氟羧草醚对于烟草线粒体PPO、人体PPO和枯草芽孢杆菌PPO抑制活性的差异进行了计算研究。我们发现,烟草PPO中的Phe392、 Leu372、Leu356、Phe353和Arg98等残基是抑制剂结合的重要位点,人体PPO在Phe392和Leu372残基上相对于烟草PPO的差异是使得抑制剂对人体PPO的抑制活性较差的主要因素;而枯草芽孢杆菌PPO在上述位点的残基性质相对于烟草PPO表现除了较大的差异,使得抑制剂不能结合到上述位点,从而产生抑制剂的抗性。计算模拟的结果得到了定点突变实验很好的验证。
     综上所述,本文结合生物化学和计算化学方法,对于PPO的分子机制进行了系统研究。识别不同种属PPO序列和结构上的差异之处,为种属间PPO性质的研究和定点突变体实验提供指导。获得了不同种属PPO与底物的结合模型,为PPO催化机理的研究和抑制剂的设计提供了基础和信息。结合定点突变实验和计算模拟方法,对PPO突变体进行了研究,为理解PPO结构与功能之间的关系提供了指导。发展了一套能够定量预测卟啉症相关PPO突变体的方法,阐述了卟啉症突变体的分子机制。我们还阐述了PPO对于抑制剂的选择性机制,为理解敏感性靶标生物特异性提供了依据,也为新型高效低毒的农药分子设计提供了结构基础。
Protoporphyrinogen IX oxidase (PPO; EC1.3.3.4) catalyzes protoporphyrinogen IX to protoporphyrin IX. PPO is the key enzyme for the biosynthesis of protoporphyrin IX, which is the last check point of heme and chlorophyll common biosynthesis.
     Hence, PPO has been identified as one of the most importance action targets for the treatment of some important diseases including cancer and variegated porphyria (VP). In the agriculture, PPO inhibitors have been used as herbicides for many years. Inhibition of PPO in plants leads the accumulation of protogen, which exports to the cytoplasm and forms porphyrm through nonenzymatic oxidation. The photosensitizing porphyrin can produce singlet oxygen which can cause peroxidation of membrane lipids and cell death. PPO inhibitors herbicides are highly effective, low toxic to human and friendly to environment. The development of the new PPO inhibitors herbicides is the hot topic of the field. In humans, defects in the PPO gene, resulting in approximately50%decreased activity of PPO, is responsible for the dominantly inherited disorder VP. VP is a type of acute hepatic porphyria, which is characterized by an abnormal pattern of porphyrin excretion. VP has been found worldwide, and is particularly prevalent in the white population of South Africa.
     Since PPO is essential for the biological process, and has widely application in the agricultural field and medicine, we chose PPO as research object. We hope to gain understanding about the molecular mechanism of the PPO. In this dissertation we focus primary on the following aspects:
     1. Applying bioinformatics studies on PPO. We had identified the conserved and noconserved residues of the active site of PPO from different species by sequence alignments. We studied the contributions of these to the properties of PPO from different species, which provided information for the site directed mutagenesis study on PPO. We compared the structural domains of PPO to reveal the sequence and structural difference contribution to the location and assembly of PPO from different species. These studies provided important information for the further studies on the difference on the property of PPO and the relationship between structure and function of PPO.
     2. Applying studies on the interaction between substrate and PPO. We docked substrate into PPO from tobacco mitochondria, human and Bacillus subtilis. Molecular dynamics simulation were then performed on docked substrate-PPO complex. We access the the correct substrate-PPO binding models based on the molecular dynamics simulation results, with the site directed mutagenesis studies and quantum mechanics calculation. We also compared the binding mode of substrate in PPO from different species, in which we identified the origin of the difference catalytic activity on PPOs.
     3. Applying studies on the function of PPO based on structure. In this part of work, we applied site directed mutagenesis and computational studies on PPO, which including:
     (1) Study on the active site residues of PPO. We combined the site directed mutagenesis and molecular dynamics simulation to identified the function of the residues of human PPO.
     (2) Study on the residues cluster which regulate the activity of PPO. We applied structural biology, biochemical and simulation studies to identify a polar interaction network surrounding Arg59and Asp65in human and Bacillus subtilis PPO which can regulate the activity of PPO. This interaction network help to stabilize the environment of the isoalloxazine ring of FAD, in which stabilize the interaction between substrate and FAD to maintain the activity of PPO. By compared the sequence and structure of PPO, we discover this interaction network in conserved in PPO from different species.
     4. Applying studies on the molecular mechanism of the variegated porphyria. We applied structural study on the variegated porphyria, which indicated that the44VP-causing mutants distributed on all of the three structure domains of human PPO. We categorized these mutants into5potential categories, i.e., affecting the substrate binding, FAD binding, hydrophobic core, secondary structure and surface of human PPO. We then combined molecular dynamics simulation and statistical study to quantitative insight into the molecular mechanism of VP. In light of the collision theory, we develop a descriptor which can quantitative describe the catalytic activity of PPO, which called probability of privileged conformations. We successfully predicted the catalytic activity of44VP-causing mutants by calculating their probability of privileged conformations, and we elucidated the detailed molecular mechanism of these mutants. Based on these results we develop a protocol which can predict the catalytic activity of PPO. This protocol can be used to predict the activity of human PPO mutants and other species of PPO.
     5. Applying studies on the interaction between PPO and inhibitors. We applied structural biology study and computational study on the interaction between PPO and inhibitors, which mainly on:
     (1) The crystal structures of the complex of PPO and inhibitor. We obtained the crystal structures of human PPO and the inhibitors, oxyfluorfen and fomesafen, in which the resolution was2.3A and2.0A, respectively. We compared the binding mode of the acifluorofen, oxyfluorfen and fomesafen to human PPO and their activity, in which we found that the Arg97in human PPO is a important binding site for inhibitors.
     (2) The selectivity to inhibitor in PPO from different species. We performed molecular dynamics simulation and MM-GBSA energy calculation on the complex of acifluorofen and PPO from tobacco mitochondria, human and Bacillus subtilis. We found that, the residues Phe392, Leu372, Leu356, Phe353and Arg98is the "hot spots" for the selectivity to inhibitor of PPO. PPO regulated the binding of inhibitors by altering the size and electro-property of the side chain of these residues, which was validated by the mutagenesis study.
     In total, we combined the biochemical and computational methods to study the molecular mechanism of PPO. We identified the differences in the sequence and structure of PPO, which provides guidance for the study of the property of PPO and mutagenesis experiments. We obtained the binding mode of substrate in PPO from different species, which help to elucidate the catalytic mechanism of PPO and provide information for the design of new PPO inhibitor. We applied study on the mutant of PPO, which help to understand the relationship of the structure and function of PPO. We developed a protocol to quantitative predict the catalytic of VP-causing mutants, and make detailed description on the molecular mechanism of VP. And we also elucidated the selectivity of PPO, which provides the structural basis for the design of PPO inhibitor.
引文
[1]Poulson R.; Polglase W. J., The enzymic conversion of protoporphyrinogen Ⅸ to protoporphyrin Ⅸ. Protoporphyrinogen oxidase activity in mitochondrial extracts of Saccharomyces cerevisiae. Journal of Biological Chemistry 1975,250(4):1269-1274.
    [2]Matringe M.; Camadro J. M.; Block M. A., et al., Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. Journal of Biological Chemistry 1992,267(7):4646-4651.
    [3]Panek H.; O'Brian M. R., A whole genome view of prokaryotic haem biosynthesis. Microbiology-Sgm 2002,148:2273-2282.
    [4]Ajioka R. S.; Phillips J. D.; Kushner J. P., Biosynthesis of heme in mammals. Biochimica Et Biophysica Acta-Molecular Cell Research 2006,1763(7):723-736.
    [5]Heinemann I. U.; Jahn M.; Jahn D., The biochemistry of heme biosynthesis. Archives of Biochemistry and Biophysics 2008,474(2):238-251.
    [6]Severance S.; Hamza I., Trafficking of heme and porphyrins in metazoa. Chemical Reviews 2009,109(10):4596.
    [7]Lermontova I.; Kruse E.; Mock H. P., et al., Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen Ⅸ oxidase. Proceedings of the National Academy of Sciences of the United States of America 1997,94(16):8895-8900.
    [8]Watanabe N.; Che F. S.; Terashima K., et al., Purification and properties of protoporphyrinogen oxidase from spinach chloroplasts. Plant and Cell Physiology 2000,41(7): 889-892.
    [9]Nagaraj V. A.; Arumugam R.; Prasad D., et al., Protoporphyrinogen Ⅸ oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Molecular and Biochemical Parasitology 2010,174(1):44-52.
    [10]Dailey H. A., Biosynthesis of Heme and Chlorophyll. In 1990, Dailey H., Ed. McGraw-Hill: NEW YORK,1990; pp 123-161.
    [11]Che F. S.; Watanabe N.; Iwano M., et al., Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. Plant Physiology 2000, 124(1):59-70.
    [12]Dailey H. A.; Karr S. W., Purification and characterization of murine protoporphyrinogen oxidase. Biochemistry 1987,26(10):2697-2701.
    [13]Akhtar M., Biosynthesis of tetrapyrroles. Elsevier:Amsterdam,1991; p 85-92.
    [14]Corradi H. R.; Corrigall A. V.; Boix E., et al., Crystal structure of protoporphyrinogen oxidase from Myxococcus xanthus and its complex with the inhibitor acifluorfen. Journal of Biological Chemistry 2006,281(50):38625-38633.
    [15]Corrigall A. V.; Siziba K. B.; Maneli M. H., et al., Purification of and kinetic studies on a cloned protoporphyrinogen oxidase from the aerobic bacterium Bacillus subtilis. Archives of Biochemistry and Biophysics 1998,358(2):251-256.
    [16]Koch M.; Breithaupt C.; Kiefersauer R., et al., Crystal structure of protoporphyrinogen IX oxidase:a key enzyme in haem and chlorophyll biosynthesis. Embo Journal 2004,23(8): 1720-1728.
    [17]Klemm D. J.; Barton L. L., Purification and properties of protoporphyrinogen oxidase from an anaerobic bacterium, Desulfovibrio gigas. Journal of Bacteriology 1987,169(11):5209-5215.
    [18]Wierenga R. K.; Terpstra P.; Hol W. G. J., Prediction of the occurrence of the ADP-binding beta-alpha-beta-fold in proteins, using an amino-acid-sequence fingerprint. Journal of Molecular Biology 1986,187(1):101-107.
    [19]Dailey T. A.; Dailey H. A., Identification of an FAD superfamily containing protoporphyrinogen oxidases, monoamine oxidases, and phytoene desaturase-Expression and characterization of phytoene desaturase of Myxococcus xanthus. Journal of Biological Chemistry 1998,273(22):13658-13662.
    [20]Qin X. H.; Sun L.; Wen X., et al., Structural insight into unique properties of protoporphyrinogen oxidase from Bacillus subtilis. Journal of Structural Biology 2010,170(1): 76-82.
    [21]Qin X.; Tan Y.; Wang L., et al., Structural Insight into Human Variegate Porphyria Disease. Faseb Journal 2010,2011,25(2):653-664.
    [22]Heinemann I. U.; Diekmann N.; Masoumi A., et al., Functional definition of the tobacco protoporphyrinogen IX oxidase substrate-binding site. Biochemical Journal 2007,402,575-580.
    [23]Dailey T. A.; Meissner P.; Dailey H. A., Expression of a cloned protoporphyrinogen oxidase. Journal of Biological Chemistry 1994,269(2):813-815.
    [24]Dailey T. A.; Dailey H. A., Human protoporphyrinogen oxidase:expression, purification, and characterization of the cloned enzyme. Protein Science 1996,5(1):98-105.
    [25]Maire M. L.; Arnou B.; Olesen C., et al., Gel chromatography and analytical ultracentrifugation to determine the extent of detergent binding and aggregation, and Stokes radius of membrane proteins using sarcoplasmic reticulum Ca2+-ATPase as an example. Nature Protocols 2008,3(11):1782-95.
    [26]Kunji E. R.; Harding M.; Butler P. J., et al., Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography. Methods 2008,46(2): 62-72.
    [27]Sano S.; Granick S., Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. Journal of Biological Chemistry 1961,236(4):1173-1180.
    [28]Jacobs N. J.; Jacobs J. M., Fumarate as alternate electron acceptor for the late steps of anaerobic heme synthesis in Escherichia coli. Biochemical and Biophysical Research Communications 1975,65(1):435-441.
    [29]Jacobs N. J.; Jacobs J. M., Nitrate, fumarate, and oxygen as electron acceptors for a late step in microbial heme synthesis. Biochimica Et Biophysica Acta 1976,449(1):1-9.
    [30]Sasarman A.; Letowski J.; Czaika G, et al., Nucleotide sequence of the hemG gene involved in the protoporphyrinogen oxidase activity of Escherichia coli K12. Canadian Journal of Microbiology 1993,39(12):1155-1161.
    [31]Akhtar M., Biosynthesis of tetrapyrroles. Elsevier:Amsterdam,1984; p 85-92.
    [32]Jones C.; Jordan P. M.; Akhtar M., Mechanism and stereochemistry of the porphobilinogen deaminase and protoporphyrinogen-ix oxidase reactions--stereospecific manipulation of hydrogen-atoms at the 4 methylene bridges during the biosynthesis of heme. Journal of the Chemical Society-Perkin Transactions 1984,2625-2633.
    [33]Jones C.; Jordan P. M.; Chaudhry A. G., Stereospecificity of hydrogen removal from the 4 methylene bridges in heme biosynthesis-specific incorporation of the 11 pro-s hydrogen of porphobilinogen into heme. Journal of the Chemical Society-Chemical Communications 1979, 96-97.
    [34]Arnould S.; Berthon J. L.; Hubert C., et al., Kinetics of protoporphyrinogen oxidase inhibition by diphenyleneiodonium derivatives. Biochemistry 1997,36(33):10178-10184.
    [35]Kunert K. J.; Boger P., The bleaching effect of the diphenyl ether oxyfluorfen. Weed Science 1981,29(2):169-173.
    [36]Orr G. L.; Hess F. D., Mechanism of Action of the Diphenyl Ether Herbicide Acifluorfen-Methyl in Excised Cucumber (Cucumis sativus L.) Cotyledons:light activation and the subsequent formation of lipophilic free radicals. Plant Physiology 1982,69(2):502-507.
    [37]Haworth P.; Hess F. D., The generation of singlet oxygen (1O2) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis. Plant Physiology 1988,86(3):672-676.
    [38]Ensminger M. P.; Hess F. D.; Bahr J. T., Nitro free-radical formation of diphenyl ether herbicides is not necessary for their toxic action. Pesticide Biochemistry and Physiology 1985, 23(2):163-170.
    [39]Gaba V.; Cohen N.; Shaaltiel Y., et al., Light-requiring acifluorfen action in the absence of bulk photosynthetic pigments. Pesticide Biochemistry and Physiology 1988,31(1):1-12.
    [40]Lydon J.; Duke S. O., Porphyrin synthesis is required for photobleaching activity of the para-nitrosubstituted diphenyl ether herbicides. Pesticide Biochemistry and Physiology 1988, 31(1):74-83.
    [41]Matringe M.; Scalla R., Effects of acifluorfen-methyl on cucumber cotyledons:Porphyrin accumulation. Pesticide Biochemistry and Physiology 1988,32(2):164-172.
    [42]Matringe M.; Scalla R., Studies on the mode of action of acifluorfen-methyl in nonchlorophyllous soybean cells-accumulation of tetrapyrroles. Plant Physiology 1988,86(2): 619-622.
    [43]Sandmann G.; Boger P., Accumulation of protoporphyrin Ⅸ in the presence of peroxidizing herbicides. Zeitschrift Fur Naturforschung C-a Journal of Biosciences 1988,43(9-10):699-704.
    [44]Witkowski D. A.; Halling B. P., Accumulation of photodynamic tetrapyrroles induced by acifluorfen-methyl. Plant Physiology 1988,87(3):632-637.
    [45]Becerril J. M.; Duke S. O., Protoporphyrin Ⅸ content correlates with activity of photobleaching herbicides. Plant Physiology 1989,90(3):1175-1181.
    [46]Matringe M.; Camadro J. M.; Labbe P., et al., Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochemical Journal 1989,260(1):231-235.
    [47]Witkowski D. A.; Halling B. P., Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiology 1989,90(4):1239-1242.
    [48]Lehnen L. P.; Sherman T. D.; Becerril J. M., et al., Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pesticide Biochemistry and Physiology 1990,37(3):239-248.
    [49]Jacobs J. M.; Jacobs N. J.; Sherman T. D., et al., Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiology 1991,97(1):197-203.
    [50]Jacobs J. M.; Jacobs N. J., Porphyrin Accumulation and Export by Isolated Barley (Hordeum vulgare) Plastids (Effect of Diphenyl Ether Herbicides). Plant Physiology 1993,101(4): 1181-1187.
    [51]Lee H. J.; Duke M. V.; Duke S. O., Cellular Localization of Protoporphyrinogen-Oxidizing Activities of Etiolated Barley (Hordeum vulgare L.) Leaves (Relationship to Mechanism of Action of Protoporphyrinogen Oxidase-Inhibiting Herbicides). Plant Physiology 1993,102(3): 881-889.
    [52]Retzlaff K.; Boger P., An endoplasmic reticulum plant enzyme has protoporphyrinogen IX oxidase activity. Pesticide Biochemistry and Physiology 1996,54(2):105-114.
    [53]Lee H. J.; Duke S. O., Protoporphyrinogen IX oxidizing activities involved in the mode of action of peroxidizing herbicides. Journal of Agricultural and Food Chemistry 1994,42(11): 2610-2618.
    [54]Han O.; Kim O.; Kim C., et al., Role of autooxidation of protoporphyrinogen-ix in the action mechanism of diphenyl ether herbicides. Bulletin of the Korean Chemical Society 1995,16(11): 1013-1014.
    [55]UJJANA B. NANDIHALLI M. V. D., STEPHEN O.DUKE, Quantitative Structure-Activity Relationships of Protoporphyrinogen Oxidase-Inhibiting Diphenyl Ether Herbicides. Pesticide Biochemistry and Physiology 1992,43,193-211.
    [56]Franck E Dayan S. N. A., Predicting the activity of the natural phytotoxic diphenyl ether cyperine using Comparative Molecular Field Analysis. Pest Management Science 2000,56, 717-722.
    [57]Wan J., Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors:A study of quantum chemical descriptors from density functional theory. Journal of Chemical Information and Computer Sciences 2004,44(6): 2099-2105.
    [58]Uraguchi R., Molecular shape similarity of cyclic imides and protoporphyrinogen IX. Journal of Pesticide Science 1997,22(4):314-320.
    [59]Xi Z.; Yu Z. H.; Niu Z. W., et al., Development of a general quantum-chemical descriptor for steric effects:Density functional theory based QSAR study of herbicidal sulfonylurea analogues. Journal of Computational Chemistry 2006,27(13):1571-1576.
    [60]Theodoridis G., Structure-activity relationships of herbicidal aryltriazolinones. Pesticide Science 1997,50(4):283-290.
    [61]Wan J., Quantitative structure-activity relationships for phenyl triazolinones of protoporphyrinogen oxidase inhibitors:A density functional theory study. Journal of Computational Chemistry 2004,25(15):1827-1832.
    [62]Lei B. L.; Li J. Z.; Lu J., et al, Rational Prediction of the Herbicidal Activities of Novel Protoporphyrinogen Oxidase Inhibitors by Quantitative Structure-Activity Relationship Model Based on Docking-Guided Active Conformation. Journal of Agricultural and Food Chemistry 2009,57(20):9593-9598.
    [63]Morris G. M.; Huey R.; Lindstrom W., et al., AutoDock4 and AutoDockTools4:Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry 2009,30(16): 2785-2791.
    [64]Zhang L.; Hao G. F.; Tan Y., et al., Bioactive conformation analysis of cyclic imides as protoporphyrinogen oxidase inhibitor by combining DFT calculations, QSAR and molecular dynamic simulations. Bioorganic & Medicinal Chemistry 2009,17(14):4935-4942.
    [65]Eastin E. F., Fate of fluorodifen in resistant peanut seedlings. Weed Science 1971,19(3): 261-265.
    [66]Frear D. S.; Swanson H. R., Metabolism of substituted diphenylether herbicides in plants.1. enzymatic cleavage of fluorodifen in peas (pisum-satiyum 1). Pesticide Biochemistry and Physiology 1973,3(4):473-482.
    [67]Jacobs J. M.; Wehner J. M.; Jacobs N. J., Porphyrin stability in plant supernatant fractions: implications for the action of porphyrinogenic herbicides. Pesticide Biochemistry and Physiology 1994,50(1):23-30.
    [68]Jacobs J. M.; Jacobs N. J.; Duke S. O., Protoporphyrinogen destruction by plant extracts and correlation with tolerance to protoporphyrinogen oxidase-inhibiting herbicides. Pesticide Biochemistry and Physiology 1996,55(1):77-83.
    [69]Matsumoto H.; Kashimoto Y.; Warabi E., Basis for common chickweed (Stellaria media) tolerance to oxyfluorfen. Pesticide Biochemistry and Physiology 1999,64(1):47-53.
    [70]Ichinose K.; Che F. S.; Kimura Y, et al., Selection and characterization of protoporphyrinogen oxidase inhibiting herbicide (S23142) resistant photomixotrophic cultured-cells of nicotiana-tabacum. Journal of Plant Physiology 1995,146(5-6):693-698.
    [71]Watanabe N.; Che F.'S.; Iwano M., et al., Molecular characterization of photomixotrophic tobacco cells resistant to protoporphyrinogen oxidase-inhibiting herbicides. Plant Physiology 1998,118(3):751-758.
    [72]Rebeiz C. A.; Montazerzouhoor A.; Hopen H. J., et al., Photodynamic herbicides.1. concept and phenomenology. Enzyme and Microbial Technology 1984,6(9):390-401.
    [73]Lermontova I.; Grimm B., Overexpression of plastidic protoporphyrinogen Ⅸ oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiology 2000,122(1):75-83.
    [74]Ha S. B.; Lee S. B.; Lee Y., et al., The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl ether herbicide in rice. Plant Cell and Environment 2004,27(1):79-88.
    [75]Randolph-Anderson B. L.; Sato R.; Johnson A. M., et al., Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides. Plant Molecular Biology 1998,38(5):839-859.
    [76]Patzoldt W. L.; Hager A. G.; McCormick J. S., et al., A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proceedings of the National Academy of Sciences of the United States of America 2006,103(33):12329-12334.
    [77]Martz E., Protein Explorer:easy yet powerful macromolecular visualization. Trends in Biochemical Sciences 2002,27(2):107-109.
    [78]Hao G. F.; Zhu X. L.; Ji F. Q., et al., Understanding the Mechanism of Drug Resistance Due to a Codon Deletion in Protoporphyrinogen Oxidase through Computational Modeling. Journal of Physical Chemistry B 2009,113(14):4865-4875.
    [79]Dayan F. E.; Daga P. R.; Duke S. O., et al., Biochemical and structural consequences of a glycine deletion in the alpha-8 helix of protoporphyrinogen oxidase. Biochimica Et Biophysica Acta-Proteins and Proteomics 2010,1804(7):1548-1556.
    [80]Frank J.; Christiano A. M., Variegate porphyria:Past, present and future. Skin Pharmacology and Applied Skin Physiology 1998,11(6):310-320.
    [81]Brenner D. A.; Bloomer J. R., Enzymatic defect in variegate porphyria-studies with human cultured skin fibroblasts. New England Journal of Medicine 1980,302(14):765-769.
    [82]Rossetti M. V.; Granata B. X.; Giudice J., et al., Genetic and biochemical studies in Argentinean patients with variegate porphyria. BMC Medical Genetics 2008,9, doi:10.1186/1471-2350-9-54.
    [83]van Serooskerken A. V. T.; Ernst M.; Wolff C., et al., Identification of a recurrent mutation in variegate porphyria patients from Sweden and Chile:evidence for an independent novel founder effect. Experimental Dermatology 2008,17(3):246-246.
    [84]Wiman A.; Harper P.; Floderus Y., Nine novel mutations in the protoporphyrinogen oxidase gene in Swedish families with variegate porphyria. Clinical Genetics 2003,64(2):122-130.
    [85]Xiaoye S. Y.; Minder E. I., Swiss patients with variegate porphyria have unique mutations. Swiss Medical Weekly 2006,136(31-32):515-519.
    [86]Fraunberg M. V. Z.; Timonen K.; Mustajoki P., et al., Clinical and biochemical characteristics and genotype-phenotype correlation in Finnish variegate porphyria patients. European Journal of Human Genetics 2002,10(10):649-657.
    [87]D'Amato M.; Bonuglia M.; Barile S., et al., Genetic analysis of variegate porphyria (VP) in Italy:identification of six novel mutations in the protoporphyrinogen oxidase (PPOX) gene. Human Mutation 2003,21(4):448.
    [88]Frank J.; Aita V. M.; Ahmad W., et al., Identification of a founder mutation in the protoporphyrinogen oxidase gene in variegate porphyria patients from Chile. Human Heredity 2001,51(3):160-168.
    [89]Frank J.; Bickers D. R.; Poh-Fitzpatrick M. B., et al., A spectrum of novel mutations in the protoporphyrinogen oxidase gene in 12 variegate porphyria families from the United States of America and its future implications. Journal of Investigative Dermatology 2000,114(4):774.
    [90]Maeda N.; Horie Y.; Sasaki Y., et al., Three novel mutations in the protoporphyrinogen oxidase gene in Japanese patients with variegate porphyria. Clinical Biochemistry 2000,33(6): 495-500.
    [91]McGrath J. A.; Hawk J. L. M.; Graham R. M., et al., Lack of the R59W South African founder effect mutation in protoporphyrinogen oxidase in a British patient with homozygous variegate porphyria. British Journal of Dermatology 1997,136(2):292-292.
    [92]Fraunberg M. V.; Nyronen T.; Kauppinen R., Mitochondrial targeting of normal and mutant protoporphyrinogen oxidase. Journal of Biological Chemistry 2003,278(15):13376-13381.
    [93]Morgan R. R.; Errington R.; Elder G. H., Identification of sequences required for the import of human protoporphyrinogen oxidase to mitochondria. Biochemical Journal 2004,377,281-287.
    [94]Morgan R. R.; Da Silva V.; Puy H., et al., Functional studies of mutations in the human protoporphyrinogen oxidase gene in variegate porphyria. Cellular and Molecular Biology 2002, 48(1):79-82.
    [95]Davids L. M.; Corrigall A. V; Meissner P. N., Mitochondrial targeting of human protoporphyrinogen oxidase. Cell Biology International 2006,30(5):416-426.
    [96]Dailey T. A.; Woodruff J. H.; Dailey H. A., Examination of mitochondrial protein targeting of haem synthetic enzymes:in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Biochemical Journal 2005,386:381-386.
    [97]Pfanner N.; Hoeben P.; Tropschug M., et al., The carboxyl-terminal 2/3 of the adp/atp carrier polypeptide contains sufficient information to direct translocation into mitochondria. Journal of Biological Chemistry 1987,262(31):14851-14854.
    [98]Herrmann J. M.; Neupert W., Protein transport into mitochondria. Current Opinion in Microbiology 2000,3(2):210-214.
    [99]Wiedemann N.; Frazier A. E.; Pfanner N., The protein import machinery of mitochondria. Journal of Biological Chemistry 2004,279(15):14473-14476.
    [100]Endo T.; Yamamoto H.; Esaki M., Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. Journal of Cell Science 2003,116(16):3259-3267.
    [101]Meissner P. N.; Dailey T. A.; Hift R.'J., et al., A R59W mutation in human protoporphyrinogen oxidase results in decreased enzyme activity and is prevalent in South Africans with variegate porphyria. Nature Genetics 1996,13(1):95-97.
    [102]Roberts A. G; Puy H.; Dailey T. A., et al., Molecular characterization of homozygous variegate porphyria. Human Molecular Genetics 1998,7(12):1921-1925.
    [103]Maneli M. H.; Corrigall A. V.; Klump H. H., et al., Kinetic and physical characterisation of recombinant wild-type and mutant human protoporphyrinogen oxidases. Biochimica Et Biophysica Acta-Proteins and Proteomics 2003,1650(1-2):10-21.
    [104]Roberts D. L.; Frerman F. E.; Kim J. J. P., Three-dimensional structure of human electron transfer flavoprotein to 2.1-angstrom resolution. Proceedings of the National Academy of Sciences of the United States of America 1996,93(25):14355-14360.
    [105]Vrielink A.; Lloyd L. F.; Blow D. M, Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution. Journal of Molecular Biology 1991,219(3): 533-554.
    [106]Tian H.; Yu L.; Mather M. W., et al., Flexibility of the neck region of the Rieske iron-sulfur protein is functionally important in the cytochrome bc(1) complex. Journal of Biological Chemistry 1998,273(43):27953-27959.
    [107]Arnould S.; Takahashi M.; Camadro J. M., Acylation stabilizes a protease-resistant conformation of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(26):14825-14830.
    [108]Fischer E., Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft 2006,27(3):2985-2993.
    [109]Koshland D. E., Jr.; Ray W. J., Jr.; Erwin M. J., Protein structure and enzyme action. Fed Proc 1958,17(4):1145-50.
    [110]Ma B.; Kumar S.; Tsai C. J., et al., Folding funnels and binding mechanisms. Protein Engineering Design and Selection 1999,12(9):713-20.
    [111]Morris G. M.; Goodsell D. S.; Halliday R. S., et al., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998,19(14):1639-1662.
    [112]Jones G.; Willett P.; Glen R. C., Molecular Recognition of Receptor-Sites Using a Genetic Algorithm with a Description of Desolvation. Journal of Molecular Biology 1995,245(1): 43-53.
    [113]Rarey M.; Kramer B.; Lengauer T., et al., A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology 1996,261(3):470-489.
    [114]Ewing T. J. A.; Kuntz I. D., Critical evaluation of search algorithms for automated molecular docking and database screening. Journal of Computational Chemistry 1997,18(9): 1175-1189.
    [115]Sousa S. F.; Fernandes P. A.; Ramos M. J., Protein-ligand docking:Current status and future challenges. Proteins-Structure Function and Bioinformatics 2006,65(1):15-26.
    [116]Alder B. J., Wainwright,T.E, Phase Transition for a hard Sphere system. Journal of Chemical Physics 1957,27(5):1208-1209.
    [117]McCammon J. A.; Gelin B. R.; Karplus M., Dynamics of Folded Proteins. Nature 1977, 267(5612):585-590.
    [118]Karplus M.; McCammon J. A., Molecular dynamics simulations of biomolecules. Nature Structural & Molecular Biology 2002,9(9):646-652.
    [119]Verlet L., Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review 1967,159(1):98.
    [120]Swope W. C.; Andersen H. C.; Berens P. H., et al., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics 1982,76(1):637-649.
    [121]Beeman D., Some multistep methods for use in molecular dynamics calculations. Journal of Computational Physics 1976,20(2):130-139.
    [122]Alder B.; Wainwright T., Studies in molecular dynamics. I. General method. The Journal of Chemical Physics 1959,31(2):459-466.
    [123]Brooks B.R.; Bruccoleri R.E.; Olafson B.D., et al., CHARMM:A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 1983,4:187-217.
    [124]Case D. A.; Cheatham T. E.; Darden T., et al., The Amber biomolecular simulation programs. Journal of Computational Chemistry 2005,26(16):1668-1688.
    [125]Oostenbrink C.; Villa A.; Mark A. E., et al., A biomolecular force field based on the free enthalpy of hydration and solvation:The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry 2004,25(13):1656-1676.
    [126]Jorgensen W. L.; Tiradorives J., The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society 1988,110(6):1657-1666.
    [127]Dauberosguthorpe P.; Roberts V. A.; Osguthorpe D. J., et al., Structure and energetics of ligand-binding to proteins-escherichia-coli dihydrofolate reductase trimethoprim, a drug-receptor system. Proteins-Structure Function and Genetics 1988,4(1):31-47.
    [128]Brooks B. R.; Brooks C. L.; Mackerell A. D., et al., CHARMM:The Biomolecular Simulation Program. Journal of Computational Chemistry 2009,30(10):1545-1614.
    [129]Humphrey W.; Dalke A.; Schulten K., VMD:Visual molecular dynamics. Journal of Molecular Graphics 1996,14(1):33-38.
    [130]Nelson M. T.; Humphrey W.; Gursoy A., et al., NAMD:A parallel, object oriented molecular dynamics program. International Journal of Supercomputer Applications and High Performance Computing 1996,10(4):251-268.
    [131]Phillips J. C.; Braun R.; Wang W., et al., Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 2005,26(16):1781-1802.
    [132]Van der Spoel D.; Lindahl E.; Hess B., et al., GROMACS:Fast, flexible, and free. Journal of Computational Chemistry 2005,26(16):1701-1718.
    [133]Hess B.; Kutzner C.; van der Spoel D., et al., GROMACS 4:Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theoiy and Computation 2008,4(3):435-447.
    [134]Kleywegt G. J.; Jones T. A., Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr 1994,50(Pt 2):178-185.
    [135]Hansson M.; Hederstedt L., Cloning and characterization of the Bacillus subtilis hemEHY gene cluster, which encodes protoheme IX biosynthetic enzymes. J Bacteriol 1992, 174(24):8081-8093.
    [136]Camadro J. M.; Labbe P., Cloning and characterization of the yeast HEM14 gene coding for protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. J Biol Chem 1996,271(15):9120-9128.
    [137]Narita S.; Tanaka R.; Ito T., et al., Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 1996,182(1-2):169-175.
    [138]Taketani S.; Inazawa J.; Abe T., et al., The human protoporphyrinogen oxidase gene (PPOX):organization and location to chromosome 1. Genomics 1995,29(3):698-703.
    [139]Nishimura K..; Nakayashiki T.; Inokuchi H., Cloning and identification of the hemG gene encoding protoporphyrinogen oxidase (PPO) of Escherichia coli K-12. DNA Res 1995,2(1): 1-8.
    [140]Qin X.; Tan Y.; Wang L., et al., Structural insight into human variegate porphyria disease. The FASEB Journal 2011,25(2):653-664.
    [141]Fang L. Y.; Battisti R. F.; Cheng H., et al., Enzyme specific activation of benzoquinone ansamycin prodrugs using HuCC49 Delta CH2-beta-galactosidase conjugates. Journal of Medicinal Chemistry 2006,49(21):6290-6297.
    [142]Wen X.; Yuan Y.; Kuntz D. A., et al., A combined STD-NMR/molecular modeling protocol for predicting the binding modes of the glycosidase inhibitors kifunensine and salacinol to Golgi alpha-mannosidase II. Biochemistry 2005,44(18):6729-6737.
    [143]Layer G; Moser J.; Heinz D. W., et al., Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes. Embo Journal 2003,22(23): 6214-6224.
    [144]Saunders M.; Houk K. N.; Wu Y. D., et al., Conformations of cycloheptadecane. A comparison of methods for conformational searching. Journal of the American Chemical Society 1990,112(4):1419-1427.
    [145]Becke A. D., Density-Functional Thermochemistry.3. the role of exact exchange. Journal of Chemical Physics 1993,98(7):5648-5652.
    [146]Chengteh L.; Weitao Y.; Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B: Condensed Matter and Materials Physics 1988,37(2):785-789.
    [147]Frisch M. J., Trucks, G. W., Schlengel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Jr., Stratman, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kundin, K. N., Strain, M. C, Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ciolowski, J., Ortiz, J. V., Stefanov, B. B., Liu, G., Liashebko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Grill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Head-Gordon, M., Replogle, E. S., and Pople, J. A. Gaussian 03, Revision C.01; Gaussian, Inc., Wallingford CT,2004.
    [148]Mulliken R. S., Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. Journal of Chemical Physics 1955,23(10):1833-1840.
    [149]Wiberg K. B., Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 1968,24(3): 1083-1096.
    [150]Curtiss L. A.; Raghavachari K.; Redfern P. C., et al., Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. Journal of Chemical Physics 1997,106(3):1063-1079.
    [151]Chase M. W.; Davies J., C. A.; Downey J. R., et al., NIST-JANAF Thermochemical Tables Third Edition. Journal of Physical and Chemical Reference Data 1985, Suppl. No.1: 1241.
    [152]Qin X.; Sun L.; Wen X., et al., Structural insight into unique properties of protoporphyrinogen oxidase from Bacillus subtilis. Journal of Structural Biology 2010,170(1): 76-82.
    [153]Bayly C. I.; Cieplak P.; Cornell W. D., et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges-the Resp Model. The Journal of Physical Chemistry 1993,97(40):10269-10280.
    [154]Wang J. M.; Cieplak P.; Kollman P. A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry 2000,21(12):1049-1074.
    [155]Wang J. M.; Wolf R. M.; Caldwell J. W., et al., Development and testing of a general amber force field. Journal of Computational Chemistry 2004,25(9):1157-1174.
    [156]Ryckaert J. P.; Ciccotti G.; Berendsen H. J.'C., Numerical-Integration of Cartesian Equations of Motion of a System with Constraints-Molecular-Dynamics of N-Alkanes. Journal of Computational Physics 1977,23(3):327-341.
    [157]Berendsen H. J. C; Postma J. P. M.; Vangunsteren W. F., et al., Molecular-Dynamics with Coupling to an External Bath. Journal of Chemical Physics 1984,81(8):3684-3690.
    [158]Adelman S. A.; Doll J. D., Generalized Langevin equation approach for atom/solid-surface scattering:General formulation for classical scattering off harmonic solids. Joounal of Chemical Physics 1976(64):2375-2388.
    [159]Darden T.; York D.; Pedersen L., Particle Mesh Ewald-an N.Log(N) Method for Ewald Sums in Large Systems. Journal of Chemical Physics 1993,98(12):10089-10092.
    [160]Zwanzig R. W, High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. The Journal of Chemical Physics 1954,22:1420.
    [161]Kollman P., Free energy calculations:Applications to chemical and biochemical phenomena. Chemical Reviews 1993,93(7):2395-2417.
    [162]Vorobjev Y. N.; Almagro J. C.; Hermans J., Discrimination between native and intentionally misfolded conformations of proteins:ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model. Proteins:Structure, Function, and Bioinformatics 1998,32(4): 399413.
    [163]Srinivasan J.; Cheatham III T. E.; Cieplak P., et al., Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. Journal of the American Chemical Society 1998,120(37):9401-9409.
    [164]Jayaram B.; Sprous D.; Young M., et al., Free energy analysis of the conformational preferences of A and B forms of DNA in solution. Journal of the American Chemical Society 1998, 120(41):10629-10633.
    [165]Corradi H. R.; Corrigall A. V.; Boix E., et al., Crystal structure of protoporphyrinogen oxidase from Myxococcus xanthus and its complex with the inhibitor acifluorfen. J. Biol. Chem. 2006,281(50):38625-38633.
    [166]Nishimura K.; Taketani S.; Inokuchi H., Cloning of a human cDNA for protoporphyrinogen oxidase by complementation in vivo of a hemG mutant of Escherichia coli. Journal of Biological Chemistry 1995,270(14):8076-8080.
    [167]Dailey T. A.; Dailey H. A.; Meissner P., et al., Cloning, sequence, and expression of mouse protoporphyrinogen oxidase. Archives of Biochemistry and Biophysics 1995,324(2): 379-384.
    [168]Emsley P.; Cowtan K., Coot:model-building tools for molecular graphics. Acta Crystallographica Section D 2004,60:2126-2132.
    [169]Brunger A. T.; Adams P. D.; Clore G. M., et al., Crystallography & NMR system:a new software suite for macro-molecular structure determination. Acta Crystallographica Section D 1998,54:905-921.
    [170]Laskowski R. A.; MacArthur M. W.; Moss D. S., et al., PROCHECK:a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 1993, 26:283-291.
    [171]Fraaije M. W.; Mattevi A., Flavoenzymes:diverse catalysts with recurrent features. Trends in Biochemical Sciences 2000,25(3):126-132.
    [172]Schneider-Yin X.; Harms J.; Minder E. I., Porphyria in Switzerland,15 years experience. Swiss Medical Weekly 2009,139(13-14):198-206.
    [173]Bonnin A.; Picornell A.; Orfila J., et al., Clinic and genetic evaluation of variegate porphyria (VP) in a large family from the Balearic Islands. Journal of Inherited Metabolic Disease 2009,32 (Suppl 1):S59-S66
    [174]Di Pierro E.; Ventura P.; Brancaleoni V., et al., Clinical, biochemical and genetic characteristics of Variegate Porphyria in Italy. Cell Mol Biol (Noisy-le-grand) 2009,55(2):79-88.
    [175]Puy H.; Gouya L.; Deybach J. C., Porphyrias. Lancet 2010,375(9718):924-937.
    [176]Burgi H.; Dunitz J.; Shefter E., Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. Journal of the American Chemical Society 1973,95(15):5065-5067.
    [177]Burgi H.; Lehn J.; Wipff G, Ab initio study of nucleophilic addition to a carbonyl group. Journal of the American Chemical Society 1974,96(6):1956-1957.
    [178]Dunitz J.; Lehn J.; Wipff G, Stereochemistry of reaction paths at carbonyl centres. Tetrahedron 1974,30(12):1563-1572.
    [179]Burgi H.; Dunitz J.; Shefter E., Chemical reaction paths. IV. Aspects of OC= O interactions in crystals. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry 1974,30(6):1517-1527.
    [180]Buergi H. B.; Dunitz J. D., From crystal statics to chemical dynamics. Accounts of Chemical Research 1983,16(5):153-161.
    [181]Liotta C. L.; Burgess E. M.; Eberhardt W. H., Trajectory analysis.1. Theoretical model for nucleophilic attack at. pi.-systems. The stabilizing and destabilizing orbital terms. Journal of the American Chemical Society 1984,106(17):4849-4852.
    [182]Elder G H.; Hift R. J.; Meissner P. N., The acute porphyrias. Lancet (North American Edition) 1997,349(9065):1613-1617.
    [183]Kauppinen R., Porphyrias. Lancet 2005,365(9455):241-252.
    [184]Duan Y.; Wu C.; Chowdhury S., et al., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry 2003,24(16):1999-2012.
    [185]Lee M. C.; Duan Y., Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins-Structure Function and Bioinformatics 2004,55(3):620-634.
    [186]Wang J. M.; Wang W.; Kollman P. A., et al., Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling 2006,25(2):247-260.
    [187]Akhtar M., Biosynthesis of tetrapyrroles. Elsevier:Amsterdam,1991.
    [188]Koch M.; Breithaupt C.; Kiefersauer R., et al., Crystal structure of protoporphyrinogen Ⅸ oxidase:a key enzyme in haem and chlorophyll biosynthesis. EMBO J.2004,23(8): 1720-1728.
    [189]Jones C.; Jordan P. M.; Akhtar M., Mechanism and stereochemistry of the porphobilinogen deaminase and protoporphyrinogen Ⅸ oxidase reactions:stereospecific manipulation of hydrogen atoms at the four methylene bridges during the biosynthesis of haem. Journal of the Chemical Society, Perkin Transactions 11984,2625-2633.
    [190]Bruice T. C.; Lightstone F. C., Ground state and transition state contributions to the rates of intramolecular and enzymatic reactions. Accounts of Chemical Research 1999,32(2):127-136.
    [191]Seeman J. I., Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics. Chemical Reviews 1983,83(2):83-134.
    [192]Bruice T. C.; Benkovic S. J., Chemical basis for enzyme catalysis. Biochemistry 2000, 39(21):6267-6274.
    [193]Lau E. Y.; Bruice T. C., Importance of correlated motions in forming highly reactive near attack conformations in catechol O-methyltransferase. Journal of the American Chemical Society 1998,120(48):12387-12394.
    [194]Hur S.; Bruice T. C., The near attack conformation approach to the study of the chorismate to prephenate reaction. Proceedings of the National Academy of Sciences of the United States of America 2003,100(21):12015-12020.
    [195]Kiss G.; Rothlisberger D.; Baker D., et al., Evaluation and ranking of enzyme designs. Protein Science 2010,19(9):1760-1773.
    [196]Luo J.; Bruice T. C., Dynamic structures of horse liver alcohol dehydrogenase (HLADH):□results of molecular dynamics simulations of HLADH-NAD+-PhCH2OH, HLADH-NAD+-PhCH2O-, and HLADH-NADH-PhCHO. Journal of the American Chemical Society 2001,123(48):11952-11959.
    [197]Bruice T. C, Computational approaches:Reaction trajectories, structures, and atomic motions. Enzyme reactions and proficiency. Chemical Reviews 2006,106(8):3119-3139.
    [198]Lightstone F. C.; Bruice T. C., Ground state conformations and entropic and enthalpic factors in the efficiency of intramolecular and enzymatic reactions.1. cyclic anhydride formation by substituted glutarates, succinate, and 3,6-endoxo-A4-tetrahydrophthalate monophenyl esters. Journal of the American Chemical Society 1996,118(11):2595-2605.
    [199]Post C. B.; Young L.; Zheng J., Conformational equilibrium of dihydronicotin amide in LDH-NADH. Pure and Applied Chemistry 1994,66(1):83-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700