用户名: 密码: 验证码:
斑马鱼松果体对视觉敏感性生物钟的维持作用及长时记忆缺陷突变体的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物钟在自然界的多种生物,如动物、植物和真菌中普遍存在。从单细胞的分裂生殖到植物的光合作用,动物的繁殖和激素分泌,以及在分子水平上,都有生物节律的存在。昼夜节律是部分原核生物和所有真核生物基本特征。斑马鱼作为一种在复杂性和简单性方面取得了很好平衡的二倍体脊椎动物,因其个体小,繁殖能力强,体外受精和发育,发育周期短,胚胎和幼鱼透明等独特优点成为理想的可应用于大规模遗传研究的脊椎动物模式生物。同时由于斑马鱼参与节律调控的主要分子机制与哺乳动物比较一致,其也成为适合研究生物节律的模式脊椎动物。
     在非哺乳脊椎动物中,松果体作为一个中枢起搏器调节动物行为和生理的昼夜节律。松果体感光细胞的生物钟性质,包括视蛋白表达的日夜转换和视网膜敏感性的振荡都已经得到了很好的数据证实。然而,调节视觉敏感性昼夜节律的基本机制和松果体中枢起搏器调节视觉敏感性昼夜节律功能的可能机制仍然有待发现。本研究中,我们构建了一个转基因斑马鱼品系[Tg(Gnat2:ga14-VP16/UAS:nfsB-mCherry)]。在这个转基因品系中,在松果体感光细胞中表达大肠杆菌硝基还原酶NTR。在胚胎早期发育中,转基因在视网膜和松果体的感光细胞中表达。随着年龄增长,在视网膜感光细胞中的转基因表达逐渐消失。直到第八个月,Gnat2启动子驱动的硝基还原酶不再在视网膜感光细胞中表达,但是仍然在松果体感光细胞中稳定表达。这提供了一种能够特异性杀死松果体感光细胞的模型,例如用甲硝唑处理该转基因鱼后,硝基还原酶NTR可以把药物前体甲硝唑转化为有毒DNA链接交联剂引起细胞死亡,从而特异性杀死松果体感光细胞。在松果体感光细胞缺失的情况下,斑马鱼的行为视觉敏感性保持不变,但是视锥细胞视杆细胞敏感性的节律减弱了。短时间的光照可以一定程度的修复这种行为视觉敏感性生物钟节律的减弱程度。综上,这些结果表明视网膜感光细胞能够对外界环境刺激产生反应,而且能产生视觉敏感性的生物钟节律。然而,仅仅是视网膜感光细胞还不足以维持这种节律。松果体感光细胞中产生的细胞信号可能对维持这种视觉敏感性的生物钟节律有一定贡献。
     学习和记忆是中枢神经系统高级活动的一种方式,是人类认知的基础。学习是在经验基础上改变行为反应的过程,记忆是学习到信息贮存和读出的过程。记忆根据持续时间的长短分为长时记忆和短时记忆。许多研究聚焦于学习和记忆如何进行的。但是学习和记忆作为一种复杂的行为,仍然有许多问题需要去探索研究。而在脊椎动物中发现学习和记忆的突变基因,对其机制的研究会有一定的贡献。本实验中以斑马鱼为模式动物,经ENU州诱变及大规模遗传筛选,利用抑制逃避反应的行为学方法获得一例学习记忆的斑马鱼突变体fgt。这种fgt斑马鱼突变体的训练后24小时的长时记忆显著的低于野生型。fgt突变体表现出正常的运动活性和正常的对黑色的倾向性。该突变体的F2代在训练后的24小时的长时记忆中有将近一半(13/30)显著的低于野生型,而另一半则相对正常。同时,在对一个新的环境的探索后,与学习记忆相关的即刻早期基因IEGs c-fos在该突变体将近一半F2代中的表达与野生型的对照有显著性的差异(13/30),另外一半相对正常,与行为学结果一致。这些结果表明,该突变体fgt是一个学习和记忆缺陷的显性突变。而该fgt突变体的发现对未来进一步学习和记忆相关的机制和信号通路提供了一种可能。
Circadian clock exist widely in a variety of organisms, such as animals, plants and fugi. Biological rhythm is present in fission of monoplasts, the photosynthesis of plants, breeding and hormone secretion of animals, as well as the molecular level. Circadian rhythm is one of basic characteristics in parts of prokaryotes and all of eukaryotes. Zebrafish (Danio rerio) is a diploid vertebrate with a good balance of complexity and simplicity. Zebrafish with small size, powerful reproductive capacity, embryo in vitro fertilization and development, short cyclogenl and transparent etc., is the ideal modle vertebrates for large-scale genetic research. Meanwhile, zebrafish also becomes a model animal for study in biological rhythm since the molecular mechanism of rhythm regulatory in zebrafish is similar to mammal.
     In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. The circadian nature of pineal photoreceptor cells, the day-night fluctuation of opsin expression and the oscillation of retinal sensitivity have been well documented. However, the fundamental mechanisms that regulate the circadian rhythms of visual sensitivity and the possible involvement of pineal central pacemakers in the regulation of the circadian rhythms of visual system functions remain to be examined. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E.coli nitroreductase(NTR) is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By8months of age, the Gnat2promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments in transgenic fishes with metronidazole, the NTR enzyme reduces nitroimidazole prodrugs metronidazole into cytotoxins that generate DNA interstrand crosslinking and specifically induce death of pineal photoreceptor. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity.Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity。
     Learning and memory, the basis of human cognitive, are mode of advanced activity of central nervous system. Learning is the ability to modify behavioral responses dependent on experience and memory is retention of this change for variable lengths of time, they characterize all animal species. Memory formation further into two distinct phases:short-term memory, and long-term memory. Studies focus on how learning and memory works. However, there are still many mysteries waiting for us to explore in learning and memory as a kind of complex behavior. Finding mutant genes in learning and memory contribute to the study of the mechanism in vertebrate animals. In this study we use zebrafish as a mode animal, isolate a zebrafish mutant in learn and memory named fgt by inhibitory avoidance assay in ENU mutagenesis and large-scale genetic screen. Long-term memory is weak in24hr after training in this fgt zebrafish mutant. The mutant shows normal locomotor activity and normal sensitivity to dark preference. About half of fgt mutant F2(13/30) have bad long-term memory when24hr after training. The expression of IEGs c-fos in half of fgt mutant F2(13/30) after learning in a novel environment increase distinctly from the expression in wild-type fishes, which were in accordance with the behavioral results. These data show that the mutant fgt is a dominant mutant with defect in long-term learning and memory. The identification of fgt mutant may provide a possibility in mechanism and signal pathway of learning and memory.
引文
[1]G. Streisinger, C. Walker, N. Dower, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature.1981.291(5813):p.293-296.
    [2]A. A. Borbely. Sleep in the rat during food deprivation and subsequent restitution of food. Brain Res.1977.124(3):p.457-471.
    [3]R. L. Williams, H. W. Agnew, Jr., W. B. Webb. Sleep Patterns in Young Adults:An Eeg Study. Electroencephalogr Clin Neurophysiol.1964.17:p.376-381.
    [4]O. Pourquie. The segmentation clock:converting embryonic time into spatial pattern. Science. 2003.301(5631):p.328-330.
    [5]R. R. Klevecz, J. Bolen, G. Forrest, et al. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci U S A.2004.101(5):p.1200-1205.
    [6]M. P. Gerkema, F. van der Leest. Ongoing ultradian activity rhythms in the common vole, Microtus arvalis, during deprivations of food, water and rest. J Comp Physiol A.1991.168(5):p. 591-597.
    [7]M. Saboureau, M. Masson-Pevet, B. Canguilhem, et al. Circannual reproductive rhythm in the European hamster (Cricetus cricetus):demonstration of the existence of an annual phase of sensitivity to short photoperiod. J Pineal Res.1999.26(1):p.9-16.
    [8]F. C. Hoppensteadt, J. B. Keller. Synchronization of periodical cicada emergences. Science.1976. 194(4262):p.335-337.
    [9]M. J. Gardner, K. E. Hubbard, C. T. Hotta, et al. How plants tell the time. Biochem J.2006. 397(1):p.15-24.
    [10]R. J. Konopka, S. Benzer. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA. 1971.68(9):p.2112-2116.
    [11]M. R. Ralph, R. G Foster, F. C. Davis, et al. Transplanted suprachiasmatic nucleus determines circadian period. Science.1990.247(4945):p.975-978.
    [12]R. Silver, J. LeSauter, P. A. Tresco, et al. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature.1996.382(6594):p. 810-813.
    [13]J. C. Dunlap. Molecular bases for circadian clocks. Cell.1999.96(2):p.271-290.
    [14]D. K. Welsh, S. H. Yoo, A. C. Liu, et al. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol. 2004.14(24):p.2289-2295.
    [15]S. Yamaguchi, H. Isejima, T. Matsuo, et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science.2003.302(5649):p.1408-1412.
    [16]A. J. McArthur, A. E. Hunt, M. U. Gillette. Melatonin action and signal transduction in the rat suprachiasmatic circadian clock:activation of protein kinase C at dusk and dawn. Endocrinology. 1997.138(2):p.627-634.
    [17]T. K. Tamai, A. J. Carr, D. Whitmore. Zebrafish circadian clocks:cells that see light. Biochem Soc Trans.2005.33(Pt 5):p.962-966.
    [18]H. Okamura, S. Yamaguchi, K. Yagita. Molecular machinery of the circadian clock in mammals. Cell Tissue Res.2002.309(1):p.47-56.
    [19]S. A. Cyran, A. M. Buchsbaum, K. L. Reddy, et al. vrille, Pdpl, and dClock form a second feedback loop in the Drosophila circadian clock. Cell.2003.112(3):p.329-341.
    [20]G. Q. Wang, J. Tong. [Advances in study on molecular mechanism of circadian clock in pineal gland]. Sheng Li Ke Xue Jin Zhan.2004.35(3):p.210-214.
    [21]K. Kume, M. J. Zylka, S. Sriram, et al. mCRYl and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell.1999.98(2):p.193-205.
    [22]T. K. Sato, S. Panda, L. J. Miraglia, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron.2004.43(4):p.527-537.
    [23]H. W. Korf, C. Schomerus, J. H. Stehle. The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv Anat Embryol Cell Biol.1998.146:p.1-100.
    [24]T. Ostholm, E. Brannas, T. van Veen. The pineal organ is the first differentiated light receptor in the embryonic salmon, Salmo salar L. Cell Tissue Res.1987.249(3):p.641-646.
    [25]H. J. Herwig. Comparative ultrastructural observations on the pineal organ of the pipefish, Syngnatus acus, and the seahorse, Hippocampus hudsonius. Cell Tissue Res.1980.209(2):p. 187-200.
    [26]G. A. Pu, J. E. Dowling. Anatomical and physiological characteristics of pineal photoreceptor cell in the larval lamprey, Petromyzon marinus. J Neurophysiol.1981.46(5):p.1018-1038.
    [27]I. Vigh-Teichmann, M. A. Ali, A. Szel, et al. Ultrastructure and opsin immunocytochemistry of the pineal complex of the larval Arctic charr Salvelinus alpinus:a comparison with the retina. J Pineal Res.1991.10(4):p.196-209.
    [28]I. Vigh-Teichmann, B. Vigh. Immunocytochemistry and calcium cytochemistry of the mammalian pineal organ:a comparison with retina and submammalian pineal organs. Microsc Res Tech.1992.21(3):p.227-241.
    [29]T. Deguchi. Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland. Science.1979.203(4386):p.1245-1247.
    [30]A. Roberts. Pineal eye and behaviour in Xenopus tadpoles. Nature.1978.273(5665):p.774-775.
    [31]R. S. Donham, M. D. Rollag, M. H. Stetson. Daily rhythms of pituitary-ovarian function in the immature hamster are independent of adrenal and pineal influence. J Reprod Fertil.1988.83(2): p.809-818.
    [32]Y. Gothilf, S. L. Coon, R. Toyama, et al. Zebrafish serotonin N-acetyltransferase-2:marker for development of pineal photoreceptors and circadian clock function. Endocrinology.1999. 140(10):p.4895-4903.
    [33]S. W. Wilson, S. S. Easter, Jr. Stereotyped pathway selection by growth cones of early epiphysial neurons in the embryonic zebrafish. Development.1991.112(3):p.723-746.
    [34]G. M. Cahill. Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Res.1996.708(1-2):p.177-181.
    [35]V. Begay, J. Falcon, G. M. Cahill, et al. Transcripts encoding two melatonin synthesis enzymes in the teleost pineal organ:circadian regulation in pike and zebrafish, but not in trout. Endocrinology.1998.139(3):p.905-912.
    [36]H. Mano, Y. Fukada. A median third eye:pineal gland retraces evolution of vertebrate photoreceptive organs. Photochem Photobiol.2007.83(1):p.11-18.
    [37]I. Masai, C. P. Heisenberg, K. A. Barth, et al. floating head and masterblind regulate neuronal patterning in the roof of the forebrain. Neuron.1997.18(1):p.43-57.
    [38]J. Robinson, E. A. Schmitt, F. I. Harosi, et al. Zebrafish ultraviolet visual pigment:absorption spectrum, sequence, and localization. Proc Natl Acad Sci U S A.1993.90(13):p.6009-6012.
    [39]H. Mano, D. Kojima, Y. Fukada. Exo-rhodopsin:a novel rhodopsin expressed in the zebrafish pineal gland. Brain Res Mol Brain Res.1999.73(1-2):p.110-118.
    [40]K. D. Larison, R. Bremiller. Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Development.1990.109(3):p.567-576.
    [41]J. Forsell, P. Ekstrom, I. N. Flamarique, et al. Expression of pineal ultraviolet-and green-like opsins in the pineal organ and retina of teleosts. J Exp Biol.2001.204(Pt 14):p.2517-2525.
    [42]V. B. Meyer-Rochow, Y. Morita, S. Tamotsu. Immunocytochemical observations on pineal organ and retina of the Antarctic teleosts Pagothenia borchgrevinki and Trematomus bernacchii. J Neurocytol.1999.28(2):p.125-130.
    [43]E. G. Gray, H. L. Pease. On understanding the organisation of the retinal receptor synapses. Brain Res.1971.35(1):p.1-15.
    [44]L. Lagnado, A. Gomis, C. Job. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron.1996.17(5):p.957-967.
    [45]T. Furukawa, E. M. Morrow, C. L. Cepko. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell.1997.91(4): p.531-541.
    [46]T. Furukawa, E. M. Morrow, T. Li, et al. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet.1999.23(4):p.466-470.
    [47]X. Li, S. Chen, Q. Wang, et al. A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX. Proc Natl Acad Sci U S A.1998.95(4):p. 1876-1881.
    [48]Y. Asaoka, H. Mano, D. Kojima, et al. Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish. Proc Natl Acad Sci U S A.2002. 99(24):p.15456-15461.
    [49]Y. Takanaka, T. Okano, K. Yamamoto, et al. A negative regulatory element required for light-dependent pinopsin gene expression. J Neurosci.2002.22(11):p.4357-4363.
    [50]Y. Takanaka, T. Okano, M. Iigo, et al. Light-dependent expression of pinopsin gene in chicken pineal gland. J Neurochem.1998.70(3):p.908-913.
    [51]G Vatine, D. Vallone, Y. Gothilf, et al. It's time to swim! Zebrafish and the circadian clock. FEBS Lett.2011.585(10):p.1485-1494.
    [52]S. Kohl, B. Baumann, T. Rosenberg, et al. Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet.2002.71(2):p. 422-425.
    [53]L. S. Weinstein, M. Chen, T. Xie, et al. Genetic diseases associated with heterotrimeric G proteins. Trends Pharmacol Sci.2006.27(5):p.260-266.
    [54]M. Michaelides, I. A. Aligianis, G. E. Holder, et al. Cone dystrophy phenotype associated with a frameshift mutation (M280fsX291) in the alpha-subunit of cone specific transducia (GNAT2). Br J Ophthalmol.2003.87(11):p.1317-1320.
    [55]S. E. Brockerhoff, F. Rieke, H. R. Matthews, et al. Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J Neurosci.2003.23(2):p.470-480.
    [56]S. Ying, S. L. Fong, W. B. Fong, et al. A CAT reporter construct containing 277bp GNAT2 promoter and 214bp IRBP enhancer is specifically expressed by cone photoreceptor cells in transgenic mice. Curr Eye Res.1998.17(8):p.777-782.
    [57]P. Goldsmith, W. A. Harris. The zebrafish as a tool for understanding the biology of visual disorders. Semin Cell Dev Biol.2003.14(1):p.11-18.
    [58]P. A. Raymond, L. K. Barthel. A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. Int J Dev Biol.2004.48(8-9):p.935-945.
    [59]T. Branchek, R. Bremiller. The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure. J Comp Neurol.1984.224(1):p.107-115.
    [60]T. Tsujimura, A. Chinen, S. Kawamura. Identification of a locus control region for quadruplicated green-sensitive opsin genes in zebrafish. Proc Natl Acad Sci U S A.2007. 104(31):p.12813-12818.
    [61]W. Luo, J. Williams, P. M. Smallwood, et al. Proximal and distal sequences control UV cone pigment gene expression in transgenic zebrafish. J Biol Chem.2004.279(18):p.19286-19293.
    [62]B. N. Kennedy, Y. Alvarez, S. E. Brockerhoff, et al. Identification of a zebrafish cone photoreceptor-specific promoter and genetic rescue of achromatopsia in the nof mutant. Invest Ophthalmol Vis Sci.2007.48(2):p.522-529.
    [63]R. Allada, P. Emery, J. S. Takahashi, et al. Stopping time:the genetics of fly and mouse circadian clocks. Annu Rev Neurosci.2001.24:p.1091-1119.
    [64]J. J. Loros, J. C. Dunlap. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu Rev Physiol.2001.63:p.757-794.
    [65]R. Stanewsky. Clock mechanisms in Drosophila. Cell Tissue Res.2002.309(1):p.11-26.
    [66]M. W. Young, S. A. Kay. Time zones:a comparative genetics of circadian clocks. Nat Rev Genet. 2001.2(9):p.702-715.
    [67]M. W. Hurd, J. Debruyne, M. Straume, et al. Circadian rhythms of locomotor activity in zebrafish. Physiol Behav.1998.65(3):p.465-472.
    [68]G. M. Cahill, M. W. Hurd, M. M. Batchelor. Circadian rhythmicity in the locomotor activity of larval zebrafish. Neuroreport.1998.9(15):p.3445-3449.
    [69]L. Li, J. E. Dowling. Zebrafish visual sensitivity is regulated by a circadian clock. Vis Neurosci. 1998.15(5):p.851-857.
    [70]L. Li, J. E. Dowling. Disruption of the olfactoretinal centrifugal pathway may relate to the visual system defect in night blindness b mutant zebrafish. J Neurosci.2000.20(5):p.1883-1892.
    [71]L. Li,J. E. Dowling. Effects of dopamine depletion on visual sensitivity of zebrafish. J Neurosci. 2000.20(5):p.1893-1903.
    [72]R. R. Rajendran, E. E. Van Niel, D. L. Stenkamp, et al. Zebrafish interphotoreceptor retinoid-binding protein:differential circadian expression among cone subtypes. J Exp Biol. 1996.199(Pt 12):p.2775-2787.
    [73]C. B. Green, G. M. Cahill, J. C. Besharse. Regulation of tryptophan hydroxylase expression by a retinal circadian oscillator in vitro. Brain Res.1995.677(2):p.283-290.
    [74]L. L. Cunningham, F. Gonzalez-Fernandez. Coordination between production and turnover of interphotoreceptor retinoid-binding protein in zebrafish. Invest Ophthalmol Vis Sci.2000.41(11): p.3590-3599.
    [75]J. Falcon, V. Bolliet, J. P. Collin. Partial characterization of serotonin N-acetyltransferases from northern pike (Esox lucius, L.) pineal organ and retina:effects of temperature. Pflugers Arch. 1996.432(3):p.386-393.
    [76]H. Kezuka, K. Aida, I. Hanyu. Melatonin secretion from goldfish pineal gland in organ culture. Gen Comp Endocrinol.1989.75(2):p.217-221.
    [77]A. Zachmann, J. Falcon, S. C. Knijff, et al. Effects of photoperiod and temperature on rhythmic melatonin secretion from the pineal organ of the white sucker (Catostomus commersoni) in vitro. Gen Comp Endocrinol.1992.86(1):p.26-33.
    [78]J. T. Gamse, H. Sive. Early anteroposterior division of the presumptive neurectoderm in Xenopus. Mech Dev.2001.104(1-2):p.21-36.
    [79]J. Falcon, K. M. Galarneau, J. L. Weller, et al. Regulation of arylalkylamine N-acetyltransferase-2 (AANAT2, EC 2.3.1.87) in the fish pineal organ:evidence for a role of proteasomal proteolysis. Endocrinology.2001.142(5):p.1804-1813.
    [80]G. M. Cahill. Circadian melatonin rhythms in cultured zebrafish pineals are not affected by catecholamine receptor agonists. Gen Comp Endocrinol.1997.105(2):p.270-275.
    [81]'N. Cermakian, D. Whitmore, N. S. Foulkes, et al. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. Proc Natl Acad Sci U S A.2000. 97(8):p.4339-4344.
    [82]D. Whitmore, N. S. Foulkes, U. Strahle, et al. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci.1998.1(8):p.701-707.
    [83]M. P. Pando, A. B. Pinchak, N. Cermakian, et al. A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc Natl Acad Sci U S A.2001. 98(18):p.10178-10183.
    [84]J. D. Plautz, M. Kaneko, J. C. Hall, et al. Independent photoreceptive circadian clocks throughout Drosophila. Science.1997.278(5343):p.1632-1635.
    [85]M. Kavaliers. Pineal control of ultradian rhythms and short-term activity in a cyprinid fish, the lake chub, Couesius plumbeus. Behav Neural Biol.1980.29(2):p.224-235.
    [86]S. Yamazaki, R. Numano, M. Abe, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science.2000.288(5466):p.682-685.
    [87]F. Delaunay, C. Thisse, O. Marchand, et al. An inherited functional circadian clock in zebrafish embryos. Science.2000.289(5477):p.297-300.
    [88]M. W. Hurd, G. M. Cahill. Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. J Biol Rhythms.2002.17(4):p.307-314.
    [89]N. Kazimi, G. M. Cahill. Development of a circadian melatonin rhythm in embryonic zebrafish. Brain Res Dev Brain Res.1999.117(1):p.47-52.
    [90]F. C. Davis, R. A. Gorski. Development of hamster circadian rhythms:role of the maternal suprachiasmatic nucleus. J Comp Physiol A.1988.162(5):p.601-610.
    [91]T. L. Page. Circadian rhythms of locomotor activity in cockroach nymphs:free running and entrainment. J Biol Rhythms.1990.5(4):p.273-289.
    [92]A. Sehgal, J. Price, M. W. Young. Ontogeny of a biological clock in Drosophila melanogaster. Proc Natl Acad Sci U S A.1992.89(4):p.1423-1427.
    [93]L. P. Shearman, S. Sriram, D. R. Weaver, et al. Interacting molecular loops in the mammalian circadian clock. Science.2000.288(5468):p.1013-1019.
    [94]D. Whitmore, N. S. Foulkes, P. Sassone-Corsi. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature.2000.404(6773):p.87-91.
    [95]Y. Kobayashi, T. Ishikawa, J. Hirayama, et al. Molecular analysis of zebrafish photolyase/cryptochrome family:two types of cryptochromes present in zebrafish. Genes Cells. 2000.5(9):p.725-738.
    [96]J. H. Postlethwait, Y. L. Yan, M. A. Gates, et al. Vertebrate genome evolution and the zebrafish gene map. Nat Genet.1998.18(4):p.345-349.
    [97]N. Miyamura, J. Hirayama, K. Sawanobori, et al. CLOCK:BMAL-independent circadian oscillation of zebrafish Cryptochromela gene. Biol Pharm Bull.2009.32(7):p.1183-1187.
    [98]J. B. Hogenesch, Y. Z. Gu, S. M. Moran, et al. The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J Neurosci.2000.20(13):p. RC83.
    [99]L. P. Shearman, M. J. Zylka, D. R. Weaver, et al. Two period homologs:circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron.1997.19(6):p.1261-1269.
    [100]M. Zhuang, Y. Wang, B. M. Steenhard, et al. Differential regulation of two period genes in the Xenopus eye. Brain Res Mol Brain Res.2000.82(1-2):p.52-64.
    [101]K. Kawakami. Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol.2004.77:p.201-222.
    [102]F. Kempken, F. Windhofer. The hAT family:a versatile transposon group common to plants, fungi, animals, and man. Chromosoma.2001.110(1):p.1-9.
    [103]K. Kawakami, A. Shima. Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene. 1999.240(1):p.239-244.
    [104]A. Urasaki, G. Morvan, K. Kawakami. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics.2006.174(2):p.639-649.
    [105]K. Kawakami. Tol2:a versatile gene transfer vector in vertebrates. Genome Biol.2007.8 Suppl 1:p. S7.
    [106]S. Parinov, I. Kondrichin, V. Korzh, et al. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn.2004.231(2):p.449-459.
    [107]J. B. Duffy. GAL4 system in Drosophila:a fly geneticist's Swiss army knife. Genesis.2002. 34(1-2):p.1-15.
    [108]J. A. Fischer, E. Giniger, T. Maniatis, et al. GAL4 activates transcription in Drosophila. Nature. 1988.332(6167):p.853-856.
    [109]A. H. Brand, E. L. Dormand. The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system. Curr Opin Neurobiol.1995.5(5):p.572-578.
    [110]A. H. Brand, J. P. Scurry, R. S. Planner, et al. Grapelike leiomyoma of the uterus. Am J Obstet Gynecol.1995.173(3 Pt 1):p.959-961.
    [111]N. Scheer, J. A. Campos-Ortega. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev.1999.80(2):p.153-158.
    [112]R. W. Koster, S. E. Fraser. Tracing transgene expression in living zebrafish embryos. Dev Biol. 2001.233(2):p.329-346.
    [113]P. Rorth. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci U S A.1996.93(22):p.12418-12422.
    [114]C. Grabher, J. Wittbrodt. Efficient activation of gene expression using a heat-shock inducible Gal4/Vp16-UAS system in medaka. BMC Biotechnol.2004.4:p.26.
    [115]M. E. Halpem, J. Rhee, M. G. Goll, et al. Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish.2008.5(2):p.97-110.
    [116]J. M. Davison, C. M. Akitake, M. G. Goll, et al. Transactivation from Gal4-VP16 transgenic insertions for tissue-speeific cell labeling and ablation in zebrafish. Dev Biol.2007.304(2):p. 811-824.
    [117]E. K. Scott, L. Mason, A. B. Arrenberg, et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods.2007.4(4):p.323-326.
    [118]K. Asakawa, M. L. Suster, K. Mizusawa, et al. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A. 2008.105(4):p.1255-1260.
    [119]E. Gahtan, H. Baier. Of lasers, mutants, and see-through brains:functional neuroanatomy in zebrafish. J Neurobiol.2004.59(1):p.147-161.
    [120]D. D. Han, D. Stein, L. M. Stevens. Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development. 2000.127(3):p.573-583.
    [121]M. J. Ruiz-Echevarria, A. Berzal-Herranz, K. Gerdes, et al. The kis and kid genes of the parD maintenance system of plasmid R1 form an operon that is autoregulated at the level of transcription by the co-ordinated action of the Kis and Kid proteins. Mol Microbiol.1991.5(11): p.2685-2693.
    [122]K. Slanchev, J. Stebler, G. de la Cueva-Mendez, et al. Development without germ cells:the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A.2005.102(11):p. 4074-4079.
    [123]C. J. Huang, T. S. Jou, Y. L. Ho, et al. Conditional expression of a myocardium-specific transgene in zebrafish transgenic lines. Dev Dyn.2005.233(4):p.1294-1303.
    [124]K. Pluta, M. J. Luce, L. Bao, et al. Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J Gene Med.2005.7(6):p. 803-817.
    [125]D. I. Edwards. Nitroimidazole drugs-action and resistance mechanisms. II. Mechanisms of resistance. J Antimicrob Chemother.1993.31(2):p.201-210.
    [126]J. A. Bridgewater, C. J. Springer, R. J. Knox, et al. Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer.1995.31A(13-14):p.2362-2370.
    [127]H. Pisharath, M. J. Parsons. Nitroreductase-mediated cell ablation in transgenic zebrafish embryos. Methods Mol Biol.2009.546:p.133-143.
    [128]J. A. Bridgewater, R. J. Knox, J. D. Pitts, et al. The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cell-permeable metabolite. Hum Gene Ther.1997.8(6):p.709-717.
    [129]S. Curado, R. M. Anderson, B. Jungblut, et al. Conditional targeted cell ablation in zebrafish:a new tool for regeneration studies. Dev Dyn.2007.236(4):p.1025-1035.
    [130]H. Pisharath, J. M. Rhee, M. A. Swanson, et al. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev.2007.124(3):p.218-229.
    [131]J. B. Moss, P. Koustubhan, M. Greenman, et al. Regeneration of the pancreas in adult zebrafish. Diabetes.2009.58(8):p.1844-1851.
    [132]J. E. Montgomery, M. J. Parsons, D. R. Hyde. A novel model of retinal'ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. J Comp Neurol.2010.518(6):p.800-814.
    [133]C. Walker, G. Streisinger. Induction of Mutations by gamma-Rays in Pregonial Germ Cells of Zebrafish Embryos. Genetics.1983.103(1):p.125-136.
    [134]C. B. Kimmel, D. A. Kane, C. Walker, et al. A mutation that changes cell movement and cell fate in the zebrafish embryo. Nature.1989.337(6205):p.358-362.
    [135]W. Driever, L. Solnica-Krezel, A. F. Schier, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development.1996.123:p.37-46.
    [136]A. Donovan, A. Brownlie, Y. Zhou, et al. Positional cloning of zebrafish ferroportinl identifies a conserved vertebrate iron exporter. Nature.2000.403(6771):p.776-781.
    [137]S. Guo, Y. Yamaguchi, S. Schilbach, et al. A regulator of transcriptional elongation controls vertebrate neuronal development. Nature.2000.408(6810):p.366-369.
    [138]E. W. Knapik, A. Goodman, M. Ekker, et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet.1998.18(4):p.338-343.
    [139]R. Geisler, G. J. Rauch, H. Baier, et al. A radiation hybrid map of the zebrafish genome. Nat Genet.1999.23(1):p.86-89.
    [140]N. A. Hukriede, L. Joly, M. Tsang, et al. Radiation hybrid mapping of the zebrafish genome. Proc Natl Acad Sci U S A.1999.96(17):p.9745-9750.
    [141]W. B. Barbazuk, I. Korf, C. Kadavi, et al. The syntenic relationship of the zebrafish and human genomes. Genome Res.2000.10(9):p.1351-1358.
    [142]H. L. Stickney, J. Schmutz,I. G. Woods, et al. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res.2002.12(12):p.1929-1934.
    [143]A. Amsterdam, S. Burgess, G. Golling, et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev.1999.13(20):p.2713-2724.
    [144]A. Nasevicius, S. C. Ekker. Effective targeted gene 'knockdown' in zebrafish. Nat Genet.2000. 26(2):p.216-220.
    [145]E. Wienholds, S. Schulte-Merker, B. Walderich, et al. Target-selected inactivation of the zebrafish rag1 gene. Science.2002.297(5578):p.99-102.
    [146]R. W. Gerard. Physiology and psychiatry. Am J Psychiatry.1949.106(3):p.161-173.
    [147]J. L. McGaugh. Memory--a century of consolidation. Science.2000.287(5451):p.248-251.
    [148]J. F. Guzowski. Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus. 2002.12(1):p.86-104.
    [149]M. J. Berridge. Neuronal calcium signaling. Neuron.1998.21(1):p.13-26.
    [150]S. Finkbeiner, M. E. Greenberg. Ca2+ channel-regulated neuronal gene expression. J Neurobiol. 1998.37(1):p.171-189.
    [151]J. Radulovic, T. Blank, I. Nijholt, et al. In vivo NMDA/dopamine interaction resulting in Fos production in the limbic system and basal ganglia of the mouse brain. Brain Res Mol Brain Res. 2000.75(2):p.271-280.
    [152]C. Cirelli, G. Tononi. Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci.2000.20(24):p.9187-9194.
    [153]M. Dragunow. A role for immediate-early transcription factors in learning and memory. Behav Genet.1996.26(3):p.293-299.
    [154]G. E. Hardingham, F. J. Arnold, H. Bading. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci.2001.4(3):p.261-267.
    [155]T. R. Soderling. CaM-kinases:modulators of synaptic plasticity. Curr Opin Neurobiol.2000. 10(3):p.375-380.
    [156]A. L. Mammen, K. Kameyama, K. W. Roche, et al. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase Ⅱ. J Biol Chem.1997.272(51):p.32528-32533.
    [157]T. R. Soderling, V. A. Derkach. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000.23(2):p.75-80.
    [158]U. Frey, R. G. Morris. Synaptic tagging and long-term potentiation. Nature.1997.385(6616):p. 533-536.
    [159]A. Routtenberg. Tagging the Hebb synapse. Trends Neurosci.1999.22(6):p.255-256.
    [160]A. J. Shaywitz, M. E. Greenberg. CREB:a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem.1999.68:p.821-861.
    [161]D. D. Ginty. Calcium regulation of gene expression:isn't that spatial? Neuron.1997.18(2):p. 183-186.
    [162]J. F. Guzowski, B. L. McNaughton, C. A. Barnes, et al. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci.1999.2(12):p. 1120-1124.
    [163]M. E. Greenberg, E. B. Ziff, L. A. Greene. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science.1986.234(4772):p.80-83.
    [164]H. Bito, K. Deisseroth, R. W. Tsien. CREB phosphorylation and dephosphorylation:a Ca(2+)-and stimulus duration-dependent switch for hippocampal gene expression. Cell.1996.87(7):p. 1203-1214.
    [165]D. F. Clayton. The genomic action potential. Neurobiol Learn Mem.2000.74(3):p.185-216.
    [166]H. Viola, M. Furman, L. A. Izquierdo, et al. Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus:effect of novelty. J Neurosci.2000.20(23):p. RC112.
    [167]K. J. Murphy, C. M. Regan. Contributions of cell adhesion molecules to altered synaptic weightings during memory consolidation. Neurobiol Learn Mem.1998.70(1-2):p.73-81.
    [168]A. Lanahan, P. Worley. Immediate-early genes and synaptic function. Neurobiol Learn Mem. 1998.70(1-2):p.37-43.
    [169]E. Nedivi, D. Hevroni, D. Naot, et al. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature.1993.363(6431):p.718-722.
    [170]L. Kaczmarek. Gene expression in learning processes. Acta Neurobiol Exp (Wars).2000.60(3): p.419-424.
    [171]K. J. Kovacs. Measurement of immediate-early gene activation-c-fos and beyond. J Neuroendocrinol.2008.20(6):p.665-672.
    [172]R. K. Chan, E. R. Brown, A. Ericsson, et al. A comparison of two immediate-early genes, c-fos and NGFI-B, as markers for functional activation in stress-related neuroendocrine circuitry. J Neurosci.1993.13(12):p.5126-5138.
    [173]K. J. Kovacs. c-Fos as a transcription factor:a stressful (re)view from a functional map. Neurochem Int.1998.33(4):p.287-297.
    [174]D. F. Marrone, M. J. Schaner, B. L. McNaughton, et al. Immediate-early gene expression at rest recapitulates recent experience. J Neurosci.2008.28(5):p.1030-1033.
    [175]S. M. Luckman, R. E. Dyball, G. Leng. Induction of c-fos expression in hypothalamic magnocellular neurons requires synaptic activation and not simply increased spike activity. J Neurosci,1994.14(8):p.4825-4830.
    [176]X. M. Ma, A. Levy, S. L. Lightman. Rapid changes of heteronuclear RNA for arginine vasopressin but not for corticotropin releasing hormone in response to acute corticosterone administration. J Neuroendocrinol.1997.9(10):p.723-728.
    [177]W. E. Cullinan, J. P. Herman, D. F. Battaglia, et al. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience.1995.64(2):p.477-505.
    [178]K. J. Kovacs, C. Arias, P. E. Sawchenko. Protein synthesis blockade differentially affects the stress-induced transcriptional activation of neuropeptide genes in parvocellular neurosecretory neurons. Brain Res Mol Brain Res.1998.54(1):p.85-91.
    [179]K. J. Kovacs, P. E. Sawchenko. Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci.1996.16(1):p. 262-273.
    [180]M. S. Harbuz, D. S. Jessop. Dissociation between c-fos mRNA in the paraventricular nucleus and corticosterone secretion in rats with adjuvant-induced arthritis. J Endocrinol.1999.163(1):p. 107-113.
    [181]L. Li, J. E. Dowling. A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proc Natl Acad Sci U S A.1997.94(21):p. 11645-11650.
    [182]S. Bretaud, S. Lee, S. Guo. Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease. Neurotoxicol Teratol.2004.26(6):p.857-864.
    [183]J. D. Plautz, S. A. Kay. Synchronous real-time reporting of multiple cellular events. Methods Cell Biol.1999.58:p.283-291.
    [184]M. B. Djamgoz, H. J. Wagner. Localization and function of dopamine in the adult vertebrate retina. Neurochem Int.1992.20(2):p.139-191.
    [185]C. J. Yu, Y. Gao, P. Li, et al. Synchronizing multiphasic circadian rhythms of rhodopsin promoter expression in rod photoreceptor cells. J Exp Biol.2007.210(Pt 4):p.676-684.
    [186]'D. A. Cameron, M. C. Cornwall, E. F. MacNichol, Jr. Visual pigment assignments in regenerated retina. J Neurosci.1997.17(3):p.917-923.
    [187]D. A. Cameron. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Vis Neurosci.2002.19(3):p.365-372.
    [188]J. Bilotta, S. Saszik, S. E. Sutherland. Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. Dev Dyn.2001.222(4):p.564-570.
    [189]S. Saszik, J. Bilotta. The effects of temperature on the dark-adapted spectral sensitivity function of the adult zebrafish. Vision Res.1999.39(6):p.1051-1058.
    [190]F. Emran, J. Rihel, A. R. Adolph, et al. Zebrafish larvae lose vision at night. Proc Natl Acad Sci USA.2010.107(13):p.6034-6039.
    [191]M. Blank, L. D. Guerim, R. F. Cordeiro, et al. A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem.2009. 92(4):p.529-534.
    [192]Y. Dudai, Y. N. Jan, D. Byers, et al. dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci U S A.1976.73(5):p.1684-1688.
    [193]M. S. Livingstone, P. P. Sziber, W. G. Quinn. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell.1984.37(1):p.205-215.
    [194]W. G. Quinn, P. P. Sziber, R. Booker. The Drosophila memory mutant amnesiac. Nature.1979. 277(5693):p.212-214.
    [195]E. Folkers, P. Drain, W. G. Quinn. Radish, a Drosophila mutant deficient in consolidated memory. Proc Natl Acad Sci U S A.1993.90(17):p.8123-8127.
    [196]J. R. Fetcho, K. S. Liu. Zebrafish as a model system for studying neuronal circuits and behavior. Ann N Y Acad Sci.1998.860:p.333-345.
    [197]J. C. Crabbe, D. Wahlsten, B. C. Dudek. Genetics of mouse behavior:interactions with laboratory environment. Science.1999.284(5420):p.1670-1672.
    [198]R. Gerlai. Gene-targeting studies of mammalian behavior:is it the mutation or the background genotype? Trends Neurosci.1996.19(5):p.177-181.
    [199]T. Miyashita, S. Kubik, G. Lewandowski, et al. Networks of neurons, networks of genes:an integrated view of memory consolidation. Neurobiol Learn Mem.2008.89(3):p.269-284.
    [200]J. F. Guzowski, B. Setlow, E. K. Wagner, et al. Experience-dependent gene expression in the rat hippocampus after spatial learning:a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci.2001.21(14):p.5089-5098.
    [201]A. Vazdarjanova, B. L. McNaughton, C. A. Barnes, et al. Experience-dependent coincident expression of the effector immediate-early genes arc and Homer la in hippocampal and neocortical neuronal networks. J Neurosci.2002.22(23):p.10067-10071.
    [202]T. Miyashita, S. Kubik, N. Haghighi, et al. Rapid activation of plasticity-associated gene transcription in hippocampal neurons provides a mechanism for encoding of one-trial experience. J Neurosci.2009.29(4):p.898-906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700