用户名: 密码: 验证码:
华南古—中生代之交火山作用的古气候影响和生物多样性响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从大地构造旋回角度来看,东特提斯地区从晚古生代到古-中生代之交大致代表了一个洋盆拉张到闭合的过程。其中,晚古生代,特别是中二叠世茅口期,在扬子西南缘峨眉山地区及其以西的金沙江、松潘-甘孜和阿尼玛卿地区大量海底玄武岩的存在,说明此时的东特提斯洋盆很可能处于拉张阶段。晚二叠世末东昆仑等地区放射虫硅质岩的消失和全球泛大陆的形成则可能代表洋盆闭合期。在洋盆闭合期,洋壳板块俯冲导致的岛弧中-酸性火山岩喷发,并在华南二叠纪-三叠纪界线附近形成广泛分布的界线火山粘土。
     在上述这一拉张到闭合的旋回中,发生了两次大规模的火山活动。这两次火山活动均造成了显著的环境变迁、海洋碳酸盐碳同位素负偏和生物集群灭绝。因此,将这两次大规模的火山活动及其环境和生物效应联系起来进行对比研究,不但可以相互参照和印证,而且可以从地球圈层构造旋回角度来探索岩石圈、大气圈、水圈和生物圈之间的协同演化规律,符合当今地球系统科学所提倡的全球观和系统性的新思想。
     中-晚二叠世之交,峨眉山及其以西的金沙江,松潘-甘孜和阿尼玛卿地区均大量的玄武岩喷发。其中具有重要影响的为峨眉山火成岩省大规模的玄武岩活动。峨眉山玄武岩主要分布于中国西南的云南、贵州和四川,大多覆盖在中二叠世浅海台地相茅口组灰岩之上。峨眉山玄武岩火山序列中的海相灰岩夹层中保存有瓜达鲁普统生物灭绝的丰富信息。峨眉山火山活动在中国西南瞬间释放了约25万平方公里、50万立方公里的熔岩,引起了巨大的环境灾难并造成大量海生生物的灭绝和陆地生物面貌的改变。分布在中国西南地区的众多剖面因此提供了在同一地区同时研究生物大灭绝和火山爆发的机会。本研究通过详细的牙形石生物地层工作显示了峨眉山火山作用开始于中二叠世Capitanian中期的Jinogondolella altudaensis牙形石带(-263Ma),以大规模的水-岩浆爆发式喷发为主并伴随以新希瓦格蜓(Neoschwagerinidae)为代表的大型蜂巢(?)类有孔虫和钙藻的大灭绝,这一时间早于传统观点所认为的中-晚二叠世之交;而华南大部分地区的玄武岩活动发生在稍后的J. xuanhanensis带,表现为玄武岩大规模覆盖在茅口组顶部J. xuanhanensis带灰岩之上。这种初始阶段喷发规模小,而随后伴随玄武岩活动在范围和规模上急速扩张的模式,在其它大火成岩省也很常见,如南美洲-纳米比亚的Parana-Etendeka火成岩省。峨眉山玄武岩的喷发和中二叠世的生物灭绝在时间关联支持两者存在因果联系。生物大灭绝早于大幅度碳同位素的负偏,该负偏表现出大火成岩省活动期间海洋-大气碳循环的剧烈波动。沉积学证据也不支持峨眉山火成岩省导致的公里级隆升学说,因为峨眉山喷发于中二叠世的茅口组台地灰岩之上,喷发期间的枕状熔岩等水下喷发证据遍布整个火成岩省,而喷发结束后大火成岩省主要被海陆交互相的龙潭组所覆盖。
     西伯利亚暗色岩系喷发于二叠纪-三叠纪之交,而火山作用引起的一系列环境效应可能导致了二叠纪末生物的大灭绝。生物大灭绝之后早三叠世的一些独有的现象也一直引起学术界的关注:如极低的生物多样性,大幅度的碳同位素波动,缓慢的生物复苏,早三叠世全球缺煤,缺生物礁和缺硅质岩等现象。海洋生态系统直到中三叠世才得到全面恢复。生物的宏观演化、生态系统的变化往往与环境变化息息相关。因此,研究从古-中生代之交由火山活动引起的环境气候变化和生物响应显得尤为重要。论文以20000多枚牙形石化石为核心材料,在建立详细的生物地层框架的基础上,通过牙形石碳氧同位素的测试分析,首次构建起了华南地区晚二叠世末到中三叠世早期的高精度古海水温度曲线。分析认为二叠纪与三叠纪之交急剧升高的地球温度是生物大灭绝的主要原因,创新性地提出了整个早三叠世是一个海水温度持续波动上升的超级温室期。这一研究结果为认识大灭绝后几百万年时间内生物复苏滞后的原因提供了崭新的思路。
     赤道海平面温度是衡量地质历史时期环境温度的重要参数,在本文用来作为量化西伯利亚大火成岩省喷发的环境效应的指标。中国华南地区在古-中生代之交是位于古赤道附近的浅海台地,具有世界上该时期最好的海相地层沉积,为本文的研究提供了良好的客观条件。深时古气温恢复需要良好的氧同位素指标,因为很多钙质壳体化石在成岩和石化过程中会发生改变,难以提供可靠的研究材料。本文的研究数据表明古-中生代之交的牙形石氧同位素数据表现出与碳同位素类似的大幅波动,总体在17.5‰到22.5‰之间震荡(NBS-120c=22.6‰),反应出整个早三叠世气温一直高位震荡到中三叠世(247Ma)。计算氧同位素数据可得出对应的古海水温度:二叠纪长兴期末的海水温度与现在的温度类似,约25℃(现代海洋赤道海平面年平均温度范围为25-31℃)。温度在二叠系-三叠系界线附近迅速上升,穿过现代海洋赤道海平面年平均温度范围,在早三叠世早期达到32℃;温度随后持续上升,在格里斯巴赫中-晚期达到第一个峰值35-38℃。格里斯巴赫期的极热事件造成了很多二叠纪的残存种的灭绝,如牙形石Hindeodus和菊石Otoceras。随后的迪奈尔期气温有所变冷,一直持续到斯密斯期最早期;斯密斯早-中期的温度相对平稳,在随后的斯密斯期-斯帕斯期之交的短暂时间内,海平面温度迅速上升了4℃,峰值可能达到了41℃,是早三叠世的第二个极热事件。在早斯帕斯期海水温度迅速降低,斯帕斯中-晚期海水温度缓慢升高,并保持在高位,斯帕斯期最末期气温有4-6℃的降低,直到中三叠世最早期气温趋于稳定,恢复到与晚二叠长兴期末相似的温度;整个早三叠世的5个百万年中,赤道海平面温度比现代海洋平均高约5-8℃。二叠-三叠纪之交海水温度的急剧升高与二叠纪末的生物大灭绝相吻合,从而证实了二叠纪末快速温室效应是导致这次生物大灭绝的重要原因之一。
     全球变暖对海洋生物有重要影响,这在晚二叠世生物灭绝后的海洋中表现得十分显著。一般动物的热耐受温度上限为47℃,大部分生物的上限只有40-45℃。随着温度的升高,新陈代谢速率会大幅加强,有氧运动需氧量迅速提升。这一过程一直持续到线粒体不能提供足够的三磷酸腺苷(ATP),随后动物体即开始进行线粒体的厌氧氧化,但厌氧氧化是不能长期持续的。这一过程随后导致低血氧症(hypoxaemia),生物体只能通过生成热休克蛋白(heat-shock protein)来短期缓解。而对于海洋生物而言,热耐受温度上限更低,这是因为随着温度的上升,需氧量也随之上升而海水中的氧气溶解度迅速降低,而体液的携氧能力也更低。因此,大部分海洋动物,特别是具有高运动能力和高需氧量的门类(如头足类),不能在常年超过35℃的水温中生存。这一自然规律可能是导致早三叠世的海洋,特别是赤道地区,低生物量的重要原因之一。这一客观规律在早三叠世的两次极热事件中表现得极为明显:几乎所有的门类在格里斯巴赫中-晚期和斯密斯晚期的极热事件中都受到了很大的打击。许多二叠纪的残存类型在格里斯巴赫中-晚期灭绝;牙形石和菊石在Smithian末期的极热事件中几乎灭绝,双壳和腹足等门类也经历了多样性的显著降低。
     二叠纪末生物大灭绝后各海洋生物门类长达5个百万年的不均匀复苏一直困扰地质学界。本文对古-中生代之交主要化石门类的分析表明,具有游泳能力和高起源率的门类(如菊石、牙形石)的复苏的更快,且多样性变化与温度变化有吻合关系:高温伴随生物多样性降低,较低的温度伴随生物多样性增高。而固着类型的海洋生物(如腕足,腹足类)也基本遵守这一规律,但总体多样性低于游泳类。而早三叠世的高温对低纬度海洋植物和无脊椎动物施加了重要的抑制作用。如钙藻在华南的早三叠世十分稀少,直到早三叠世晚期(Spathian)才逐步恢复;而同时期北部高纬度地区(如格陵兰岛、英属哥伦比亚、斯皮斯伯根岛)的钙藻则十分繁盛。固着生存的门类,如腕足类、腹足类,由于缺少游泳动物所具有的主动捕食和趋利避害的能力,它们在早三叠世的多样性明显低于游泳类,且在大灭绝后的复苏更为缓慢。
     高温可以导致动植物向高纬度地区迁移。早三叠世的鱼类主要集中在高纬度地区:世界上许多著名的鱼类化石埋藏点,如马达加斯加岛,格陵兰岛和加拿大英属哥伦比亚等,均产极为丰富的鱼类化石,但都属于南北中-高纬度地区。而中国华南(赤道地区)早三叠世的鱼类化石相对很少;最为著名的江苏句容早三叠世鱼类属于相对偏冷的迪奈尔期,其它时间段的鱼类化石更少,这种现象一直持续到早三叠晚期(Spathian中-晚期)。与海生动物类似,大量的陆地四足兽发现于南非Karoo盆地和俄罗斯等地。南极洲有森林和相当丰富的爬行和两栖动物。因为冷血动物具有很弱的体温能力,不能生活在过冷或过热的气候条件下。这些化石门类集中于高纬度的现象是由于全球变暖导致的生物迁移;而脊椎动物的高迁移力和低依氧热耐受性,使它们在温室时期能够首先离开赤道炎热地区。离片椎类两栖动物在二叠纪末生物大灭绝后的迅速复苏-辐射是早三叠世显著的特点之一。这种早期的两栖动物在三叠纪迅速占领了淡水生态系统的主要生态位。而早三叠世的离椎类两栖动物主要分布于南北纬40°以上;这与现代两栖动物的分布形成鲜明的对比:现代两栖动物主要分布于北纬400和南纬450之间。这是因为冷血动物,特别是两栖动物,体温调节能力极弱,不能适应过高和过低的温度;而早三叠世离椎类两栖动物的高纬度分布暗示了早三叠世的两极地区可能异常温暖。
     本文的古气温恢复还提供了困扰地质学界古植物灭绝和早三叠世缺煤和动物小型化等原因的最新解释。一般而言,赤道海平面温度在陆地上会被折射得更高,如现代赤道海平面温度为25-31℃,而赤道陆地地区的温度常常达到40-55℃。在早三叠世,这一温度在陆地上可能比现在的陆地最高气温更高。对于C3植物而言,超过30℃时光合作用逐渐减弱,而光合呼吸作用逐渐增强;在超过35℃时光合呼吸作用超过光合作用,大部分植物无法生存(C4植物,如现在的玉米、仙人掌等,在新生代才出现)。而高温也会增加细菌和真菌等分解者的分解能力,如现代亚马逊热带雨林的土壤即非常贫瘠,而前人的研究在早三叠世的南极发现了如今热带气候才有的低腐殖质土壤。低植物量和高分解率导致了早三叠世低纬度地区的陆相碳固定率很低,难以成煤。大体型动物的热耐受性通常更低,与高温下的高幼体死亡率相结合将产生一个小个体占主导地位的化石记录。动物的小型化是早三叠世的一个显著特色,被称为“小人国效应”(Lilliput effect)。多种门类,包括牙形石、腕足和腹足,在早三叠世都有变小的现象。本文将这种现象解释为高温度条件下一种自然现象。动物的小型化现象在地质历史时期的其它温室区间也有发现,如古新世-始新世极热事件(PETM)中哺乳动物发生了明显的变小。
     大型火山作用,特别是玄武岩大火成岩省的活动,在古-中生代之交的环境变化中起到了至关重要的作用,是影响全球碳循环的重要因素。峨眉山玄武岩的喷发是导致中二叠生物灭绝的重要原因。而西伯利亚大火成岩省诱发的超级温室是导致早三叠世缺煤、生物不均匀复苏、生物向高纬度迁移和小型化的原因。但也要认识到,气候变化是由地球各圈层多种因素共同主导的。短时的极热事件往往显示出正反馈作用,在其它负反馈将碳循环恢复到一种平衡态前,放大和加速初始碳释放的温室效应。这是极热事件通常滞后于初始碳释放(在本文为峨眉山和西伯利亚的火山作用)的一个重要原因。而负反馈作用--如硅酸盐的风化--则可以直接或间接的消耗二氧化碳。在强温室条件下,大陆风化和大气对流作用得到加强;随之而来的中-高纬度强降雨条件会将大量的营养物质带入海洋,从而激发中高纬度地区的海洋生产力,进一步增加海洋碳埋藏,间接消耗二氧化碳温室气体。
     综上,本文:1.首次构建了从晚二叠世末期到中三叠世早期的华南地区高精度的古海水温度曲线,并指出二叠纪-三叠纪之交古海水温度随着西伯利亚火山作用的喷发迅速升高,而随后的早三叠世则是由火山作用诱发的长达5个百万年的超级温室期;2.研究认为高温是控制早三叠世生物灭绝/复苏的主要因素,也是导致动物发生小型化和向高纬度地区迁移的原因;3.提出超级温室是导致早三叠世缺煤、缺后生生物礁的重要原因之一:4.建立了含峨眉山大火成岩省的高分辨率牙形石生物地层框架,指出峨眉山火山活动主要发生在中二叠世Capitanian中-晚期:5.建立了峨眉山火山活动与中二叠生物危机的时间对应关系——峨眉山的喷发与含蜂巢层的大型(?)类的灭绝和钙藻的转换相耦合;6.通过对茅口组/峨眉山玄武岩接触的野外观察和沉积学研究提出了与峨眉山“地幔柱公里级隆升”学说不同的看法。
In a tectonic perspective, the East Tethys likely represnted a transition from ocean basin extension to closing during the late Palaeozoic-Mesozoic interval.In the Middle Permian of Palaeozoic, extensive marine basalt was exposed in the Emeishan area on the southwest edge of Yangtze Platform, the Jianshajiang River, Songpan-Ganze Terrance and Amne Machin area, suggesting Eastern Tethys was probably in an extension stage. The disappearance of red radiolarian chert in eastern Kunlun and the of the super continent Pangea may suggest a closing stage of the East Tethys. The subduction of oceanic crust in the closure of Tethys likely linked to the activities of volcanic arc, which might be the source of wide-spreaded ash layers observed around the Permian-Triassic boundary in South China.
     Two major volcanisms accompanied such transion from extension to closure and triggered significant environmental changes, large carbonate carbon isotope perturbation and mass extinctions. Comparing these two volcanic events and their environmental-ecological consequenses thus enable us to obtain a better understanding on the co-evolution of Earth system. This conforms recent developments of the Earth System Science.
     Extensive basalt was widely developed at the Emeishan region, Songpan-Ganzi Terrance and Amne Machin area during the Middle-Late Permian transition, among which the Emeishan Flood Basalt was the most volumnous and could potentially trigger significant environmental changes. The Permian Emeishan LIP was a relatively small LIP that erupted on marine setting during its early stage.This unique setting enables us to conduct comprehensive conodont biostratigraphic and facies analysis studies on Maokou Limestones that were underlying and/or intercalated the initial lava flows. The studies sections span the localities from the LIP central area via LIP periphery to several hundred kilometers beyond the LIP margin. The results suggested the initial onset of the Emeishan volcanism was probably around middle Capitanian Jinogondolella altudaensis conodont zone, which was seen at Xiong Jia Chang and Pingdi sections of Guizhou Province. The large scale eruption only occurred later around J. xuanhanensis zone, which was seen at six sections of Sichuan and Yunnan Province. This phenomenon is also observed in other LIP (e.g. Parana-Etendeka) where the initial eruptions were small and increased in extent and volume with time. The onset of Emeishan volcanism coincided with-5~-6‰negative shift of carbonate carbon isotope around J. altudaensis zone, the extinction of keriotheca-walled fusulinaceans (e.g., Neoschwagerinidae), and the changeover of calcareous algae. Together with former studies, we conclude that the initial and main stages of Emeishan volcanism were within the Capitanian [~263Ma (million years ago)] rather than around the Gaudalupingian-Lopingian boundary (-259Ma). Our conodont data provide not only important constraints on biostratigraphic controls of Emeishan volcanism, but also the correlation criteria for further studies. The Guadalupian Crisis predates a6‰carbon isotope negative excurtion suggesting subsequent severe disturbance of the ocean-atmosphere carbon cycle.
     The Siberian flood basalt unleashed around the Permian-Triassic interval probably played critical roles in the end-Permian mass extinction and likely trigered a green house state in the aftermath of this crisis. The Early Triassic interval (~250Ma) came at the end of an interval of major climatic change in the aftermath of the end-Permian mass extinction. The Carboniferous-Permian interval saw major and prolonged glaciations in southern polar latitudes but this ice age terminated by the end of Early Permian. Small, mountain glaciers may have persisted a little longer but after the Middle Permian there were few if any glaciers left. The ocean at this time was dominated by diverse and abundant organisms such as the ammonoids, brachiopods, corals, foraminifera, and radiolarians. On land, the dominant animals of the Late Permian were the herbivorous pareiasaurs, and the top predators were the gorgonopsids. They lived in a terrestrial ecosystem with vegetation that was dominated by seed-bearing gymnosperms. Most of these marine and terrestrial organisms were lost in the end-Permian mass extinction and replaced by the low diversity and monotonous assemblages in the Early Triassic:a shrub-like tree fern named Dicroidium and a pig-sized herbivorous reptile named Lystrosaurus dominated on land while mollusks, notably a bivalve called Claraia, appeared in a great number in the ocean. The Early Triassic world took an unusually long time to recover from the mass extinction, diversity in most ecosystems remained low for5million years. The interval was characterized by a global absence of coal burial, deep-sea radiolarian chert formation and metazoan reefs and the prevalence of small and dwarfed animals. Conditions must have been harsh at this time and new Mesozoic marine communities were only gradually established in the Middle Triassic.
     Calculating the temperature changes during this extinction has proved difficult because calcite-based thermometers of fossils like brachiopod suffered great losses in the end-Permian mass extinction and are very rare in the Early Triassic. Other shelled-fossils, such as bivalves, mainly consisted of aragonite or high-magnesium calcite that is metastable during the diagenasis and thus unreliable for reconstructing the original oxygen isotopic composition that is used to determine temperatures. Conodont bio-apatite is very resistant to post-depositional changes and is ideal for temperature reconstructions in deep time. Equally fortunate, conodonts, suffered little loss in the mass extinction and so they are able to provide a continuous temperature record across the mass extinction.
     Conodont oxygen isotope ratios suggest that the equatorial sea surface temperatures of the latest Permian were around25℃, very similar to those of today (the annual mean value of the equatorial sea surface temperature is roughly in25-30℃range). The temperatures quickly increased to32℃at the beginning of Early Triassic and continued to increase, reaching a thermal maximum within the Griesbachian. Many Permian survivors, such as the conodont Hindeodus and the ammonoid Otoceras, went extinct at the end of the Griesbachian and these losses may have been caused by the late Griesbachian Thermal Maximum. The following substage, the Dienerian, saw a3-4℃temperature decrease which coincides with a transient recovery pulse in which several groups began to diversify. The early and middle parts of Smithian, represent a relatively stable high temperature plateau but the late Smithian saw a further2℃temperature increase to produce sea surface temperatures that exceeded40℃during the late Smithian. This was the hottest interval in the Early Triassic and one of the hottest intervals ever recorded. The Spathian, saw an initial cooling trend followed by relatively stable temperatures in the middle part and further cooling at the end of this stage and stabilization of temperatures.
     High temperatures would be expected to exert major impacts on marine lives. This is much more clear in the aftermach of the end-Permian mass extinction. Temperatures above45℃cause protein denaturation for most animals and their response, to produce heat-shock proteins, can only delay death for a short interval. However, for marine animals, the thermal limit is even lower because aerobic metabolic demands increase with temperature whilst oxygen solubility decreases in seawater and bodily fluids as temperature increases. Thus, most marine organisms cannot long survive when temperatures exceed35℃. This is most clearly for creatures with high performance and consequently high oxygen demand, such as ammonoid cephalopods and fish. The former suffered a major diversity decline in the late Smithian Thermal Maximum that was silimar great compared to their losses during the end-Permian mass extinction. Nektonic vertebrates, such as fishes and ichthyosaurs, show both high mobility and low oxygen-dependent thermal tolerance. They could vacate the equator and migrate to more comfortable areas when temperature increases. This is clearly shown in the fossil record. In the late Permian, fishes were globally distributed. They became rare in equatorial waters during the Griesbachian and Dienerian and became very scarce in low latitudes during the Smithian. In contrast, at higher latitudes during the Smithian, in places such as Spitsbergen and British Columbia, the fish fossil record is exceptional with abundant and diverse faunas present. Interestingly, ichthyosaurs first appeared in northern high latitudes during the Smithian and yet they did not appear in low latitude waters until the late Spathian several million years later. Fishes and ichthyosaurs returned to the equator during the late Spathian to early Anisian (Middle Triassic) and showed a globally distributed pattern that had not seen since the late Permian.
     The active migration of vertebrates with temperature oscillations can be examined on land. Most abundant and fairly diverse Early Triassic tetrapod fossil assemblages are known from high latitudes such as South Africa and Antarctica in the south and the Russian Federations in the north. In contrast, Early Triassic terrestrial strata from low latitudes is widespread (e.g. the Buntsandstein of central Europe) and has been studied intensively for200years and yet its vertebrate remains are exceptionally rare; only in the Spathian and Middle Triassic do they start to become common. Again the prohibitively high equatorial temperatures at this time can explain this pattern:life in the tropics was unsustainable due to the heat.
     The uneven recovery in the aftermach of the end-Permian mass extinction is a matter of intense debets and has puzzled geologists for years. Groups with swimming abilities and high origination rates, such as conodont and ammonoids, recovered much faster. Their diversity shows a clear inverse relationship with temperature fluctuations:high temperatures corresponding to low diversity whist low temperatures corresponding to high diversity. In contrast, sessile groups such as brachipods and gastropods show much lower diversity. High temperatures in the Early Triassic supressed both marine plants and invertibrates in the low latitudes. For example, calcareous algae were exceptionally rare in South China in the first two substages of Early Triassic. Calcareous algae did not become more common until the Spathian, a stark contrast to the high latitudes records—coeval algae thrived in Greenland, Spitsbergen, British Columbia. Sessile groups such as brachipods and gastropods lack the abilities to avoid hostile environments thus show much lower diversities than the free-living groups and recovered much slower in the aftermath of P-T mass extinction.
     Our high temperature scenario offers alternative explanations for the coal gap and Lilliput effect in the Early Triassic. The middle30s℃sea surface temperatures are likely to correspond to continental temperatures of40-45℃. Such high temperatures would have been inimical to most plants and animals because the photorespirations dominate over photosynthesis in C3plants when temperatures exceed35℃whist the upper thermal tolerance of ectotherms is below45℃. Furthermore, high temperatures enhance the activities of decomposers (e.g., bacteria and fungi). The low plant mass and high decomposition rate under high temperature conditions were likely responsible for the suspension of global peat formation in the Early Triassic. The gymnosperm forests and peat formation first returned at high latitudes in the late Spathian to Anisian whist this return was much later in the equatorial. In equatorial South China, peat-forming conditions were not restored until the Late Triassic, about15million years after their disappearance. The prevalence of small species, both on land and in the ocean, is a stand-out feature in the Early Triassic low latitudes fossil records-a phenomenon that has been named the "Lilliput effect". The prevalence of small size can be explained by the observation that many organisms decrease their body size as temperatures increase. Together with increased juvenile mortalities, hothouse environments will produce fossil records that are dominated by the small. Similar size reductions among mammals are also observed during the Pal eocene-Eocene transition—another hothouse interval some55million years ago.
     In conclusion, the volcanisms (especially the LIP activities) were probably the dominate factors on climate changes during the Palaeozoic-Mesozoic transition. The rapid warming during the Permian-Triassic transition was likely induced by the massive carbon release of the Siberia Traps. Sillisic volcanisms may have contributed to the maintaince of the~5Myr warmhouse climate in the Early Triassic. Transient warming events in greenhouse worlds normally represent enhanced effects of positive feedbacks, accelerated and magnified initial carbon ejections (in this case, eruptions of the Emeishan LIP and the Siberia Traps), before negative feedbacks restore the carbon cycle to a steady state. This is likely a key reason that carbon ejections predates two thermal maxima in the Early Triassic. However, it is noteworthy that the climate evolution of the Earth involves more complex feedbacks and compensations of carbon cycles. Chemical weathering is likely to be high under the hothouse conditions. High atmosphere convections and run-off rate in middle-high latitudes will bring more nutrients to oceans thus stimulates primary productivities. These processes will either consume CO2directly or convert CO2into organic carbon and ultimately draw down the atmospheric pCO2level.
     In conclusion, this study:1). firstly established a high-resolution temperature record for the latest Permian to early Middle Triassic interval and suggest that the sudden temperature raise in P-T boundary interval coincide with the carbon ejections of the Siberia Traps. The following Early Triassic is one of the hottest green house interval during the Phanerszoic. Minor silicic volcanisms could contribute to maintain such presistant warm house conditions for5Myr (million years);2). suggested high temperatures controlled the nature and pace of exinction and recovery in the Early Triassic and likely a diving factor for the Lilliput effects and the dynamic immigrations of faunas and flores;3). established a hypothesis that the high temperatures were a contributing factor for the coal and coral reef gaps;4). established high-resolution conodont biostratigraphic framework for the Emeishan flood province and suggest that the major volcanic activities occurred in the Middle Permian;5). established a cause-and-effect link between the eruptions of Emeishan Basalt and the Middle Permian mass extinction—the extinctions of keriotheca-walled fusulinaceans and the changeover of calcareous algae coincided with the main phase of volcanism;6). careful obseversions on the Maokou-Emeishan contacts across the Emeishan LIP offered no evidence for a "kilometer-scale pre-volcanic uplift". Rather, a dynamic topography variation during the plume acitivies is prosposed for the Emeishan Large Igneous Province (LIP).
引文
[1]Fitt, WK, Brown, BE, Warner, ME, et al, Coral Bleaching:Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs,2001.20:51-56.
    [2]Orr, JC, Fabry, VJ, Aumont, O, et al, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature,2005.437(7059):681-686.
    [3]Chen, I-C, Hill, JK, Ohlemuller, R, et al, Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science,2011.333(6045):1024-1026.
    [4]Sheridan, JA and Bickford, D, Shrinking body size as an ecological response to climate change. Nature Climate Change,2011.1(8):401-406.
    [5]Stuart, SN, Chanson, JS, Cox, NA, et al, Status and Trends of Amphibian Declines and Extinctions Worldwide. Science,2004.306(5702):1783-1786.
    [6]Wignall, PB, Large igneous provinces and mass extinctions. Earth-Science Reviews,2001. 53(1-2):1-33.
    [7]Wang, XD, Ueno, K, Mizuno, Y, et al, Late Paleozoic faunal, climatic, and geographic changes in the Baoshan block as a Gondwana-derived continental fragment in southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology,2001.170(3-4):197-218.
    [8]Sun, Y, Lai, X, Wignall, PB, et al, Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos,2010.119(1-2):20-33.
    [9]殷鸿福,黄思骥,张克信,等,华南二叠纪-三叠纪之交的火山活动及其对生物灭绝的影响.地质学报,1989.2:169-181.
    [10]Jin, X, Permo-Carboniferous sequences of Gondwana affinity in southwest China and their paleogeographic implicatons. Journal of Asian Earth Sciences,2001.20:633-646.
    [11]Visscher, H, Looy, CV, Collinson, ME, et al, Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences of the United States of America,2004.101(35):12952-12956.
    [12]Zachos, J, Pagani, M, Sloan, L, et al, Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present Science,2001.292(5517):686-693.
    [13]Zachos, JC, Dickens, GR, and Zeebe, RE, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature,2008.451 (7176):279-283.
    [14]Zachos, JC, Wara, MW, Bohaty, S, et al, A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum. Science,2003:1551-1554.
    [15]Liu, Z, Pagani, M, Zinniker, D, et al, Global Cooling During the Eocene-Oligocene Climate Transition. Science,2009.323(5918):1187-1190.
    [16]Ghosh, P, Adkins, J, Affek, H, et al.,13C-18O bonds in carbonate minerals:A new kind of paleothermometer. Geochimica et Cosmochimica Acta,2006.70(6):1439-1456.
    [17]Keating-Bitonti, CR, Ivany, LC, Affek, HP, et al, Warm, not super-hot, temperatures in the early Eocene subtropics. Geology,2011.39(8):771-774.
    [18]Bottjer, DJ, The beginning of the Mesozoic:70 million years of environmental stress and extinction, in Extinctions in the History of Life, P.D. Taylor, Editor.2004, Cambridge University Press:Cambridge.99-118.
    [19]Wignall, PB, Sun, Y, Bond, DPG, et al, Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China Science,2009.324:1179-1182.
    [20]Reichow, MK, Pringle, MS, AI'Mukhamedov, AI, et al., The timing and extent of the eruption of the Siberian Traps large igneous province:Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters,2009.277(1-2):9-20.
    [21]Ovtcharova, M, Bucher, H, Schaltegger, U, et al, New Early to Middle Triassic U-Pb ages from South China:Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters,2006.243(3-4): 463-475.
    [22]Payne, JL, Lehrmann, DJ, Wei, JY, et al, Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction. Science,2004.305:506-509.
    [23]Galfetti, T, Bucher, H, Martini, R, et al, Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery. Sedimentary Geology,2008.204:36-60.
    [24]Lehrmann, DJ, Enos, P, Payne, JL, et al, Permian-Triassic boundary and a Lower-Middle Triassic boundary sequence on the Great Bank of Guizhou, Nanpanjiang basin, southern Guizhou Province. Albertiana,2005.33:149-186.
    [25]Jin, Y, Shen, SZ, Henderson, CM, et al, The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 2006.29(4):253-262.
    [26]Yin, HF, Zhang, KX, Tong, JN, et al, The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes,2001.24(2):102-114.
    [27]Lehrmann, DJ, Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China Geology,1999.27(4):359-362.
    [28]Lehrmann, DJ, Payne, JL, Felix, SV, et al, Permian-Triassic Boundary Sections from Shallow-Marine Carbonate Platforms of the Nanpanjiang Basin, South China:Implications for Oceanic Conditions Associated with the End-Permian Extinction and Its Aftermath. Palaios,2003.18(2):138-152.
    [29]Galfetti, T, Bucher, H, Ovtcharova, M, et al, Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth and Planetary Science Letters,2007.258:593-604.
    [30]Hochuli, PA, Hermann, E, Vigran, JO, et al, Rapid demise and recovery of plant ecosystems across the end-Permian extinction event Global and Planetary Change,2010. 74:144-155.
    [31]Shen, S-z, Crowley, JL, Wang, Y, et al, Calibrating the End-Permian Mass Extinction. Science,2011.334(6061):1367-72.
    [32]Tong, J and Zhao, L, Lower Triassic and Induan-Olenekian Boundary in Chaohu, Anhui Province, South China Acta Geologica Sinica-English Edition,2011.85(2):399-407.
    [33]Xie, S, Pancost, RD, Yin, H, et al., Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature,2005.434:494-497.
    [34]Sun, Y, Joachimski, MM, Wignall, PB, et al., Lethally Hot Temperatures During the Early Triassic Greenhouse. Science,2012.338(6105):366-370.
    [35]Liu, B and Xu, X, Atlas of the lithofacies and Paleogeography of South China Sinian-Triassic, B. Liu and X. Xu, Editors.1994, Science Press:Beijing.192.
    [36]Sepkoski Jr, JJ, A factor analytic description of the Phanerozoic marine fossil record. Paleobiology,1981:36-53.
    [37]Stanley, SM and Yang, X, A double mass extinction at the end of the Paleozoic Era Science, 1994.266(5189):1340-1344.
    [38]Jin, Y, Wang, Y, Wang, W, et al, Pattern of marine mass extinction near the Permian-Triassic boundary in South China Science,2000.289(5478):432-436.
    [39]Erwin, DH, The Permo-Triassic extinction. Nature,1994.367(6460):231-236.
    [40]Yang, X, Liu, J, and Shi, G, Extinction process and patterns of Middle Permian Fusulinaceans in southwest China. Lethaia,2004.37(2):139-147.
    [41]Wang, X-D and Sugiyama, T, Diversity and extinction patterns of Permian coral faunas of China Lethaia,2000.33(4):285-294.
    [42]Twitchett, RJ, The Lilliput effect in the aftermath of the end-Permian extinction event Palaeogeography, Palaeoclimatology, Palaeoecology,2007.252(1-2):132-144.
    [43]Lehrmann, DJ, Ramezani, J, Bowring, SA, et al, Timing of recovery from the end-Permian extinction:Geochronologic and biostratigraphic constraints from south China Geology, 2006.34(12):1053-1056.
    [44]Retallack, GJ, Veevers, JJ, and Morante, R, Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin,1996.108(2):195-207.
    [45]Beauchamp, B and Baud, A, Growth and demise of Permian biogenic chert along northwest Pangea:evidence for end-Permian collapse of thermohaline circulation. Palaeogeography Palaeoclimatology Palaeoecology,2002.184:37-63.
    [46]Yamakita, S, Takemura, A, Kamata, Y, et al, A Conodont Biostratigraphic Framework of a Permian/Triassic Ocean-floor Sequence in the Accretionary Waipapa Terrane at Arrow rocks, Northland, New Zealand.2009.1-17.
    [47]Flilgel, E, Pangean shelf carbonates:controls and paleoclimatic significance of Permian and Triassic reefs, in Pangea:Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent, G.D. Klein, Editor.1994, Geological Society of America Special Publication.247-266.
    [48]Fielding, CR, Frank, TD, Birgenheier, LP, et ai, Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia:a record of alternating glacial and nonglacial climate regime. Journal of the Geological Society, London,2008.165(1):129-140.
    [49]金玉玕,二叠纪生物集群绝灭的两个阶段,in Palaeoworld,'中国科学院南京地质古生物研究所,主编.1991,南京大学出版社:南京.78-79.
    [50]Hallam, A and Wignall, PB, Mass extinctions and sea-level changes. Earth-Science Reviews, 1999.48(4):217-250.
    [51]Ross, CA and Ross, JR, Late Paleozoic sea levels and depositional sequences. Cushman Foundation for Foraminiferal Research, Special Publication,1987.24(1987):137-140.
    [52]金玉玕,张进,尚庆华,前乐平统海洋动物灾变事件.古生物学报,1995.34(4):410-427.
    [53]Shen, J, Algeo, TJ, Hu, Q, et al., Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology,2012.40(11):963-966.
    [54]Courtillot, V, Jaupart, C, Manighetti, I, et al, On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters,1999.166(3-4):177-195.
    [55]Benton, MJ, When life nearly died:the greatest mass extinction of all time.2005, London: Thames & Hudson
    [56]Hallam, A and Wignall, PB, Mass Extinctions and Their Aftermath.1997, Oxford:Oxford Univ. Press.320.
    [57]Payne, JL and Clapham, ME, End-Permian Mass Extinction in the Oceans:An Ancient Analog for the Twenty-First Century? Annual Review of Earth and Planetary Science,2012. 40:89-111.
    [58]戎嘉余,方宗杰,生物大灭绝与复苏——来自华南古生代和三叠纪的证据.2004,合肥:中国科学技术大学出版社.
    [59]Becker, L, Poreda, RJ, Basu, AR. et al., Bedout:a possible end-Permian impact crater offshore of northwestern Australia Science,2004.304:1469-1476.
    [60]Wignall, PB, Thomas, B, Willink, R, et al., Is Bedout an impact crater? Take 1. Science, 2004.306:609-610.
    [61]Becker, L, Poreda, RJ, Hunt, AG, et al., Impact Event at the Permian-Triassic Boundary: Evidence from Extraterrestrial Noble Gases in Fullerenes. Science,2001.291(5508): 1530-1533.
    [62]Farley, KA, Ward, P, Garrison, G, et al., Absence of extraterrestrial 3He in Permian-Triassic age sedimentary rocks. Earth and Planetary Science Letters,2005.240:265-275.
    [63]Retallack, GJ, Seyedolali, A, Krull, ES, et al, Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia. Geology,1998.26(11):979-982.
    [64]Langenhorst, F, Kyte, FT, and Retallack, GJ, Reexamination of Quartze Grains from the Permian-Triassic Boundary Section at Graphite Peak, Antarctica, in Lunar and Planetary Science XXXVI2005.
    [65]Retallack, GJ and Jahren, HA, Methane release from igneous intrusion of coal during Late Permian extinction events. Journal of Geology,2008.116(1):1-20.
    [66]Grasby, SE, Sanei, H, and Beauchamp, B, Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geoscience,2011.4:104-107.
    [67]Wignall, PB and Twitchett, RJ, Extent, duration, and nature of the Permian-Triassic superanoxic event. Geological Society of America Special Paper,2002.356:395-413.
    [68]Isozaki, Y, Permo-Triassic Boundary Superanoxia and Stratified Supcrocean:Records from Lost Deep Sea Science,1997.276:235-238.
    [69]Bond, DPG and Wignall, PB, Pyrite framboid study of marine Permian-Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin,2010.122(7/8):1265-1279.
    [70]Wignall, PB and Twitchett, RJ, Oceanic Anoxia and the End Permian Mass Extinction. Science,1996.272(5265):1155-1158.
    [71]Ward, PD, Botha, J, Buick, R, et al, Abrupt and Gradual Extinction Among Late Permian Land Vertebrates in the Karoo Basin, South Africa. Science,2005.307(5710):709-714.
    [72]Kump, LR, Pavlov, A, and Arthur, MA, Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia Geology,2005.33(5):397-400.
    [73]Beerling, DJ, Harfoot, M, Lomax, B, et al, The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007.365(1856): 1843-1866.
    [74]Erwin, DH, The Great Paleozoic Crisis Life and Death in the Permian.1993, New York: Columbia University Press.
    [75]Yin, HF, Feng, QL, Lai, XL, et al, The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Global and Planetary Change,2007. 55(1-3):1-20.
    [76]Yang, H, Chen, ZQ, Wang, Y, et al, Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2011.308(1-2):111-128.
    [77]Kershaw, S, Zhang, T, and Lan, G, A?microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology,1999.146(1-4):1-18.
    [78]王永标,童金南,王家生,等,华南二叠纪末大绝灭后的钙质微生物岩及古环境意义.科学通报,2005.50(6):552-558.
    [79]Xie, S, Pancost, RD, Wang, Y, et al, Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology,2010.38(5):447-450.
    [80]Song, H, Wignall, PB, Chen, Z-Q, et al, Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology,2011.39(8):739-742.
    [81]Stanley, SM, Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proceedings of the National Academy of Sciences of the United States of America,2009.106(36):15264-15267.
    [82]童金南,殷鸿福,早三叠世生物与环境研究进展.古生物学报,2009.48(3):497-508.
    [83]Payne, JL, Lehrmann, DJ, Christensen, S, et al, Environmental and biological controls on the initiation and growth of a Middle Triassic (Anisian) reef complex on the Great Bank Of Guizhou, Guizhou Province, China. Palaios,2006.21(4):325-343.
    [84]Zhang, Q, Zhou, C, Lu, T, et al, A conodont-based Middle Triassic age assignment for the Luoping Biota of Yunnan, China. Science in China Series D-Earth Sciences,2009.52(10): 1673-1678.
    [85]Huang, TK, The Permian formations of Southern China Memoirs of the Geological Survey of China,1932. A(10):1-140.
    [86]盛金章,中国的二叠系。全国地层会议学术报告汇编.1962:科学出版社.
    [87]Jin, Y, Wardlaw, BR, Glenister, BF, et al, Permian chronostratigraphic subdivisions. Episodes,1997.20(1):10-15.
    [88]盛金章,长兴石灰岩中的(?)科化石.古生物学报,1955.3(4):287-297.
    [89]赵金科,中国南部二叠系菊石层.地层学杂志,1966.1(2):170-181.
    [90]Mei, S, Jin, Y, and Wardlaw, BR, Succession of Wuchiapingian conodonts from northeast Sichuan Province and its worldwide correlation. Acta Micropalaeontologica Sinica,1994. 11:121-139.
    [91]Mei, S, Jin, YG, and Wardlaw, BR, Zonation of conodonts from the Maokouan-Wuchiapingian boundary strata, South China. Palaeoworld,1994.4:225-233.
    [92]Jin, YG, Wang, Y, Henderson, C, et al, The Global Boundary Stratotype Section and Point (GSSP) for the base of Changhsingian Stage (Upper Permian). Episodes,2006.29(3): 175-182.
    [93]Yin, HF, Yang, FQ, Zhang, KX, et al, A proposal to the biostratigraphy criterion of Permian/Triassic boundary. Memorie della Societa Geologica Italiana,1988.34:329-344.
    [94]Yang, H, Zhang, SX, Jiang, HS, et al, Age and general characteristics of the calimicrobialite near the permian-triassic boundary in Chongyang, Hubei province Earth Science-Journal of China University of Geosciences,2006.31(2):165-170.
    [95]曹长群,王伟,金玉玕,浙江煤山二叠-三叠系界线附近碳同位素变化.科学通报,2002.47(4):302-306.
    [96]王玥,曹长群,华南古生代-中生代之交生物大灭绝研究评述,生物大灭绝与复苏--来自华南古生代和三叠纪的证据,戎嘉余和方宗杰,主编.2004,中国科技大学出版社:合肥.749-772.
    [97]Feng, Q, He, W, Gu, S, et al, Radiolarian evolution during the latest Permian in South China. Global and Planetary Change,2007.55(1-3):177-192.
    [98]Song, H, Tong, J, and Chen, Z, Two episodes of foraminiferal extinction near the Permian-Triassic boundary at the Meishan section, South China Australian Journal of Earth Sciences,2009.58(6):765-773.
    [99]Song, H, Tong, J, Chen, Z, et al, End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, South China Journal of Paleontology,2009.83(5):718-738.
    [100]方宗杰,华南二叠纪双壳类动物群灭绝型式的探讨,生物大灭绝与复苏——来自华南古生代和三叠纪的证据,戎嘉余和方宗杰,主编.2004,中国科学技术大学出版社:合肥.571-646.
    [101]Shen, S and Shi, GR, Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region. Paleobiology,2002.28(4):449-463.
    [102]Yin, H, Xie, S, Luo, G, et al, Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth-Science Reviews,2012. 115(3):163-172.
    [103]Sues, H-D and Fraser, NC, Triassic Life on Land.2010, New York:Columbia Univ. Press. 236.
    [104]Sander, PM, The Pachypleurosaurids (Reptilia:Nothosauria) from the Middle Triassic of Monte San Giorgio (Switzerland) with the Description of a New Species. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,1989.325(1230): 561-666.
    [105]Twitchett, RJ, Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology,1999.154(1-2):27-37.
    [106]Solien, MA, Conodont Biostratigraphy of the Lower Triassic Thaynes Formation, Utah. Journal of Paleontology,1979.53(2):276-306.
    [107]Wardlaw, BR and Nestell, MK, Latest Middle Permian conodonts from the Apache Mountains, West Texas. Micropaleontology,20\0.56(1-2):149-183.
    [108]Lambert, LL, Wardlaw, BR, Nestell, MK, et al, Latest Guadalupian (Middle Permian) conodonts and foraminifers from West Texas. Micropaleontology,2002.48(4):343-364.
    [109]Jiang, H, Aldridge, RJ, Lai, X, et al., Phylogeny of the conodont genera Hindeodus and Isarcicella across the Permian-Triassic boundary. Lethaia,2011.44(4):374-382.
    [110]Orchard, MJ, Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology,2007.252(1-2): 93-117.
    [111]Luo, GM, Lai, XL, Jiang, HS, et al., Size variation of the end Permian conodont Neogondolella at Meishan section, Changxing, Zhejiang and its significance. Science in China Series D-Earth Sciences,2006.49(4):337-347.
    [112]Jiang, H, Aldridge, RJ, Lai, X, et al., Observations on the surface micro-reticulation of platform elements of Neogondolella (Conodonta) from the Upper Permian, Meishan, China Lethaia,2008.41(3):263-274.
    [113]Mei, SL, Jin, YG, and Wardlaw, BR, Conodont Succession of the Guadalupian-Lopingian Boundary Strata in Laibin of Guangxi, China and West Texas, USA. Palaeoworld,1998.9: 53-76.
    [114]Mei, S, Henderson, CM, and Cao, C, Conodont sample-population approach to defining the base of the Changhsingian Stage, Lopingian Series, Upper Permian. Geological Society Special Publications,2004.230:105-121.
    [115]Shen, SZ and Mei, SL, Lopingian (Late Permian) high-resolution conodont biostratigraphy in Iran with comparison to South China zonation. Geological Journal,2010.45(2-3): 135-161.
    [116]Zhang, KX, Lai, XL, Ding, MH, et al, Conodont Sequence and its Global Correlation of Permian-Triassic Boundary in Meishan Section, Changxing, Zhejiang Province. Earth Science-Journal of China University of Geosciences,1995.20(6):669-676.
    [117]Jiang, HS, Lai, XL, Luo, GM, et al, Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global and Planetary Change,2007.55:39-55.
    [118]Jiang, H, Lai, X, Yan, C, et al, Revised conodont zonation and conodont evolution across the Permian-Triassic boundary at the Shangsi section, Guangyuan, Sichuan, South China. Global and Planetary Change,2011.77(3-4):103-115.
    [119]Ji, ZS, Yao, JX, Isozaki, Y, et al, Conodont biostratigraphy across the Permian-Triassic boundary at Chaotian, in Northern Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology,2007.252(1-2):39-55.
    [120]Yang, S, Wang, X, and Hao, W, Early and Middle Triassic Conodonts Sequence in Western Guangxi. Acta Scientiarum Naturalium Universitatis Pekinensis,1986.4:90-106.
    [121]王志浩,钟瑞,滇东、黔西和桂北不同相区的三叠纪牙形刺生物地层.地层学杂志,1990.13(1):15-35.
    [122]Zhao, L, Orchard, MJ, Tong, J, et al, Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlatioa Palaeogeography, Palaeoclimatology, Palaeoecology,2007.252:24-38.
    [123]Orchard, MJ and Zonneveld, JP, The Lower Triassic Sulphur Mountain Formation in the Wapiti Lake area:lithostratigraphy, conodont biostratigraphy, and a new biozonation for the lower Olenekian (Smithian). Canadian Journal of Earth Sciences,2009.46(10):757-790.
    [124]Orchard, MJ, Lehrmann, DJ, Wei, JY, et al., Conodonts from the Olenekian-Anisian Boundary Beds, Guandao, Guizhou Province, China, in The Global Triassic. New Mexico Museum of Natural History and Science Bulletin,41, S.G. Lucas and J.A. Spielmann, Editors.2007.347-354.
    [125]Trotter, JA, Williams, IS, Barnes, CR, et al, Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science,2008.321:550-554.
    [126]Joachimski, MM and Buggisch, W, Conodont apatite 18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology,2002.30(8):711-714.
    [127]Joachimski, MM, Breisig, S, Buggisch, W, et al, Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters,2009. 284(3-4):599-609.
    [128]周丽芹,Williams, IS,刘建辉,等,牙形石SHRIMP微区原位氧同位索分析方法.地质学报,2012.86(4):611-618.
    [129]Ali, JR, Thompson, GM, Zhou, MF, et al, Emeishan large igneous province, SW China Lithos,2005.79(3-4):475-489.
    [130]Hautmann, M, Bucher, H, Briihwiler, T, et al, An unusually diverse mollusc fauna from the earliest Triassic of south China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios,2011.44:71-85.
    [131]Ali, JR, Thompson, GM, Song, XY, et al, Emeishan Basalts (SW China) and the 'end-Guadalupian'crisis:magnetobiostratigraphic constraints. Journal of the Geological Society, London,2002.159:21-29.
    [132]Zhou, MF, Malpas, J, Song, XY, et al, A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters,2002.196(3-4):113-122.
    [133]Boven, A, Pasteels, P, Punzalan, LE, et al,40Ar/39Ar geochronological constraints on the age and evolution of the Permo-Triassic Emeishan Volcanic Province, Southwest China Journal of Asian Earth Sciences,2002.20(2):157-175.
    [134]Lo, C-H, Chung, S-L, Lee, T-Y, et al., Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth and Planetary Science Letters,2002.198(3-4): 449-458.
    [135], He, B, Xu, YG, Huang, XL, etal, Age and duration of the Emeishan flood volcanism, SW China:Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters,2007.255(3-4):306-323.
    [136]Shellnutt, JG, Zhou, MF, Yan, DP, et al, Longevity of the Permian Emeishan mantle plume (SW China):1 ma,8 Ma or 18 Ma? Geological Magazine,2008.145(3):373-388.
    [137]Zhu, J, Zhang, Z, Hou, T, et al, LA-ICP-MS zircon U-Pb geochronology of the tuffs on the uppermost of the Emeishan basalt succession in Panxian County, Guizhou Province: Constraints on genetic link between Emeishan large igneous province and the mass extinction. Acta Petrologica Sinica,2011.27(9):2743-2751.
    [138]Zhang, ZC, Mahoney, JJ, Mao, JW, et al, Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China Journal of Petrology,2006. 47(10):1997-2019.
    [139]Hoa, TT, Izokh, AE, Polyakov, GV, et al, Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russian Geology and Geophysics, 2008.49(7):480-491.
    [140]Meyer, KM, Yu, M, Jost, AB, et al, I3C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters,2011. 302:378-384.
    [141]Krull, ES, Lehrmann, DJ, Druke, D, et al, Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China Palaeogeography, Palaeoclimatology, Palaeoecology,2004.204(3-4): 297-315.
    [142]Bucher, H, Hochuli, PA, Schaltegger, U, et al., Timing of recovery from the end-Permian extinction:Geochronologic and biostratigraphic constraints from south China:COMMENT AND REPLY. Geology,2007.
    [143]万大学,贵州盘县羊圈地区安尼锡克中期凝灰岩的发现及其意义.贵州地质,2002.19(2):77-81.
    [144]Metcalfe, I, Palaeozoic and Mesozoic geological evolution of the SE Asian region: multidisciplinary constraints and implications for biogeography, in Biogegraphy and Geological evolution of SE Asia, R. Hall and J.D. Holloway, Editors.1998:Leiden.25-41.
    [145]Ziegler, AM, Hulver, ML, and Rowley, DB, Permian world topography and climate, in Late glacial and postglacial environmental changes--Quaternary, Carboniferous-Permian and Proterozoic, I.P. Martini, Editor.1997, Oxford Univ. Press:New York.111-146.
    [146]Muttoni, G, Gaetani, M, Kent, DV, et al, Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. Geoarabia,2009.14(4):17-48.
    [147]Enkin, RJ, Yang, Z, Chen, Y, et al., Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present Journal of Geophysical Research,1992.97(10):13953-13989.
    [148]Li, Z, Tectonic history of the major East Asian Iithospheric blocks since the mid-Proterozoic--a Synthesis, in Mantle Dynamics and Plate Interactions in East Asia, M. Flower, et al., Editors.1998, American Geophysical Union, Geodynamics:Washington, DC. 221-243.
    [149]Wang, Y and Jin, Y, Permian palaeogeographic evolution of the Jiangnan Basin, South China Palaeogeography, Palaeoclimatology, Palaeoecology,2000.160(1-2):35-44.
    [150]Huang, TK, On major tectonic units of China Geological Memoirs,1945. A(20):1-165.
    [151]He, B, Xu, Y, Chung, S-L, et al., Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters,2003.213(3-4):391-405.
    [152]Huang, JQ and Chen, BW, The evolution of the Tethys in China and adjacent regions.1987, Beijing:Geological Pulishing House.
    [153]金玉玕,陈楚震,胡世忠,南阿尔卑斯的二叠系和二叠系—三叠系界线及其与华南有关地层的对比.地层学杂志,1989.
    [154]沈树忠,王玥,金玉玕,二叠系全球界线层型和点位(GSSP)研究进展.地层学杂志,2005.29(1):138-146.
    [155]金玉玕,二叠纪地层研究述评.地层学杂志,2000.24(2):99-108.
    [156]Lambert, LL, Wardlaw, BR, and Henderson, CM, Mesogondolella and Jinogondolella (Conodonta):Multielement definition of the taxa that bracket the basal Guadalupian (Middle Permian Series) GSSP. Palaeoworld,2007.16(1-3):208-221.
    [157]Jin, Y, Zhu, Z, and Mei, S, The Maokouan-Lopingian Boundary Sequences in South China Palaeoworld,1994.4:138-152.
    [158]Jin, Y, Mei, S, Wang, W, et al, On the Lopingian Series of the Permian system. Palaeoworld,1998.9:1-18.
    [159]Chao, YT, Geological Notes in Szechuan. Bulletin of the Geological Society of China, 1929.2:137-149.
    [160]Heim, A, The Structure of Sacred Omeishan, Szechuan. Bulletin of the Geological Society ofChina,1930.1:29-78.
    [161]Yin, HF, Huang, S, Zhang, KX, et al, The effects of volcanism on the Permo-Triassic events in South China, in Permo-Triassic events in the Eastern Tethys, W.C. Sweet, Editor. 1992, Cambridge University Press:Cambridge.146-157.
    [162]Chung, S-L and Jahn, B-m, Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology,1995.23(10):889-892.
    [163]Ukstins Peate, I and Bryan, SE, Re-evaluating plume-induced uplift in the Emeishan large igneous province. Nature Geoscience,2008.1(9):625-629.
    [164]Jin, Y and Shang, Q, The Permian of China and its interregional correlation., in Permo-Triassic evolution of Tethys and Western Circum-Pacific, H.F. Yin, et al, Editors. 2000, Elsevier.71-98.
    [165]Tozer, ET, A standard for Triassic time. Geological Survey of Canada Bulletin,1967.156: 141.
    [166]Tong, J, Zakharov, Y, Orchard, M, et al, A candidate of the Induan-Olenekian boundary srratotype in the Tethyan region. Science in China Series D:Earth Sciences,2003.46(11): 1182-1200.
    [167]Wang, C, Triassic conodont biostratigraphy in China Journal of Stratigraphy,1991.15(4): 311-312.
    [168]盛金章,陈楚震,王义刚,等,南京近郊的Otoceras层及二叠系和三叠系界线.地层学杂志,1982.6(1):1-8.
    [169]丁连生,江苏下、中三叠统牙形刺生物地层的研究.地层学杂志,1993.17(2):130-134.
    [170]Enos, P, Wei, J, and Lehrmann, DJ, Death in Guizhou—Late Triassic drowning of the Yangtze carbonate platform. Sedimentary Geology,1998.118(1-4):55-76.
    [171]Wang, Z and Zhong, D, Triassic conodont biostratigraphy in different sedimental environments in eastern Yunnan, western Guizhou and northern Guangxi. Journal of Stratigraphy,1990.14(1):15-35.
    [172]殷鸿福,中国的拉丁阶问题.地质论评,1982.28(3):235-239.
    [173]叶军,川西坳陷马鞍塘组--须二段天然气成矿系统烃源岩评价.天然气工业,2003.23(1):21-25.
    [174王志浩,戴进业,四川江油、北川地区三叠纪牙形刺.古生物学报,1981.20(2):138-150.
    [175]吴熙纯,川西北晚三叠世卡尼期硅质海绵礁-鲕滩组合的沉积相分析.古地理学报, 2009.11(2):125-141.
    [176]王骊军,川西、藏东晚三叠世诺力期牙形刺.青海地质,1993.1:24-30.
    [177]Wang, Z and Dong, Z, Discovery of Conodont Epigondolella Fauna from Late Triassic in BaoshanArea, Western Yunnan. Acta Micropalaeontologica Sinica,1985.2(2):125-130.
    [178]毛力,田传荣,西藏林周县麦隆岗组顶部的晚三叠世牙形石.中国地质科学院报,1987.17:159-188.
    [179]Tian, CR, Triassic Conodonts in the Tulong Section from Nyalam County, Xizang (Tibet), China. Contributions to Geology of Qinghai-Xizang (Tibet) Plateau,1982.8:153-165.
    [180]阴家润,蔡华伟,周志广,等,西藏海相三叠系—侏罗系界线及晚三叠世生物绝灭事件研究.地学前缘,2006.13(4):244-254.
    [181]Wheeley, JR, Smith, MP, and Boomer, I, Oxygen isotope variability in conodonts: implications for reconstructing Palaeozoic palaeoclimates and palaeoceanography. Journal of the Geological Society, London,2012.169(3):239-250.
    [182]Kim, S-T, Mucci, A, and Taylor, BE, Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75℃:Revisited. Chemical Geology,2007.246(3-4):135-146.
    [183]Larson, TE, Heikoop, JM, Perkins, G, et al, Pretreatment technique for siderite removal for organic carbon isotope and ON ratio analysis in geological samples. Rapid Communications in Mass Spectrometry,2008.22:865-872.
    [184]Donoghue, PCJ and Purnell, MA, Growth, function, and the conodont fossil record Geology,1999.27(3):251-254.
    [185]Puce"at, E, Reynard, B, and Lecuyer, C, Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chemical Geology,2004.205:83-97.
    [186]Vennemann, TW, Fricke, HC, Blake, RE, et al., Oxygen isotope analysis of phosphates:a comparison of techniques for analysis of Ag3PO4 Chemical Geology,2002.185(3-4): 321-336.
    [187]N6th, S, Conodont color (CAI) versus microcrystalline and textural changes in upper triassic conodonts from Northwest Germany. Fades,1998.38(1):165-173.
    [188]Wenzel, B, Lecuyer, C, and Joachimski, MM, Comparing oxygen isotope records of silurian calcite and phosphate--18O compositions of brachiopods and conodonts. Geochimica et Cosmochimica Acta,2000.64(11):1859-1872.
    [189]Lecuyer, C, Grandjean, P, OTsteil, JR, et al., Thermal excursions in the ocean at the Cretaceous—Tertiary boundary (northern Morocco):δ18O record of phosphatic fish debris. Palaeogeography, Palaeoclimatology, Palaeoecology,1993.105(3-4):235-243.
    [190]Pucdat, E, Joachimski, MM, Bouilloux, A, et al., Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth and Planetary Science Letters,2010.298:135-142.
    [191]O'Neil, JR, Roe, JL, Reinhardt, E, et al, A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel Journal Earth-Science,1994.43:203-212.
    [192]LaPorte, DF, Holmden, C, Patterson, WP, et al, Oxygen isotope analysis of phosphate: improved precision using TC/EA CF-IRMS. Journal of Mass Spectrometry,2009.44(6): 879-890.
    [193]O'Neil, JR, Vennemann, TW, and Mckenzie, WF, Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4) aq and H2O. Geochimica et Cosmochimica Acta,2003.67(13):3135-3144.
    [194]Huang, J, Brilliant Young Geologist-Mr. Chao T. Yatseng. Geological Review,1980.26(2): 167-169.
    [195]Ross, PS, Ukstins Peate, Ⅰ, McClintock, MK, et al, Mafic volcaniclastic deposits in flood basalt provinces:a review. Journal of Volcanology and Geothermal Research,2005. 145(3-4):281-314.
    [196]Xu, Y-G, Chung, S-L, Shao, H, et al, Silicic magmas from the Emeishan large igneous province, Southwest China:Petrogenesis and their link with the end-Guadalupian biological crisis. Lithos,2010.119(1-2):47-60.
    [197]Huang, K and Opdyke, ND, Magnetostratigraphic investigations on an Emeishan basalt section in western Guizhou province, China Earth and Planetary Science Letters,1998. 163(1-4):1-14.
    [198]Song, XY, Qi, HW, Robinson, PT, et al, Melting of the subcontinental lithospheric mantle by the Emeishan mantle plume; evidence from the basal alkaline basalts in Dongchuan, Yunnan, Southwestern China Lithos,2008.100(1-4):93-111.
    [199]Liu, C and Zhu, R, Geodynamic Significances of the Emeishan Basalts. Earth Science Frontiers,2009.16(2):52-69.
    [200]Baker, J, Snee, L, and Menzies, M, A brief Oligocene period of flood volcanism in Yemen: implications for the duration and rate of continental flood volcanism at the Afro-Arabian triple junction. Earth and Planetary Science Letters,1996.138(1-4):39-55.
    [201]Riisager, P and Abrahamsen, N, Magnetostratigraphy of Palaeocene basalts from the Vaigat Formation of West Greenland. Geophysical Journal International,1999.137(3):774-782.
    [202]Sheng, J and Jin, Y, Correlation of Permian deposits in China Palaeoworld,1994.4: 14-113.
    [203]Thompson, GM, Ali, JR, Song, X, et al, Emeishan Basalts, SW China:reappraisal of the formation's type area stratigraphy and a discussion of its significance as a large igneous province. Journal of the Geological Society, London,2001.158(4):593-599.
    [204]Feng, Z, Jin, Z, Yang, Y, et al, Lithofacies Paleogeography of Permian of Yunnan-Guizhou-Guangxi Region, ed. Z. Feng.1994, Beijing:Geological Publishing House. 146.
    [205]Zi, J, Fan, W, Wang, Y, et al, U-Pb Geochronology and Geochemistry of the Dashibao Basalts in the Songpan-Ganzi Terrane, Sw China, with implications for the age of Emeishan Volcanism. American Journal of Science,2010.310:1054-1080.
    [206]Lyle, P, The eruption environment of multi-tiered columnar basalt lava flows. Journal of the Geological Society, London,2000.157:715-722.
    [207]Zhou, M-F, Robinson, PT, Lesher, CM, et al, Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe-Ti-V Oxide Deposits, Sichuan Province, SW China Journal of Petrology,2005.46(11): 2253-2280.
    [208]Lai, S, Qin, J, Li, Y, et al, Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern China:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences,2012.47:216-230.
    [209]Deng, J, Wang, Q, Yang, S, et al, Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China:Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences,2010.37(5-6): 412-424.
    [210]Zhong, H, Campbell, IH, Zhu, W-G, et al, Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica et Cosmochimica Acta,2011.75(5):1374-1395.
    [211]Zhong, H, Zhu, W-G, Hu, R-Z, et al., Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust Lithos,2009.110(1-4): 109-128.
    [212]Zhong, H, Zhu, W-G, Chu, Z-Y, et al, Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China Chemical Geology,2007.236(1-2):112-133.
    [213]Mundil, R, Ludwig, KR, Metcalfe, Ⅰ, et al, Age and timing of the Permian mass extinctions:U/Pb dating of closedsystem zircons. Science,2004.305:1760-1763.
    [214]Shellnutt, JG, Denyszyn, SW, and Mundil, R, Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Research,2012.22(1):118-126.
    [215]Menning, M, Alekseev, AS, Chuvashov, Bl, et al, Global time scale and regional stratigraphic reference scales of Central and West Europe, East Europe, Tethys, South China, and North America as used in the Devonian-Carboniferous-Permian Correlation Chart 2003 (DCP 2003). Palaeogeography, Palaeoclimatology, Palaeoecology,2006.240(1-2): 318-372.
    [216]AH, JR, Lo, C-h, Thompson, GM, et al, Emeishan Basalt Ar-Ar overprint ages define several tectonic events that affected the western Yangtze Platform in the Mesozoic and Cenozoic. Journal of Asian Earth Sciences,2004.23(2):163-178.
    [217]He, B, Xu, Y, Wang, Y, et al, Sedimentation and lithofacies paleogeography in SW China before and after the Emeishan flood volcanism:New insights into surface response to mantle plume activity. Journal of Geology,2006.114:117-132.
    [218]Ali, JR, Fitton, JG, and Herzberg, C, Emeishan Large igneous Province (SW China) and the mantle plume up-doming hypothesis. Journal of the Geological Society, London,2010. 167(5):953-959.
    [219]Fan, WM, Wang, YJ, Peng, TP, et al, Ar-Ar and U-Pb geochronology of Late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism. Chinese Science Bulletin,2004.49(21):2318-2327.
    [220]Hanski, EJ, Walker, RJ, Huhma, H, et al, Origin of the Permian-Triassic komatiites, northwestern Vietnam. Contributions to Mineralogy and Petrology,2004.147:453-469.
    [221]Wang, L, Lo, J, Wang, C, et al, Geology and Coal-accumulating Regularity of the Paralic Coal Fields of Late Permian in Western Guizhou. Geology of Guizhou,1993.10(4).
    [222]Thomas, DN, Rolph, TC, Shaw, J, et al, Palaeointensity studies of a Late Permian lava succession from Guizhou Province, South China:implications for post-Kiaman dipole field behaviour. Geophysical Journal International,1998.134(3):856-866.
    [223]Haas, W, Hahn, G, and Hahn, R, Perm-Trilobiten aus Afghanistan. Palaeontographica Abteilung A,1980.169(4-6):73-127.
    [224]Feng, RL and Jiang., ZL, Brachiopoda, in Paleontological Atlas of Southwest China.1978. 231-305.
    [225]Taylor, RS, Shen, YB, and Schram, FR, New pygocephalomorph crustaceans from the Permian of China and their phylogenetic relationships. Palaeontology,1998.41(5): 815-834.
    [226]陈文一,刘家仁,王中刚,等,贵州峨眉山玄武岩喷发期的岩相古地理研究.古地理学报,2003.5(1):17-28.
    [227]Bond, DPG, Wignall, PB, Wang, W, et al, The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China Palaeogeography Palaeoclimatology Palaeoecology,2010.292:282-294.
    [228]Sun, Y, Lai, X, Jiang, H, et al, Guadalupian (Middle Permian) Conodont Faunas at Shangsi Section, Northeast Sichuan Province. Journal of China University of Geosciences, 2008.19(5):451-460.
    [229]Isozaki, Y, Yao, JX, Matsuda, T, et al, Stratigraphy of the Middle-Upper Permian and Lowermost Triassic at Chaotian, Sichuan, China-Record of Late Permian double mass extinction event. Proceedings of the Japan Academy Series B-Physical and Biological Sciences,2004.80(1):10-16.
    [230]Lai, X, Wang, W, Wignall, PB, et al, Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology,2008.269(1-2):78-93.
    [231]Lai, XL, Yang, FQ, Hallam, A, et al. The Shangsi section, candidate of the Global Stratotype Section and Point of the Permian-Triassic Boundary, in The Paleozoic-Mesozoic Boundary Candidates of Global Stratotype Section and Point of the Permian-Triassic Boundary.1996. Wuhan:China University of Geosciences Press.
    [232]Xia, W-C, Zhang, N, Kakuwa, Y, et al, Radiolarian and conodont biozonation in the pelagic Guadalupian-Lopingian boundary interval at Dachongling, Guangxi, South China, and mid-upper Permian global correlatioa Stratigraphy,2005.2:217-238.
    [233]Zhang, L-L, Zhang, N, and Xia, W-C, Conodont succession in the Guadalupian-Lopingian boundary interval (upper Permian) of the Maoershan section, Hubei Province, China Micropaleontology,2008.53:433-446.
    [234]Shen, S-Z, Wang, Y, Henderson, CM, et al, Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China Palaeoworld,2007.16(1-3): 120-139.
    [235]Wignall, PB, V^drine, S, Bond, DPG, et al., Facies analysis, and sea-level change at the Guadalupian-Lopingian Global Stratotype (Laibin, South China), and its bearing on the end-Guadalupian mass extinction. Journal of the Geological Society,2009.166(4): 655-666.
    [236]Jerram, D, Mountney, N, HolzfSster, F, et al., Internal stratigraphic relationships in the Etendeka group in the Huab Basin, NW Namibia:understanding the onset of flood volcanism. Journal of Geodynamics,1999.28(4-5):393-418.
    [237]He, B, Xu, Y-G, Guan, J-P, et al, Paleokarst on the top of the Maokou Formation:Further evidence for domal crustal uplift prior to the Emeishan flood volcanism. Lithos,2010. 119(1-2):1-9.
    [238]Ukstins Peate, I and Bryan, SE, Pre-eruptive uplift in the Emeishan?. Nature Geoscience, 2009.2:531-532.
    [239]Jones, SM, White, N, and Lovell, B, Cenozoic and Cretaceous transient uplift in the Porcupine Basin and its relationship to a mantle plume. Geological Society, London, Special Publications,2001.188(1):345-360.
    [240]Saunders, AD, Jones, SM, Morgan, LA, et al, Regional uplift associated with continental large igneous provinces:The roles of mantle plumes and the lithosphere. Chemical Geology, 2007.241:282-318.
    [241]Jerram, DA, Single, RT, Hobbs, RW, et al, Understanding the offshore flood basalt sequence using onshore volcanic facies analogues:an example from the Faroe-Shetland basin. Geological Magazine,2009.146(3):353-367.
    [242]Campbell, IH and Griffiths, RW, Implications of Mantle Plume Structure for the Evolution of Flood Basalts. Earth and Planetary Science Letters,1990.99(1-2):79-93.
    [243]Campbell, IH, Large Igneous Provinces and the Mantle Plume Hypothesis. ELEMENTS, 2005.1(5):265-269.
    [244]Burov, E and Guillou-Frottier, L, The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophysical Journal International, 2005.161(2):469-490.
    [245]Burov, E, Guillou-Frottier, L, d'Acremont, E, et al, Plume head-lithosphere interactions near intra-continental plate boundaries. Tectonophysics,2007.434(1-4):15-38.
    [246]Leng, W and Zhong, S, Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces. Earth and Planetary Science Letters,2010.291(1-4):207-214.
    [247]Tolan, TL, Reidel, SP, Beeson, MH, et al, Revisions of the extent and volume of the Columbia River Basalt Group, in Volcanism and tectonism in the Columbia River Flood-Basalt Province, S.P. Reidel andR. Hooper, Editors.1989, Geological Society of America Special Paper.1-20.
    [248]Ali, JR and Wignall, PB, Comment on "Fusiline biotic turnover across the Guadalupian-Lopingian (middle-upper Permian) boundary in mid-oceanic carbonate build-ups:Biostratigraphy of accreted limestone in Japan" by Ayano Ota and Yukio Isozaki. Journal of Asian Earth Sciences,2007.30(1):199-200.
    [249]Ota, A and Isozaki, Y, Fusuline biotic turnover across the Guadalupian-Lopingian (Middle-Upper Permian) boundary in mid-oceanic carbonate buildups:Biostratigraphy of accreted limestone in Japan. Journal of Asian Earth Sciences,2006.26(3-4):353-368.
    [250]Zhong, Y-T, He, B, and Xu, Y-G, Mineralogy and geochemistry of claystones from the Guadalupian-Lopingian boundary at Penglaitan, South China:Insights into the pre-Lopingian geological events. Journal of Asian Earth Sciences,2013.62(0):438-462.
    [251]Bond, DPG, Hilton, J, Wignall, PB, et al, The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Reviews,2010.102(1-2):100-116.
    [252]Isozaki, Y, Integrated "plume winter" scenario for the double-phased extinction during the Paleozoic-Mesozoic transition:The G-LB and P-TB events from a Panthalassan perspective. Journal of Asian Earth Sciences,2009.36(6):459-480.
    [253]Chen, B, Joachimski, MM, Sun, Y, et al, Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections:Climatic or sea-level signal? Palaeogeography, Palaeoclimatology, Palaeoecology,2011.311 (3-4):145-153.
    [254]Isozaki, Y, Kawahata, H, and Minoshima, K, The Capitanian (Permian) Kamura cooling event:The beginning of the Paleozoic-Mesozoic transition. Palaeoworld,2007.16(1-3): 16-30.
    [255]Self, S, Blake, S, Sharma, K, et al, Sulfur and Chlorine in Late Cretaceous Deccan Magmas and Eruptive Gas Release. Science,2008.319(1654-1657).
    [256]Ganino, C and Arndt, NT, Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology,2009.37(4):323-326.
    [257]Milanovskiy, YY, Rift zones of the geologic past and their associated formations.18, 619-639. International Geology Review,1976.18:619-639.
    [258]Renne, PR and Basu, AR, Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science,1991.253(5016):176-179.
    [259]Renne, PR, Zhang, Z, Richards, MA, et al, Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science,1995.269(5229): 1413-1416.
    [260]Wignall, PB, Hallam, A, Lai, X, et al, Palaeoenvironmental changes across the Permian/Triassic boundary at Shangsi (N. Sichuan, China). Historical Biology:An International Journal of Paleobiology,1995.10(2):175-189.
    [261]Luo, G, Lai, X, Feng, Q, et al, End-Permian conodont fauna from Dongpan section: Correlation between the deep-and shallow-water facies. Science in China Series D-Earth Sciences,2008.51(11):1611-1622
    [262]Bryan, SE, Riley, TR, Jerram, DA, et al, Silicic volcanism:an undervalued component of large igneous provinces and volcanic rifted margins. Special Paper-Geological Society of America,2002.362:97-118.
    [263]朱忠发,王光新,上扬子地台及其邻区早、中三叠世间绿豆岩沉积前后古地理.石油与天然气地质,1986.7(4):344-355.
    [264]朱立军,贵州早、中三叠世间绿豆岩粘土矿物学研究.贵州工学院学报,1994.23(5):19-24.
    [265]关建哲,戴克琳,杜其良,峨眉山绿豆岩的应用及其成因探索.成都地质学院学报,1990.17(2):37-43.
    [266]姚建新,纪占胜,王立亭,等.贵州南部地区中三叠统青岩阶底界附近牙形石生物地层学研究.地质学报,2004.78(5):577-585.
    [267]陈延龙,黔南甲戎剖面下三叠统、关刀部面(Ⅱ)三叠系的牙形石生物地层:[硕士论文].武汉.中国地质大学(武汉).2011.
    [268]蒋武,贵州边阳地区下、中三叠统牙形刺及其环境分析.石汕勘探与开发杂志,1980.1:23-30.
    [269]Yan, C, Wang, L, Jiang, H, et al, Uppermost Permian to Early Triassic Condonts at Bianyang Section, Guizhou Province, South China. Palaios,2013. in press.
    [270]Wang, H, Xingli, W, Rongxi, L, et al, Triassic Conodont Succession and Stage Subdivision of the Guandao Section, Bianyang, Luodian, Guizhou. Acta Palaeontologica Sinica,2005.44(4):611-642.
    [271]张舜新,桂西下三叠统牙形石序列的新认识.现代地质,1990.4(2):1-15.
    [272]Galfetti, T, Bucher, H, Brayard, A, et al, Late Early Triassic climate change:Insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology,2007.243:394-411.
    [273]杨守仁,王新平,郝维成,广西田东县作登下三叠统的新认识,纪念乐森璕教授从事地质科学、教育工作六十周年论文集.1984,地质出版社:北京.105-118.
    [274]Tong, J, Zuo, J, and Chen, ZQ, Early Triassic carbon isotope excursions from South China: Proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. GeologicalJournal,2007.42:371-389.
    [275]Galfetti, T, Hochuli, PA, Brayard, A, et al, Smithian-Spathian boundary event:Evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology,2007. 35(4):291-294.
    [276]Grasby, SE, Beauchamp, B, Embry, A, et al, Recurrent Early Triassic ocean anoxia Geology,2012.41(2):175-178.
    [277]Korte, C, Kozur, HW, and Veizer, J,13C and 18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeography, Palaeoclimatology, Palaeoecology,2005.226(3-4):287-306.
    [278]Joachimski, MM, von Bitter, PH, and Buggisch, W, Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology,2006. 34(4):277-280.
    [279]Finnegan, S, Bergmann, K, Eiler, JM, et al, The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science,2011.331:903-906.
    [280]Eiler, JM, "Clumped-isotope" geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters,2007.262(3-4): 309-327.
    [281]Martinson, JM, Zircon U-Pb chemical abrasion ("CA-TIMS") method:Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology,2005.220(1-2):47-66.
    [282]Romano, C, Goudemand, N, Vennemann, T, et al., Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience,2013.6(1):57-60.
    [283]Sun, Y, Joachimski, MM, Wignall, PB, et al., Response to Comment on "Lethally Hot Temperatures During the Early Triassic Greenhouse". Science,2013.339(6123):1033.
    [284]Horacek, M, Richoz, S, Brandner, R, et al., Evidence for recurrent changes in Lower Triassic oceanic circulation of the Tethys:The δ13C record from marine sections in Iran. Palaeogeography, Palaeoclimatology, Palaeoecology,2007.252(1-2):355-369.
    [285]Fielding, CR, Frank, TD, and Isbell, JL, The late Paleozoic ice age:a review of current understanding and synthesis of global climate patterns. Geological Society of America Special Paper,2008.441:343-354.
    [286]Royer, DL, Berner, RA, Montanez, IP, et al., CO2 as a primary driver of Phanerozoic climate. GSA Today,2004.14(3):4-10.
    [287]Retallack, GJ, Sheldon, ND, Carr, PF, et al., Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology,2011.308(1-2):233-251.
    [288]Kidder, DL and Worsley, TR, Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology,2004.203(3-4):207-237.
    [289]LeGrande, AN and Schmidt, GA, Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters,2006.33:L12604.
    [290]Muehlenbachs, K, The oxygen isotopic composition of the oceans, sediments and the seafloor. Chemical Geology,1998.145(3-4):263-273.
    [291]Veizer, J, Bruckschen, P, Pawellek, F, et al., Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology,1997.132(1-4):159-172.
    [292]Lecuyer, C and Allemand, P, Modelling of the oxygen isotope evolution of seawater: implications for the climate interpretation of the δ18O of marine sediments. Geochimica et Cosmochimica Acta,1999.63(3-4):351-361.
    [293]Frank, TD, Data Report:Geochemistry of Miocene Sediments, Site 1006 and 1007, Leeward Margin, Great Bahama Bank. Proceedings of the Ocean Drilling Program, Scientific Results,2000.166:137-143.
    [294]Gabbott, SE, Aldridge, RJ, and Theron, JN, A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa Nature,1995.374(6525):800-803.
    [295]Lai, X, Wignall, P, and Zhang, K, Palaeoecology of the conodonts Hindeodus and Clarkina during the Permian-Triassic transitional period Palaeogeography, Palaeoclimatology, Palaeoecology,2001.171(1-2):63-72.
    [296]段金英,Pachycladina的生态环境及古地理意义.微体古生物学报,1989.6(1):91-95.
    [297]Marshall, CP, Mar, GL, Nicoll, RS, et al, Organic geochemistry of artificially matured conodonts. Organic Geochemistry,2001.32(9):1055-1071.
    [298]Epstein, AG, Epstein, JB, and Harris, LD, Conodont color alteration--an index to organic metamorphism, in US Geological Survey Professional Paper 995.1977.27.
    [299]Konigshof, P, Der Farbanderungsindex (CAI) von Conodonten in palaozoischen Gesteinen (Mitteldevon bis Unterkarbon) des Rheinischen Schiefergebirges-eine Erganzung zur Vitriniteflexion. Courier Forschunginstitut Senckenberg,1992.146:1-118.
    [300]Patterson, WP and Walter, LM, Depletion of 13C in seawater mCO2, on modern carbonate platforms:Significance for the carbon isotopic record of carbonates. Geology, 1994.22:885-888.
    [301]Locamini, RA, Mishonov, AV, Antonov, JI, et al., World Ocean Atlas 2009, Volume 1: Temperature. NOAA Atlas NESDIS 68, ed. S. Levitus.2010, Washington, DC:U.S. Government Printing Office.184.
    [302]Joachimski, MM, Lai, X, Shen, S, et al, Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology,2012.40(3):195-198.
    [303]Xie, S, Pancost, RD, Huang, J, et al., Changes in the global carbon cycle occurred as two episodes during the Permian Triassic crisis. Geology,2007.35(12):1083-1086.
    [304]Ellis, RJ, Biochemistry:Tackling unintelligent desiga Nature,2010.463(7278):164-165.
    [305]Eppley, RW, Temperature and phytoplankton growth in the sea Fishery Bulletin,1972. 70(4):1068-1085.
    [306]Berry, J and BjOrkman, O, Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology,1980.31:491-543.
    [307]Greb, SF, DiMichele, WA, and Gastaldo, RA, Evolution and importance of wetland in earth history, in Wetlands Through Time. Geological Society of America Special Paper 399, S.F. Greb and W.A. DiMichele, Editors.2006, Geological Society of America:Boulder, CO. 1-40.
    [308]Looy, CV, Brugman, WA, Dilcher, DL, et al., The delayed resurgence of equatorial forests after the Permian-Triassic ecologic crisis. Proceedings of the National Academy of Sciences of the United States ofAmerica,1999.96(24):13857-13862.
    [309]陈建华,喻建新,黄其胜,等,黔西滇东地区早三叠世早期植物化石研究的新进展. 地球科学-中国地质大学学报,2011.36(3):500-510.
    [310]Angilletta, MJ, Thermal Adaptation-A Theoretical and Empirical Synthesis.2009, New York:Oxford Univ. Press.289.
    [311]Portner, HO, Climate variations and the physiological basis of temperature dependent biogeography:systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A,2002.132:739-761.
    [312]Schmidt-Nielsen, K, Animal Physiology. Adaption and Environment.1997, Cambridge: Cambridge University Press.
    [313]Somero, GN, Proteins and Temperature. Annual Review of Physiology,1995.57:43-68.
    [314]McNab, BK, The Physiological Ecology of Vertebrates:A View from Energetics.2002, Ithaca, NY:Cornell Univ Press.525.
    [315]Sherwood, SC and Huber, M, An adaptability limit to climate change due to heat stress. Proceedings of the National Academy of Sciences,2010.107(21):9552-9555.
    [316]Nicholas, WL, The biology of free-living nematodes.1975, Oxford:Clarendon Press.219.
    [317]Addo-Bediako, A, Chown, SL, and Gaston, KJ, Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London. Series B:Biological Sciences,2000. 267(1445):739-745.
    [318]Wehner, R, Marsh, AC, and Wehner, S, Desert ants on a thermal tightrope. Nature,1992. 357(6379):586-587.
    [319]Portner, HO, Climate change and temperature-dependent biogeography:oxygen limitation of thermal tolerance in animals. Naturwissenschaften,2001.88:137-146.
    [320]Portner, HO and Knust, R, Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance. Science,2007.315(5808):95-97.
    [321]Thums, M, Meekan, M, Stevens, J, et al., Evidence for behavioural thermoregulation by the world's largest fish. Journal of The Royal Society Interface,2012.
    [322]Tewksbury, JJ, Huey, RB, and Deutsch, CA, Putting the Heat on Tropical Animals. Science, 2008.320(5881):1296-1297.
    [323]Chen, J, Macroevolution of Bivalvia after the End-Permian Mass Extinction in South China, in Mass Extinction and Recovery:Evidences from the Palaeozoic and Triassic of South China, J. Rong and Z. Fang, Editors.2004, Univ. of Science and Technology of China Press:Heifei.647-700.
    [324]Pan, H and Erwin, DH, Gastropod diversity patterns in South China during the Chihsia-Ladinian and their mass extinction. Palaeoworld,1994.4:249-262.
    [325]O'Dogherty, L, Carter, ES, Dumitrica, P, et al., Catalogue of Mesozoic radiolarian genera. Part 1:Triassic. Geodiversitas,2009.31(2):213-270.
    [326]孙东立,沈树忠,华南二叠纪-三叠纪腕足动物多样性模式,生物大灭绝与复苏--来自华南古生代和三叠纪的证据,戎嘉余和方宗杰,主编.2004,中国科学技术大学出版社:合肥.543-569.
    [327]Schneebeli-Hermann, E, Hochuli, PA, Bucher, H, et al., Palynology of the Lower Triassic succession of Tulong, South Tibet — Evidence for early recovery of gymnosperms. Palaeogeography, Palaeoclimatology, Palaeoecology,2012.339-341:12-24.
    [328]Brayard, A, Bucher, H, Escarguel, G, et al., The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology,2006.239(3-4):374-395.
    [329]Hallam, A, Major bio-events in the Triassic and Jurassic, in Global events and wvent stratigraphy, O.H. Walliser, Editor.1995, Springer-Verlag:Berlin.265-283.
    [330]Shen, W, Sun, Y, Lin, Y, et al., Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochimica et Cosmochimica Acta,2011.75(7): 1992-2006.
    [331]Retallack, GJ, Greaver, T, and Jahren, AH, Return to Coalsack Bluff and the Permian-Triassic boundary in Antarctica Global and Planetary Change,2007.55(1-3): 90-108.
    [332]Retallack, GJ, Permian-Triassic Life Crisis on Land Science,1995.267(5194):77-80.
    [333]Retallack, GJ and Krull, ES, Landscape ecological shift at the Permian-Triassic boundary in Antarctica. Australian Journal of Earth Sciences,1999.46:785-812.
    [334]Looy, CV, Twitchett, RJ, Dilcher, DL, et al., Life in the end-Permian dead zone. Proceedings of the National Academy of Sciences of the United States of America,2001. 98(14):7879-7883.
    [335]Hermann, E, Hochuli, PA, Bucher, H, et al., Climatic oscillations at the onset of the Mesozoic inferred from palynological records from the North Indian Margin. Journal of the Geological Society,2012.169(2):227-237.
    [336]Mayhew, PJ, Jenkins, GB, and Benton, TG, A long-term association between global temperature and biodiversity, origination and extinction in the fossil record Proceedings of the Royal Society B:Biological Sciences,2008.275(1630):47-53.
    [337]Hill, JK, Griffiths, HM, and Thomas, CD, Climate Change and Evolutionary Adaptations at Species'Range Margins. Annual Review of Entomology,2011.56:143-159.
    [338]Parmesan, C and Yohe, G, A globally coherent fingerprint of climate change impacts across natural systems. Nature,2003.421(6918):37-42.
    [339]Tong, J, Zhou, X, Erwin, DH, et al, Fossil fishes from the Lower Triassic of Majiashan, Chaohu, Anhui Province, China Journal of Paleontology,2006.80(1):146-161.
    [340]Callaway, JM and Brinkman, DB, Ichthyosaurs (Reptilia, Ichthyosauria) from the Lower and Middle Triassic Sulphur Mountain Formation, Wapiti Lake area, British Columbia, Canada Canadian Journal of Earth Sciences,1989.26:1491-1500.
    [341]Lucas, SG, Global Triassic tetrapod biostratigraphy and biochronology. Palaeogeography, Palaeoclimatology, Palaeoecology,1998.143(4):347-384.
    [342]Cosgriff, JW, The Temnosponyl Labyrinthodonts of the Earliest Triassic. Journal of Vertebrate Paleontology,1984.4(1):30-46.
    [343]Minikh, AV, Late Permian discordichthyiformes (Osteichthyes) from European Russia Paleontological Journal,2006.40(5):564-571.
    [344]Bendix-Almgreen, SE, Palaeovertebrate faunas of Greenland, in Geology of Greenland, A. Escher and W.S. Watt, Editors.1976, Gronlands Undersogelse:Odense, Denmark.536-573.
    [345]Dunbar, CO, Permian brachiopod faunas of central east Greenland. Meddelelser om Gronland,1955.110(3):1-169.
    [346]Goto, M, Palaeozoic and early Mesozoic fish faunas of the Japanese Islands. Island Arc, 1994.3(4):247-254.
    [347]Wang, N and Liu, X, Coelacanth fishes from the marine Permian of Zhejiang, South China Vertebrata Palasiatica,1981.19(4):305-312.
    [348]. Sweet, WC and Mei, S. Conodont succession of Permian Lopingian and basal Triassic in Northwest Iran, in Proceedings of the International Conference on Pangea and the Paleozoic-Mesozoic Transition.1999. Wuhan, China:China Univ. of Geosciences Press.
    [349]Waagen, W, Fossils from the Ceratite Formation, in Salt Range Fossils, series 13 of Palaeontologia Indica.1895, Geological Survey Office:Calcutta.1-323.
    [350]Carroll, RL, Plesiosaur Ancestors from the Upper Permian of Madagascar. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,1981.293(1066): 315-383.
    [351]Perch-Nielsen, K, Birkenmajer, K, Birkelund, T, et al., Revision of Triassic stratigraphy of the Scoresby Land and Jameson Land region, East Greenland Meddelelser om Grenland, 1974.193(6):1-51.
    [352]Stemmerik, L, Bendix-Almgreen, SE, and Piasecki, S, The Permian-Triassic boundary in central East Greenland:past and present views. Bulletin of the Geological Society of Denmark,2001.48:159-167.
    [353]Mutter, RJ and Neuman, AG, An enigmatic chondrichthyan with Paleozoic affinities from the Lower Triassic of western Canada. Acta Palaeontologica Polonica,2006.51(2): 271-282.
    [354]Evans, HM, A new cestraciont spine from the Lower Triassic of Idaho. Univ. California Publ, Dept. Geol. Bull.,1904.3(18):397-401.
    [355]Zhao, L and Lu, L, A new genus of Early Triassic perleidid fish from Changxing, Zhejiang, China Acta Palaeontologica Sinica,2007.46(2):238-243.
    [356]Wignall, PB and Hallam, A, Griesbachian (Earliest Triassic) palaeoenvironmental changes in the Salt Range, Pakistan and southeast China and their bearing on the Permo-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology,1993.102(3-4): 215-237.
    [357]Stensio, E, Notes on some fish remains collected at Hornsund by the Norwegian Spitzbergen expedition in 1917. Norsk Geologisk Tidsskrift,1918.5(1):75-78.
    [358]Stensio, E, Triassic Fishes from Spitzbergen I.1921, Vienna:Verlag Adolf Holzhausen. 307.
    [359]Shigeta, Y, Zakharov, YD, Maeda, H, et al, The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia.2009, Tokyo:National Museum of Nature and Science.218.
    [360]Liu, G, Feng, H, Wang, J, et al., Early Triassic fishes from Jurong, Jiangsu. Acta Palaeontologica Sinica,2002.41(1):27-52.
    [361]Fraiser, ML, Twitchett, RJ, and Bottjer, DJ, Unique microgastropod biofacies in the Early Triassic:Indicator of long-term biotic stress and the pattern of biotic recovery after the end-Permian mass extinction. Comptes Rendus Palevol,2005.4(6-7):543-552.
    [362]Thies, D, A neoselachian shark tooth from the Lower Triassic of the Kocaeli (=Bithynian) Peninsula, W Turkey. Neues Jahrbuch fur Geologie und Palaontologie, Monatshefte,1982. 5:272-278.
    [363]Battail, B, Beltan, L, and Dutuit, JM, Africa and Madagascar during Permo-Triassic time: The evidence of the vertebrate faunas, in Gondwana Six:Stratigraphy, Sedimentology, and Paleontology.1987, American Geophysical Union:Washington, DC.147-155.
    [364]Kear, BP, Proterosuchid archosaur remains from the Early Triassic Bulgo Sandstone of Long Reef, New South Wales. Alcheringa,2009.33:331-337.
    [365]Harris, JM and Carroll, RL, Kenyasaurus, a New Eosuchian Reptile from the Early Triassic ofKenya. Journal of Paleontology,1977.51(1):139-149.
    [366]Ketchum, HF and Barrett, PM, New reptile material from the Lower Triassic of Madagascar:implications for the Permian-Triassic extinction event Canadian Journal of Earth Sciences,2004.41(1):1-8.
    [367]Lambe, LM, Ganoid fishes from near Banff, Alberta Proceedings and Transactions of the Royal Society of Canada,1916.10:35-44.
    [368]Romano, C and Brinkmann, W, A new specimen of the hybodont shark Palaeobates polaris with three-dimensionally preserved Meckel's cartilage from the Smithian (Early Triassic) of Spitsbergen. Journal of Vertebrate Paleontology,2010.30(6):1673-1683.
    [369]Schaeffer, B and Mangus, M, A Lower Triassic Fish Assemblage from British Columbia. Bulletin of the American Museum of Natural History,1976.156:515-563.
    [370]Patton, WWJ and Tailleur, IL, Geology of the Killik-Itkillik Region, Alaska. Part 3. Areal geology. U.S. Geol. Surv. Prof. Paper,1964.303-G:409-500.
    [371]Ivanov, A and Klets, T, Triassic Marine Fishes from Siberia, Russia, in New Mexico Museum of Natural History and Science Bulletin, S.G. Lucas and J.A. Spielmann, Editors. 2007.108-109.
    [372]Fraiser, M, When Bivalves Took Over the World:Global Paleoecology of Bivalves During the Aftermath of the End-Permian Mass Extinction.:[Ph.D thesis]. University of Southern California, Los Angeles, CA.2005.
    [373]Goel, RK, Triassic Conodonts from Spiti (Himachal Pradesh), India Journal of Paleontology,1977.51(6):1085-1101.
    [374]Brinkman, DB, Zhao, X, and Nicholls, EL, A Primitive Ichthyosaur from the Lower Triassic of British Columbia, Canada Palaeontology,1992.35(2):465-474.
    [375]Cox, CB and Smith, DG, A review of the Triassic vertebrate faunas of Svalbard. Geological Magazine,1973.110:405-418.
    [376]Su, DZ and Li, ZC, A new Triassic perleidid fish from Hubei, China. Vertebrata Palasiatica,1983.21(1):9-16.
    [377]Wang, N, Yang, S, Jin, F, et al., Early Triassic Hybodontoidea from Tiandong of Guangxi, China--First Report on the Fish Sequence Study Near the Permian-Triassic Boundary in South China. Vertebrata Palasiatica,2001.39(4):237-250.
    [378]Baud, A, Brandner, R, and Donofrio, DA, The Sefid Kuh Limestone-A Late Lower Triassic Carbonate Ramp (Aghdarband, NE-Iran). Abh. Geol. B.-A.,1991.38:111-123.
    [379]Brotzen, F, Stratigraphical studies on the Triassic vertebrate fossils from Wadi Raman, Israel. Arkivfoer Mineralogi och Geologi,1956.2(9):191-217.
    [380]Chhabra, NL and Mishra, VP, Middle Triassic Fish Teeth from the Kalapani Limestone of Malla Johar, Chamoli District (Uttaranchal). Journal of the Palaeontological Society of India,2002.47:151-155.
    [381]Chen, L, The Early Triassic Ichthyosaur Fossils in Chaoxian, Anhui. Regional Geology of China,1985.15:139-146.
    [382]Motani, R, First Complete Forefin of the Ichthyosaur Grippia Longirostris from the Triassic of Spitsbergen. Palaeontology,1998.41(4):591-599.
    [383]Motani, R, Minoura, N, and Ando, T, Ichthyosaurian relationships illuminated by new primitive skeletons from Japan. Nature,1998.393(6682):255-257.
    [384]Massare, JA and Callaway, JM, Cymbospondylus (Ichthyosauria:Shastasauridae) from the Lower Triassic Thaynes Formation of Southeastern Idaho. Journal of Vertebrate Paleontology,1994.14(1):139-141.
    [385]Goto, M, Kuga, N, and Hachiya, K, On the hybodont elasmobranch teeth of three genera from the Mesozoic of Japan. Journal of the Geological Society of Japan,1991.97(9): 743-750.
    [386]Zhang, Q, Zhou, C, Lv, T, et al, Discovery of Middle Triassic Saurichthys in the Luoping area, Yunnan, China. Geological Bulletin of China,2010.29(1):26-30.
    [387]Biirgin, T, Middle Triassic marine fish faunas from Switzerland, in Mesozoic Fishes 2: Systematics and Fossil Record, G. Arratia and H.-P. Schultze, Editors.1999, Verlag Dr. Friedrich Pfeil:Miinchen, Germany.481-494.
    [388]Tintori, A, Posenato, R, Kustatscher, E, et al., New Triassic fish faunas from paralic environments in the Alps, in Mesozoic Fishes 3:Systematics, Paleoenvironments, and Biodiverity, G. Arratia and A. Tintori, Editors.2001:Verlag Dr. Friedrich Pfeil, Miinchen, Germany.66.
    [389]Diedrich, C, The vertebrates of the Anisian/Ladinian boundary (Middle Triassic) from Bissendorf (NW Germany) and their contribution to the anatomy, palaeoecology, and palaeobiogeography of the Germanic Basin reptiles. Palaeogeography, Palaeoclimatology, Palaeoecology,2009.273(1-2):1-16.
    [390]Assmann, P and Rauff, H, Revision der Fauna der Wirbellosen der oberschlesischen Trias. Abhandlung der Preussischen Geologischen Landesanstalt. Vol.170.1937, Berlin:Im vertrieb bei der Preussischen Geologischen landesanstalt.1-126.
    [391]Corroy, G, Les poissons et les reptiles du Muschelkalk et du Rhetien de Basse-Provence. Bulletin de la Societe Geologique de France,1934.3(5-6):475-483.
    [392]Mostler, H, Holothuriensklerite aus anisichen, karnischen und norishen Hallstatterkalken Geologisch-Palaontologische Mitteilungen Innsbruck,1971.1(1):1-30.
    [393]Rieppel, O, Kindlimann, R, and Bucher, H, A new fossil fish fauna from the Middle Triassic (Anisian) of North-Western Nevada, in Mesozoic Fishes:Systematics and Paleoecology, G. Arratia and G. Viohl, Editors.1996:Verlag Dr. Friedrich Pfeil, Munchen, Germany.501-512.
    [394]Nicholls, EL and Brinkman, D, New Thalattosaurs (Reptilia:Diapsida) from the Triassic Sulphur Mountain Formation of Wapiti Lake, British Columbia. Journal of Paleontology, 1993.67(2):263-278.
    [395]Sander, PM, Cymbospondylus (Shastasauridae:Ichthyosauria) from the Middle Triassic of Spitsbergen:Filling a Paleobiogeographic Gap. Journal of Paleontology,1992.66(2): 332-337.
    [396]Polubotko, IV and Ochev, VG, Novye nakhodki ikhtiozarvov v triase severo-vostoka SSSR i nekotorye zamechaniya ob usloviyakh ikh zakhoroneniya Geologiya i Razvedka,1972. 15(3):36-42.
    [397]Hu, S-x, Zhang, Q-y, Chen, Z-Q, et al., The Luoping biota:exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proceedings of the Royal Society B:Biological Sciences,2011.278(1716):2274-2282.
    [398]Fortuny, J, Bolet, A, Selles, AG, et al, New insights on the Permian and Triassic vertebrates from the Iberian Peninsula with emphasis on the Pyrenean and Catalonian basins. Journal of Iberian Geology,2011.37(1):65-86.
    [399]Maisch, MW and Matzke, AT, The skull of a large Lower Triassic ichthyosaur from Spitzbergen and its implications for the origin of the Ichthyosauria. Lethaia,2002.35(3): 250-256.
    [400]Sander, PM, Rieppel, OC, and Bucher, H, New Marine Vertebrate Fauna from the Middle Triassic of Nevada Journal of Paleontology,1994.68(3):676-680.
    [401]Huene, Fv, Ichthyosaurierreste aus Timor. Zentralblatt fur Mineralogie etc.,1936. B: 327-334.
    [402]Rieppel, OC, A new species of Tanystropheus (Reptilia:Protorosauria) from the Middle Triassic of Makhtesh Ramon, Israel. Neues Jahrbuch fur Geologie und Paldontologie Abhandlungen,2001.221(2):271-287.
    [403]Lucas, SG, Global Permian tetrapod biostratigraphy and biochronology. Geological Society, London, Special Publications,2006.265(1):65-93.
    [404]Borsuk-Biatynicka, M, Cook, E, Evans, SE, et al, A microvertebrate assemblage from the Early Triassic of Poland. Ada Palaeontologica Polonica,1999.44(2):167-188.
    [405]Lucas, SG and Heckert, AB, Biochronological significance of Triassic nonmarine tetrapod records from marine strata Albertiana,2000.24:30-36.
    [406]Frobisch, J, Angielczyk, KD, and Sidor, CA, The Triassic dicynodont Kombuisia (Synapsida, Anomodontia) from Antarctica, a refuge from the terrestrial Permian-Triassic mass extinction. Naturwissenschaften,2010.97(2):187-196.
    [407]Retallack, GJ, Smith, RMH, and Ward, PD, Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa. Geological Society of America Bulletin,2003. 115(9):1133-1152.
    [408]Shishkin, MA and Rubidge, BS, A relict Rhinesuchid (Amphibia:Temnospondyli) from the Lower Triassic of South Africa. Palaeontology,2000.43(4):653-670.
    [409]Clyde, WC and Gingerich, PD, Mammalian community response to the latest Paleocene thermal maximum:An isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology,1998.26(11):1011-1014.
    [410]Chapelle, G and Peck, LS, Polar gigantism dictated by oxygen availability. Nature,1999. 399(6732):114-115.
    [411]Graham, JB, Dudley, R, Aguilar, NM, et al., Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature,1995.375:117-120.
    [412]Metcalfe, B, Twitchett, RJ, and Price-Lloyd, N, Changes in size and growth rate of 'Lilliput'animals in the earliest Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology,2011.308(1-2):171-180.
    [413]Daufresne, M, Lengfellner, K, and Sommer, U, Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America,2009.106(31):12788-12793.
    [414]Thordarson, T and Self, S, The Laki (Skaftar Fires) and Grimsvbtn eruptions in 1783-1785. Bulletin ofVolcanology,1993.55(4):233-263.
    [415]Thordarson, Tand Self, S, Atmospheric and environmental effects of the 1783-1784 Laki eruption:A review and reassessment Journal of Geophysical Research,2003.108:1-29.
    [416]Courtillot, V, Kravchinsky, VA, Quidelleur, X, et al., Preliminary dating of the Viluy traps (Eastern Siberia):Eruption at the time of Late Devonian extinction events? Earth and Planetary Science Letters,2010.300(3-4):239-245.
    [417]Hooper, P, Widdowson, M, and Kelley, S, Tectonic setting and timing of the final Deccan flood basalt eruptions. Geology,2010.38(9):839-842.
    [418]Schoene, B, Guex, J, Bartolini, A, et ai, Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology,2010.38(5):387-390.
    [419]Palfy, J and Smith, PL, Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology,2000.28(8):747-750.
    [420]Storey, M, Duncan, RA, and Swisher, CC, Paleocene-Eocene thermal maximum and the opening of the northeast Atlantic. Science,2007.316(5824):587-589.
    [421]Svensen, H, Planke, S, Polozov, AG, et al., Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters,2009.277(3-4):490-500.
    [422]Self, S, Widdowson, M, Thordarson, T, et al., Volatile fluxes during flood basalt eruptions and potential effects on the global environment:A Deccan perspective. Earth and Planetary Science Letters,2006.248(1-2):518-532.
    [423]Aarnes, Ⅰ, Svensen, H, Connolly, JAD, et al, How contact metamorphism can trigger global climate changes:Modeling gas generation around igneous sills in sedimentary basins. Geochimica et Cosmochimica Acta,2010.74(24):7179-7195.
    [424]Sobolev, SV, Sobolev, AV, Kuzmin, DV, et al., Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature,2011.477:312-316.
    [425]Racki, G and Wignall, P, Late Permian double-phased mass extinction and volcanism:an oceanographic perspective, in Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events:Towards an Integrated Approach, D.J. Over, J.R. Morrow, and P.B. Wignall, Editors.2005, Elsevier.
    [426]Sanei, H, Grasby, SE, and Beauchamp, B, Latest Permian mercury anomalies. Geology, 2012.40(1):63-66.
    [427]Dessert, C, Dupre, B, Francois, LM, et al, Erosion of Deccan Traps determined by river geochemistry:impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth and Planetary Science Letters,2001.188(3-4):459-474.
    [428]Huber, M, A Hotter Greenhouse? Science,2008.321:353-354.
    [429]Isozaki, Y, Shimizu, N, Yao, JX, et al, End-Permian extinction and volcanism-induced environmental stress:The Permian-Triassic boundary interval of lower-slope facies at Chaotian, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2007. 252(1-2):218-238.
    [430]金玉玕,南京龙潭孤峯组牙形类化石.古生物学报,1960.8(3):230-248.
    [431]Bender, H and Stoppel, D, Perm-Conodonten. Geologisches Jahrbuch,1965.82:331-364.
    [432]Wang, CY, A conodont fauna from the lowermost Kufeng Formation (Permian). Acta Micropalaeontologica Sinica,1995.12(3):293-297.
    [433]Wardlaw, BR, Guadalupian conodont biostratigraphy of the Glass and Del Norte Mountains, in The Guadalupian symposium-Smithsonian Contributions to the Earth Sciences, B.R. Wardlaw, R.E. Grant, and D.M. Rohr, Editors.2000.37-87.
    [434]Wardlaw, BR and Grant, RE, Conodont biostratigraphy of the Permian Road Canyon Formation, Glass Mountains, Texas. U.S. Geological Survey Bulletin,1990.1895:63-66.
    [435]Behnken, FH, Wardlaw, BR, and Stout, LN, Conodont biostratigraphy of the Permian Meade Peak phosphatic shale member, Phosphoria Formation, southeastern Idaho. Rocky Mountain Geology,1986.24(2):169-190.
    [436]Wang, C and Dong, Z, Permian conodonts from Suoxiyu in Cili county, Hunan. Acta Micropalaeontologica Sinica,1991.8(1):41-56.
    [437]Mei, S, Jin, YG, and Wardlaw, BR, Succession of conodont zones from the Permian 'Kuhfeng'Formation, Xuanhan, Sichuan and its implication in global correlation. Acta Palaeontologica Sinica,1994.33(1):1-23.
    [438]Wang, CY, Wu, JJ, and Zhu, T, Permian conodonts from the Penglaitan Section, Laipin County, Guangxi and the base of the Wuchiapingian Stage (Lopingian Series). Acta Micropalaeontologica Sinica,1998.15(3):225-235.
    [439]Behnken, FH, Leonardian and Guadalupian (Permian) Conodont Biostratigraphy in Western and Southwestern United States. Journal of Paleontology,1975.49(2):284-315.
    [440]Wardlaw, BR and Collinson, JW, Youngest Permian Conodont Faunas from the Great Basin and Rocky Mountain Regions, in Brigham Young University Geology Studies, C.A. Sandberg andD.L. Clark, Editors.1979.151-163.
    [441]Szaniawski, H, Conodonts of the Upper Permian of Poland Acta Palaeontologica Polonica,1969. XIV:325-342.
    [442]Rasmussen, JA, Piasecki, S, Stemmerik, L, et al., Late Permian conodonts from central East Greenland. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen,1990. 164(3):414-427.
    [443]Henderson, CM and Mei, S, Preliminary Cool Water Permian Conodont Zonation in North Pangea:a Review. Permophiles,2000.36:16-23.
    [444]Wardlaw, BR, Davis, RA, Rohr, DM, et al., Leonardian-Wordian (Permian) deposition in the northern Del Norte Mountains, West Texas. U.S. Geological Survey Bulletin,1990.1881: A1-A14.
    [445]Mei, S and Henderson, CM, Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeography Palaeoclimatology, Palaeoecology,2001.170(3):237-260.
    [446]Wardlaw, BR and Mei, S, A discussion of the early reported species of Clarkina (Permian conodonta) and the possible origin of the genus. Palaeoworld,1998.9:33-52.
    [447]Nicora, A, Vaslet, D, and Le Nindre, YM, First record of Permian conodont "Jinogondolella" cf. altaduensis from the Midhnab Member, Khuff Formation, Saudi Arabia Geoarabia,2006.11(3):91-96.
    [448]Kozur, HW, Dzhulfian and Early Changxingian (Late Permian) Tethyan conodonts from the Glass Mountains, West Texas. Neues Jahrbuch fur Geologie und Paldontologie Abhandlungen,1992.187(1):99-114.
    [449]Henderson, CM, Mei, S, and Wardlaw, BR. New conodont definitions at the Guadalupian-Lopingian boundary, in Carboniferous and Permian of the world. Memoir Canadian Society of Petroleum Geologists.2002.
    [450]王成源,吴健军,朱彤,广西来宾蓬莱滩二叠纪牙形刺与吴家坪阶(乐平统)的底界.微体古生物学报,1998.15(3):225-235.
    [451]Wang, CY, Conodont identification and the base of the Lopingian. Acta Micropalaeontologica Sinica,2001.18 (4):364-372.
    [452]Orchard, MJ, Taxonomy and Correlation of Lower Triassic (Spathian) Segminate Conodonts from Oman and Revision of Some Species of Neospathodus. Journal of Paleontology,1995.69(1):110-122.
    [453]Isozaki, Y, Plume winter scenario for biospheric catastrophe:the Permo-Triassic boundary case, in Superplumes:Beyond Plate Tectonics, D. Yuen, Maruyama, S., Karato, S., Windley, B.F., Editor.2007, Springer:Dordrecht.409-440.
    [454]Wignall, PB, Kershaw, S, Collin, P-Y, et al, Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events: Comment. Geological Society of America Bulletin,2009.121(5-6):954-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700