用户名: 密码: 验证码:
多参数非线性变形so(3),so(4)代数的表示、实现及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对称性在人们对世界的认识当中始终起着不可或缺的作用,而研究这一性质的数学工具群论也是近代数学中的一个重要分支。在上世纪80年代中期,量子群在应用反散射方法研究量子场论和统计物理中的精确可解模型中被人们提出,在此之后,各式各样的变形代数变成了物理学家们研究的热点之一。这些变形代数的不可分表示,不可约表示和振子实现等等问题有着重要的意义。
     本文讨论了多参数非线性变形so(3)代数Rq,r(v)以及多参数非线性变形so(4)代数Rq,q'r,r1(v,v'),和非线性变形代数so(4)F的结构,表示和玻色子实现,并对变形映射中的变形函数和对易结果中的结构函数之间的关联进行了讨论。
     一方面,本文采用类似Cartan-Weyl基的办法研究了Rq,r(v)和Rq,q',r,r'(v,v')的不可约表示,用主表示和商空间上的诱导表示对它们的不可分表示进行了研究,通过主表示讨论了各种不变子空间上的子表示及其对应的商空间上的诱导表示,并给出了与主表示、商空间上的诱导表示相应的所需不同数目的Dyson型玻色子实现。采用推广的Schwinger玻色子实现,详细计算了多参数非线性变形so(3)代数的单玻色子实现、单逆玻色子实现以及用两对玻色子(一对玻色子、一对逆玻色子,两对逆玻色子)给出的双玻色子实现,这些实现都是Hostein-Primakoff型的。通过这些玻色子实现的具体形式,本文对多参数非线性变形so(3)代数的极式分解作了讨论,发现极式分解的角向部分在变形下总是保持不变。最后讨论了非线性变形so(3)代数在二维可积系统中的应用。
     另一方面,本文讨论了变形代数与Lie代数的关联关系。讨论了两个Rq,r(v)“耦合”时,相互之间的对易关系应该遵循的规则,并将结论推广到了多个变形代数相互“耦合”,给出了此时应该遵循的“耦合”规则,通过这种方式得到的变形代数类似于半单Lie代数;将so(3)到,Rq,r(v)的变形映射向高维Lie代数进行推广,得到了两种不同的推广方式:变形函数是单Lie代数的Cartan子代数的函数,变形后的代数一般具有q-变形的对易方式,可以看作是Rq,r%;r向高维的推广,变形函数是单Lie代数的子代数的Casimir算符的函数,变形后的代数一般具有包含结构函数的对易结果,可以看作R(v)向高维的推广。
Symmetry plays an important roll when we investigate the world, and the math tool which study such property is also a important branch in modern mathematics。In the middle of1980s, quantum group arose from the exactly solvable problem studied by inverse scattering method in quantum field theory and statistical mechanics, and from then on, various deformed Lie algebra has been a research hotspots. Study on the irre-ducible representation, indecomposable representation and the boson realization of those deformed Lie algebra are of great importance.
     In this thesis, we studied multi-parameter non-linearly deformed so(3) algebra Rq,r(v) as well as multi-parameter non-linear deformed so(4) algebra Rq,q'r,r'(v,v') and non-linearly so(4) algebra so(4)F. We discussed their structures, representations and boson real-izations, at the same time, we studied the connection between deformation function of deformation mapping and the structure function appeared in the commutation results.
     We used the method similar to Cartan-Weyl basis to study the irreducible repre-sentation of Rq,r(v) and Rq,q'r,r'(v,v'), the indecomposable representation using master repre-sentation and the inducible representation on various quotient spaces, we also give the Dyson-like boson realization. By the general Schwinger realization, we calculate in detail the single-boson, single-inverse-boson and double-boson(include a pair of boson with a pair of inverse boson and double inverse boson) realization, which are all Hostein-Primakoff-like. By discussing these realization, we find that the phase part given in polar decomposition remain the same as non-deformed, while the length part varies with dif-ferent deformation. Finally we studyed the application of non-linearly deformed so(3) algebra in two-dimension superintegrable system.
     On the other hand, we discussed the connection between deformation algebra and Lie algebra. Through studying the coupling of two Rq,r(v), we conclude the rules which should be satisfied when defining the commutation relation, furthermore, we spread this conclusion to the coupling problem of several deformed algebra, which is not limited to Rq,r(v). By such kind of coupling, we get a kind of deformed algebra like semisimple Lie algebra. When we studied the deformation function of high-rank Lie algebra, we found two different way which were different generalization of the case in so(3):if the deformation function depend on the Cartan subalgebra, the deformed algebra would get q-ommutator, this kind of deformation could be viewed as the generalization of Rq,r, while if the deformation function depend on the Casimir operator of non-deformed subalgebra, the commutation results would contain structure functions, such type could be viewed as the generalization of R(v).
     At the same time, through the study on the deformation mapping of so(3),so(4), we found the origin of some multi-parameter non-linear deformed so(3),so(4) algebra, and we formally discussed the connection between the origin of deformed algebra and the deformation mapping of Lie algebra.
引文
[1] Weyl H. Gruppentheorie und Quantenmechanik. Leipzig: Hirzel,1931.
    [2] Wigner E P. Gruppentheorie. Brunswick, Germany: Viewig,1931.
    [3] Wigner E P. On the Consequences of the Symmetry of the Nuclear Hamitonian on the Spec-troscopy of Nuclei. phys. Rev.,1937,51(2):106–119.
    [4] Van Der Waerden B L. Die gruppentheoretische Methode in der Quantenmechanik. Berlin:Springer,1932.
    [5] Racah G. Group Theory and Spectroscopy. Ergeb. Exakt. Naturwiss.,1965,37:28.
    [6] Racah G. Theory of Complex Spectra IV. Phys. Rev.,1949,76:1352.
    [7] Jahn H A. Theoretical Studies in Nuclear Structure I. Proc. Roy. Soc.(Lond.),1950.516.
    [8] Flowers B H. The Classification of States of the Nuclear f-shell. Proc. Roy. Soc.(Lond.),1952.497.
    [9] Flowers B H. Studies in jj-coupling I. Proc. Roy. Soc.(Lond.),1952.245.
    [10] Elliott J P. Collective Motion in the Nuclear Shell Model I. Proc. Roy. Soc.(Lond.),1958.128.
    [11] BehrendsRE,DreitleinJ,FronsdalC,etal. Simplegroupsandstronginteractionsymmetries.Revs. Mod. Phys.,1962,34:1.
    [12] Barut A O. Dynamical Groups and Generalized Symmetries in Quantum Theory.Christchurch, N. Z.: University of Canterbury Publications,1972.
    [13] Gell-Mann M. A schematic model of baryons and mesons. Phys. Letters,1964,8.
    [14] Georgi H, Glashow S L. Unity of all elementary-particle forces. Physical Review Letters,1974,32(8):438–441.
    [15] VilenkinN. Specialfunctionsandthetheoryofgrouprepresentations,volume22. AmericanMathematical Soc.,1968.
    [16] Kaufman B. Special functions of mathematical physics from the viewpoint of Lie algebra. J.Math. Phys.,1966,7:447.
    [17] Talman J D. Special functions, a Group Theoretical Approach. New York: Benjamin,1968.
    [18] Miller W. Lie Theory and Special Functions. New York: Academic Press,1968.
    [19] Hoffman W C. The Lie algebra of visual perception. Journal of Mathematical Psychology,1966,3(1):65–98.
    [20] Hoffman W C. Visual illusions of angle as an application of Lie transformation groups. SiamReview,1971,13(2):169–184.
    [21] Nono T. On the Symmetry Groups of Simple Materials: An Application of the Theory of LieGroups. J. Math. Anal. Appl.,1968,24:110.
    [22] Nono T. On the Stored-Energy Function of a Hyperelastic Material: An Application of theTheory of Lie Groups. J. Math. Anal. Appl.,1968,24:268.
    [23] Kulish P, Reshetikhin N. Quantum linear problem for the sine-Gordon equation and higherrepresentations. Journal of Soviet Mathematics,1983,23(4):2435–2441.
    [24] Faddeev L D. Integrable models in (1+1)-dimensional quantum field theory. Les HouchesLectures,1982,39:561–608.
    [25] Majid S. Quasi-Triangular Hopf algebras and Yang-Baxter equations. International Journalof Modern Physics A,1990,5(01):1–91.
    [26] Witten E. Gauge theories, vertex models, and quantum groups. Nuclear Physics B,1990,330(2):285–346.
    [27] Drinfeld V G. Hopf algebras and the quantum Yang-Baxter equation. Proceedings of SovietMath. Dokl, volume32,1985.254–258.
    [28] Drinfeld V G. A new realization of Yangians and quantized affine algebras. Proceedings ofSoviet Math. Dokl, volume36,1988.212–216.
    [29] Manin Y I. Quantum Groups and Non-Commutative Geometry. Centre de Recherches Math-ématiques: Université de Montréal,1990.
    [30] Connes A. Non-commutative differential geometry. Proceedings of PUBLICATIONSMATHEMATIQUES, volume62. IHES,1985.257–360.
    [31] Woronowicz S L. Compact matrix pseudogroups. Communications in Mathematical Physics,1987,111(4):613–665.
    [32] Woronowicz S L. Differential calculus on compact matrix pseudogroups (quantum groups).Communications in Mathematical Physics,1989,122(1):125–170.
    [33] Pusz W, Woronowicz S L. Twisted second quantization. Reports on Mathematical Physics,1989,27(2):231–257.
    [34] Manin Y I. Topics in noncommutative geometry, volume129. Princeton University PressPrinceton,1991.
    [35] Wess J, Zumino B. Covariant differential calculus on the quantum hyperplane. NuclearPhysics B-Proceedings Supplements,1991,18(2):302–312.
    [36] Jaganathan R. Some introductory notes on quantum groups, quantum algebras, and theirapplications. arXiv preprint math-ph/0105002,2001..
    [37] Groza V, Kachurik I, Klimyk A. On Clebsch-Gordan coefficients and matrix elements ofrepresentations of the quantum algebra Uq (su2). Journal of Mathematical Physics,1990,31:2769.
    [38] Kirillov A N, Reshetikhin N Y. Representations of the ALGEBRA ((2)), q-ORTHOGONALPolynomials and Invariants of Links. New Developments In The Theory Of Knots. Series:Advanced Series in Mathematical Physics, ISBN:978-981-02-0162-3. WORLD SCIENTIF-IC, Edited by Toshitake Kohno, vol.11, pp.202-256,1990,11:202–256.
    [39] Nomura M. Relations for Clebsch–Gordan and Racah coefficients in su (2) and Yang–Baxterequations. Journal of Mathematical Physics,1989,30:2397.
    [40] Nomura M. Yang-Baxter Relations in Terms of n—j Symbols of suq(2) Algebra. Journal ofthe Physical Society of Japan,1989,58(8):2694–2704.
    [41] Nomura M. An Alternative Description of the Quantum Group SUq (2) and the q-AnalogRacah-Wigner Algebra. Journal of the Physical Society of Japan,1990,59(2):439–448.
    [42] VaksmanLL. q-analoguesofClebsch-Gordancoefficients,andthealgebraoffunctionsonthequantumgroupSU(2). ProceedingsofDokl.Akad.NaukSSSR,volume306,1989.269–271.
    [43] RueggH. AsimplederivationofthequantumClebsch–GordancoefficientsforSU(2). Journalof mathematical physics,1990,31:1085.
    [44] BiedenharnLC,TarliniM. Onq-tensoroperatorsforquantumgroups. LettersinmathematicalPhysics,1990,20(4):271–278.
    [45] Jimbo M. Aq-difference analogue of U (g) and the Yang-Baxter equation. Letters in Mathe-matical Physics,1985,10(1):63–69.
    [46] Lusztig G. Quantum deformations of certain simple modules over enveloping. Advances inmathematics,1988,70(2):237–249.
    [47] Rosso M. Finite dimensional representations of the quantum analog of the enveloping al-gebra of a complex simple Lie algebra. Communications in mathematical physics,1988,117(4):581–593.
    [48] Quesne C. Raising and lowering operators for uq (n). Journal of Physics A: Mathematicaland General,1993,26(2):357.
    [49] JimboM. Aq-analogueofU(gl(N+1)),Heckealgebra,andtheYang-Baxterequation. Lettersin Mathematical Physics,1986,11(3):247–252.
    [50] Links J R, Gould M D. A q-superdimension formula for irreps of type I quantum superalge-bras. Journal of Mathematical Physics,1996,37:484.
    [51] Palev T D. A superalgebra U [osp (3/2)] generated by deformed paraoperators and its mor-phismontoaW(1/1)Clifford–Weylalgebra. Journalofmathematicalphysics,1993,34:4872.
    [52] Borowiec A, Lukierski J, Lyakhovsky V, et al. Basic twist quantization of the exceptional Liealgebra g2. Journal of mathematical physics,2005,46:103502.
    [53] Arnaudon D, Chryssomalakos C, Frappat L. Classical and quantum sl (1|2) superalgebras,Casimir operators and quantum chain Hamiltonians. arXiv preprint q-alg/9503021,1995..
    [54] Raychev P P, Roussev R P, Smirnov Y F. The quantum algebra SUq (2) and rotational spectraof deformed nuclei. Journal of Physics G: Nuclear and Particle Physics,1990,16(8):L137.
    [55] Bracken P. The quantum group SU q (2), quasitriangularity, and application to theq-rotatormodel. Journal of Mathematical Chemistry,1996,19(3):217–230.
    [56] Bonatsos D, Faessler A, Raychev P, et al. An exactly soluble nuclear model with SUq (3)supset SUq (2) supset SOq (2) symmetry. Journal of Physics A: Mathematical and General,1992,25(6):L267.
    [57] Bonatsos D, Kotsos B, Raychev P, et al. Molecular spectra from rotationally invariant Hamil-tonians based on the quantum algebra suq (2) and irreducible tensor operators under suq (2).International journal of quantum chemistry,2003,95(1):1–20.
    [58] Alvarez R N, Bonatsos D, Smirnov Y F. q-Deformed vibron model for diatomic molecules.Physical Review A,1994,50(2):1088.
    [59] Lee C R, Yu J P. On q-analogues of the statistical distribution. Physics Letters A,1990,150(2):63–66.
    [60] Ge M L, Su G. The statistical distribution function of the q-deformed harmonic oscillator.Journal of Physics A: Mathematical and General,1991,24(13):L721.
    [61] UbriacoMR. λ-transitioninlowdimensionalsystemswithSUq(2) symmetry. PhysicsLettersA,1998,241(1):1–6.
    [62] Bonatsos D, Daskaloyannis C. Quantum groups and their applications in nuclear physics.Progress in Particle and Nuclear Physics,1999,43:537–618.
    [63] Ballesteros A, Civitarese O, Reboiro M. Correspondence between the q-deformed harmonicoscillator and finite range potentials. Physical Review C,2003,68(4):044307.
    [64] Sviratcheva K, Bahri C, Georgieva A, et al. Physical significance of q deformation and many-body interactions in nuclei. Physical review letters,2004,93(15):152501.
    [65] Bonatsos D, Argyres E, Raychev P. SUq (1,1) description of vibrational molecular spectra.Journal of Physics A: Mathematical and General,1991,24(8):L403.
    [66] Chang Z, Yan H. Diatomic-molecular spectrum in view of quantum group theory. PhysicalReview A,1991,44(11):7405.
    [67] Capps R H. Quantum SU (2) and molecular spectra. Progress of theoretical physics,1994,91(4):835–838.
    [68] ZHOU H Q, ZHANG X M. AUqp(u1,1) Model for Vibrational Molecular Spectra.中国物理快报,13(10):721–723.
    [69] BiedenharnLC. ThequantumgroupSUq(2)andaq-analogueofthebosonoperators. Journalof Physics A: Mathematical and General,1989,22(18):L873.
    [70] Macfarlane A J. On q-analogues of the quantum harmonic oscillator and the quantum groupSU (2) q. Journal of Physics A: Mathematical and general,1989,22(21):4581.
    [71] Sun C P, Fu H C. The q-deformed Boson realization of the quantum group SUq(n) and itsrepresentations [J]. J Phys A: Math Gen,1989,22(21):L983–L986.
    [72] Hayashi T. Q-analogues of Clifford and Weyl algebras-spinor and oscillator representa-tions of quantum enveloping algebras. Communications in Mathematical Physics,1990,127(1):129–144.
    [73] Finkelstein R J. q-Uncertainty relations. International Journal of Modern Physics A,1998,13(11):1795–1803.
    [74] KempfA. Uncertaintyrelationinquantummechanicswithquantumgroupsymmetry. Journalof Mathematical Physics,1994,35:4483–4496.
    [75] Odesskii A V. An analog of the Sklyanin algebra. Functional Analysis and Its Applications,1986,20(2):152–154.
    [76] Feinsilver P. Lie algebras and recurrence relations I. Acta Applicandae Mathematica,1988,13(3):291–333.
    [77] Kagramanov E D, Mir-Kasimov R M, Nagiyev S M. The covariant linear oscillator andgeneralized realization of the dynamical su (1,1) symmetry algebra. Journal of mathematicalphysics,1990,31:1733.
    [78] Fairlie D B. Quantum deformations of SU(2). Journal of Physics A: Mathematical and Gen-eral,1990,23(5):L183.
    [79] Woronowicz S. Publ. RIMS, Kyoto Univ.,1987,23:117.
    [80] Fairlie D B. Quantum deformations of SU(2). Journal of Physics A: Mathematical and Gen-eral,1990,23(5):L183.
    [81] Curtright T L, Zachos C K. Deforming maps for quantum algebras. Physics Letters B,1990,243(3):237–244.
    [82] Ro ek M. Representation theory of the nonlinear SU (2) algebra. Physics Letters B,1991,255(4):554–557.
    [83] Quesne C. Quadratic algebra approach to an exactly solvable position-dependent massSchr dinger equation in two dimensions. Sigma,2007,3(067):14.
    [84] Kalnins E G, Miller Jr W, Sarah P. Models for quadratic algebras associated with secondorder superintegrable systems in2D. Symmetry, Integrability and Geometry: Methods andApplications,2008,4(0):8–21.
    [85] Higgs P W. Dynamical symmetries in a spherical geometry. I. Journal of Physics A: Mathe-matical and General,1979,12(3):309.
    [86] Delbecq C, Quesne C. Nonlinear deformations of su (2) and su (1,1) generalizing Witten’salgebra. Journal of Physics A: Mathematical and General,1993,26(4):L127.
    [87] Bonatsos D, Kolokotronis P, Daskaloyannis C, et al. Nonlinear deformed su (2) algebras in-volvingtwodeformingfunctions. CzechoslovakJournalofPhysics,1996,46(12):1189–1196.
    [88] Curado E M F, Rego-Monteiro M A. Non-linear generalization of the sl(2) algebra. PhysicsLetters A,2002,300(2):205–212.
    [89] Gavrilik A M. Proc. Inst. Math. NAS Ukraine,2000,30:304.
    [90] Nelson J E, Regge T. Invariants of2+1gravity. Communications in mathematical physics,1993,155(3):561–568.
    [91] Chekhov L O, Fock V V. Observables in3d gravity and geodesic algebras. CzechoslovakJournal of Physics,2000,50(11):1201–1208.
    [92] Zhedanov L. Lett. Math. Phys.,1998,48(53).
    [93] Bullock D, Przytycki J H. Multiplicative structure of Kauffman bracket skein module quan-tizations. Proceedings of the American Mathematical Society,2000,128(3):923–931.
    [94] Przytycki J H. In: Suzuki S,(eds.). Proceedings of Knots, volume96. World Scientific, Sin-gapore,1997.279.
    [95] Schmidke W B, Wess J, Zumino B. A q-deformed Lorentz algebra. Zeitschrift für Physik CParticles and Fields,1991,52(3):471–476.
    [96] Ogievetsky O, Schmidke W, Wess J, et al. q-Deformed Poincaré algebra. Communications inMathematical Physics,1992,150(3):495–518.
    [97] OgievetskyO,SchmidkeWB,WessJ,etal. Sixgeneratorq-deformedLorentzalgebra. lettersin mathematical physics,1991,23(3):233–240.
    [98] Schmidt A, Wachter H. q-Deformed quantum Lie algebras. Journal of Geometry and Physics,2006,56(11):2289–2325.
    [99] Lorek A, Weich W, Wess J. Non-commutative Euclidean and Minkowski structures.Zeitschrift für Physik C Particles and Fields,1997,76(2):375–386.
    [100] Podle P, Woronowicz S L. Quantum deformation of Lorentz group. Communications inmathematical physics,1990,130(2):381–431.
    [101] HavlícekM,KlimykA,PostaS. Representationsoftheq-deformedalgebraUq’(so4). Journalof mathematical physics,2001,42:5389.
    [102] Quesne C. On some nonlinear extensions of the angular momentum algebra. Journal ofPhysics A: Mathematical and General,1995,28(10):2847.
    [103] Chacón E, Levi D, Moshinsky M. Lie algebras in the Schr dinger picture and radial matrixelements. J. Math. Phys.,1976,17:1919.
    [104] Flato M, Fronsdal C. On Dis and Racs. Phys. Lett. B,1980,97:236.
    [105] Flato M, Fronsdal C. Quantum field theory of singletons. The Rac. J. Math. Phys.,1982,22:1100.
    [106] LesimpleM. DeformationsofmasslessGupta–Bleulertripletsin3+2DeSitterspace. J.Math.Phys.,1998,39:6384.
    [107] Alkalaev K B, Grigoriev M, Tipunin I Y. Massless Poincare modules and gauge invariantequations. arXiv:0811.3999,2008..
    [108] Han Q Z, Sun H Z, Zhang M, et al. The Fock wave function as classified by the supergroupchainU(N/M) OSp(N/M) O(N)Sp(M). J. Math. Phys.,1985,26:1822.
    [109] Gruber B, Klimyk A U. Multiplicity free and finite multiplicity indecomposable representa-tions of the algebra su(1,1). J. Math. Phys.,1978,19:2009.
    [110] Gruber B, Klimyk A U. Matrix elements for indecomposable representations of complexsu(2). J. Math. Phys.,1984,25:755.
    [111] Gruber B, Klimyk A U, Smirnov Y F. Indecomposable representations of A2(su(3), su(2,1))and representations induced by them. Nuovo Cimento A,1982,69:97–127.
    [112] GruberB,LenczewskiR. IndecomposablerepresentationsoftheLorentzalgebrainanangularmomentum basis. J. Phys. A,1983,16:3703.
    [113] Lenczewski R, Gruber B. Indecomposable representations of the Poincare algebra. J. Phys.A,1986,19:1.
    [114] Zhelobenko D P. LINEAR REPRESENTATIONS OF THE LORENZ GROUP. Dokl. Akad.Nauk SSSR,1959,126:935.
    [115] Gel’fand I M, Ponomarev V A. Indecomposable representanions of the Lorentz group. Us-pekhi Mat. Nauk,1968,23(2):3–59.
    [116] Gruber B, Henneberger W C. Representations of the Euclidean group in the plane. NuovoCimento B,1983,77:203.
    [117] Fu H C. Inhomogeneous differential realization, boson–fermion realization of Lie superalge-bras and their indecomposable representations. J. Math. Phys.,1991,32:767.
    [118] Ruan D, Jia Y F, Ruan W. Boson and differential realizations of polynomial angular momen-tum algebra. J. Math. Phys.,2001,42:2718.
    [119] Doebner H D, Gruber B, Lorente M. Boson operator realizations of su(2) and su(1,1) andunitarization. J. Math. Phys.,1989,30:594.
    [120] Fu H, Sun C P. Inhomogeneous boson realization of indecomposable representations of Liealgebras. J. Math. Phys.,1990,31:287.
    [121] Ruan D, Wu C, Sun H Z. Single Boson Realizations of the Higgs Algebra. Commun. Theor.Phys.,2003,40:73.
    [122] Dyson F J. General theory of spin-wave interactions. Phys. Rev.,1956,102:1217.
    [123] Maleev S V. Scattering of slow neutrons in ferromagnets. Sov. Phys. JETP,1958,6:776.
    [124] Belyaev S T, Zelevinsky V G. Anharmonic effectsof quadrupole oscillations of sphericalnuclei. Nucl. Phys.,1962,39:582.
    [125] Marumori T, Yamamura M, Tokunaga A. On the’anharmonic effects’ on the collective os-cillations in spherical nuclei. I. Prog. Theor. Phys.,1964,31:1009.
    [126] Yamamura M. On the phonon-quasiparticle interactions in spherical odd nuclei. Prog. Theor.Phys.,1965,33:199.
    [127] Klein A. Boson realizations of Lie algebras with applications to nuclear physics. Reviews ofModern Physics1991,63(2):375.
    [128] Holstein T, Primakoff H. Field dependence of the intrinsic domain magnetization of a ferro-magnet. Phys. Rev.,1940,58:1098.
    [129] Pang S C, Klein A, Dreizler R M. Study of boson expansion methods in an exactly solubletwo-level shell model. Ann. Phys.(N.Y.),1968,49:477.
    [130] Palev T D. A Holstein-Primakoff and a Dyson realization for the quantum algebraUq[sl(n+1)]. J. Phys. A: Math. Gen.,1998,31:5145.
    [131] PalevTD. TheHolstein-PrimakoffandDysonrealizationsfortheLiesuperalgebragl(m/n+1). J. Phys. A: Math. Gen.,1997,30:8273.
    [132] Zhang Y Z, Gould M D. A unified and complete construction of all finite dimensional irre-ducible representations ofgl(2|2). J. Math. Phys.,2005,46:013505.
    [133]马中骐.物理学中的群论.北京:科学出版社,1998.
    [134] HumphreysJE. IntroductiontoLieAlgebrasandRepresentationTheory. NewYork:Springer-Verlag,1972.
    [135]孟道骥.复半单李代数引论.北京:北京大学出版社,1998.
    [136]万哲先.李代数.北京:科学出版社,1978.
    [137]韩其智,孙洪洲.群论.北京:北京大学出版社,1987.
    [138] WybourneB. SymmetryPrinciplesandAtomicSpectroscopy. NewYork:JohnWiley&Sons,1970.
    [139] Baird G E, Biedenharn L C. On the representations of the semisimple Lie groups. II. J. Math.Phys.,1963,4:1449–1466.
    [140] Nagel J G, Moshinsky M. Operators that lower or raise the irreducible vector spaces ofUn1contained in an irreducible vector space ofUn. J. Math. Phys.,1965,6:682–694.
    [141] Pang S C, Hecht K T. Lowering and raising operators for the orthogonal group in the chainO(n) O(n1)... and their graphs. J. Math. Phys.,1967,8:1233–1251.
    [142] WongMKF. Representationsoftheorthogonalgroup.I.Loweringandraisingoperatorsoftheorthogonal group and matrix elements of the generators. J. Math. Phys.,1967,8:1899–1911.
    [143]孙洪洲.对SU(3)波函数的讨论.物理学报,1964,20:483.
    [144]孙洪洲,韩其智. SU(3)群不可约表示直乘的分解.物理学报,1965,21:56.
    [145]孙洪洲.对SU(3)波函数的研究.中国科学,1965,14:840.
    [146]杨国桢,孙洪洲,关洪,等. C2群的基本粒子强相互作用.北京大学学报,1964,10:253.
    [147]孙洪洲,韩其智.李代数SU(n)和阶化李代数SU(n/1)的不可约表示.中国科学,1981,24:914.
    [148] Sun H Z, Ruan D. Algebraic expressions for O(N) O(N1) reduction factors for thethree-rowed irreducible representations. J. Math. Phys.,1998,39:630.
    [149] Sun H Z, Han Q Z, Zhang M, et al. Reduction factors for O(N) O(N1). Commun. Theor.Phys.,1998,30(4):541–550.
    [150] Dirac P A M, Dirac P A M, Dirac P A M, et al. Lectures on quantum field theory. Number3,Belfer Graduate School of Science, Yeshiva University New York,1966.
    [151] Mehta C, Roy A K, Saxena G. Eigenstates of two-photon annihilation operators. PhysicalReview A,1992,46(3):1565.
    [152] Fan H Y. Inverse operators in Fock space studied via a coherent-state approach. PhysicalReview A,1993,47:4521–4523.
    [153] Klein A. Boson realizations of Lie algebras with applications to nuclear physics. Reviews ofModern Physics1991,63(2):375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700