用户名: 密码: 验证码:
几种神经递质电化学传感器构置及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构建分析性能优异的新型电化学传感界面是神经递质传感器研制的关键,本论文从磺酸偶氮类聚合物、石墨烯新型修饰材料的开发入手,构置了多种神经递质检测相关的修饰电极,研究了多巴胺等神经递质化合物在修饰电极表面的电化学行为,并建立了多巴胺、丹参素异丙酯等化合物的伏安分析新方法,该研究为探索神经递质类物质的高灵敏度、高选择性电化学传感界面提供了新思路,拓展了石墨烯及磺酸偶氮类物质的应用范围,对多巴胺相关的药物及制剂的分析检测、质量控制提供了简单易行且高效的分析方法。主要研究内容如下:
     1.采用电聚合方式,构置了四种磺酸偶氮类聚合物修饰电极,通过化合物聚合过程中电化学行为特点并结合电极表面的光谱学特征,对该类化合物的成膜机理进行推测;将四种聚合物修饰电极用于多巴胺神经递质的电化学检测中,对多巴胺在该类修饰电极表面的电化学催化过程进行研究,提出了该类聚合物结构中的醌腙类官能团进行电化学催化,同时磺酸基吸附的可能电化学过程;最后实现了四种修饰电极对多巴胺、对乙酰氨基酚、尿酸、L-色氨酸、肾上腺素的单独或同时测定。
     2.研究了含氮化合物柠嗪酸对氧化石墨烯的电还原过程的影响,发现该化合物能够显著提升氧化石墨烯电还原后材料的电催化性能,通过材料的光谱学及表面形态特征,结合近年来对石墨烯材料的研究进展,提出了柠嗪酸对氧化石墨烯的吸附造成不规则堆叠可能为电化学性能得以提升的原因,并将该电还原石墨烯修饰电极用于对多巴胺的电分析,实现了多巴胺的单独测定及多巴胺、尿酸的选择性测定。实验结果证明该材料具有较为优异的分析性能,对多巴胺及尿酸的检出限分别为9.0×10-8mol/L和9.0×10-7mol/L。
     3.利用构置的聚新胭脂红修饰电极对效应物质成分丹参素异丙酯在该电极上的电化学行为进行了研究,建立了检测丹参素异丙酯的电化学分析方法。实验结果表明,该方法具有较好的分析性能,对丹参素异丙酯分析的线性范围为0.4×10-6~2×10-5mol/L,检出限为1.0×10-7mol/L,优于紫外分光光度法,对丹参素异丙酯片剂进行了样品测定;同时利用该修饰电极对丹参素异丙酯与牛血清白蛋白之间的相互作用进行研究,结果表明丹参素异丙酯能够与牛血清白蛋白结合形成复合物,其结合常数为1.00×1010Lmol-1,结合位点数为2。
Using new materials, including organic polymer and graphene in construction of high sensitive and selective electro-chemical sensors for neurotransmitters. In this dissertation, several kinds of electro-chemical sensors based on sulfonic azo dye and graphene materials were fabricated, and the behaviors of electro-chemistry and electro-catalysis for dopamime (DA), uric acid (UA), acetaminophen (AP), L-tryptophan (Trp) and epinephrine (EP) on these modified electrodes were investigated in details. These studies may be of great importance not only in the field of biomedical chemistry and neurochemistry but also for diagnostic and pathological research. The thesis consists of four chapters and the author's main contributions are as follows:
     1. By electro-polymerization methods, four kinds of poly (sulfonic azo dye) modified electrodes, including poly (new coccine)/CPE, poly (sunset yellow)/CPE, poly (zincon Sodium Salt)/CPE and poly(ponceau S)/CPE, were fabricated and their behaviors of electro-chemistry and electro-catalysis were investigated respectively. The spectral results and surface characteristics of modified CPE indicated the hydrazone functional groups in the poly (sulfonic azo dye) structure catalysed dopamine electro-chemical reaction, and sulfo functional groups could adsorb of dopamine to enhance the electrochemical properties of the modified electrodes.
     2. A facile electro-chemical sensor based on citrazinic acid (CA) functionalized graphene (CA-rGO) was fabricated. The composite film modified electrode exhibited excellent selectivity and sensitivity towards dopamine (DA) and uric acid (UA) detection, owing to the electro-catalytic effect of non-directional arrangement of rGO. Differential pulse voltammetry (DPV) was used to determine DA in the presence of UA. It was found that all of oxidation peaks of two species could be well resolved. The calibration curve for DA ranged from0.30to909μM with a detection limit of0.09μM (signal/noise=3). The constructed sensor has been employed to quantitatively determine DA and UA in real samples.
     3. Electro-chemical characterization of IDHP on poly (new coccine) was investigated by cyclic voltammetry and differential pulse voltammetry. This modified CPE exhibited excellent electro-catalytic activity towards the oxidations of IDHP. Well defined and separated oxidation peaks were observed by CV. Linear calibration plots for the oxidation of IDHP was obtained in the range of0.4x10-6~2xl0-5mol/L. Detection limits of IDHP was found to be1.0xlO-7mol/L. and next the interaction behaviour between IDHP and bovine serum album (BSA) was investigated by CV and DPV. The results indicated that IDHP could combine with BSA to generate non-electroactivity complexes, the binding number was2and the binding constant of1.00x1010L mol"1was obtained.
引文
[1]Amara, S.G.; Michael, J.K. Neurotransmitter transporters:recent progress [J]. Annual review of neuroscience.1993,16,73-93.
    [2]Elias, L.J.; Saucier, D.M.; Neuropsychology:Clinical and Experimental Foundations [M]. Boston:Pearson.1992,4th edition.
    [3]Fonnum, F. Glutamate:a neurotransmitter in mammalian brain [J]. Journal of neurochemistry,1984,42,1-11.
    [4]Amaral, D.G.; Norio I.; Brenda. C. Chapter Neurons, numbers and the hippocampal network [J]. Progress in brain research.1990,83,3-11.
    [5]Karczmar, A.G. The Otto Loewi Lecture Loewi's discovery and the XXI century [J]. Progress in Brain Research,1996,109,1-27.
    [6]Lipton, S.A.; Kater, S.B. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival [J]. Trends in neurosciences,1989,12,265-270.
    [7]Amano, T.; Richelson, E.; Nirenberg, M. Neurotransmitter synthesis by neuroblastoma clones [J]. Proceedings of the National Academy of Sciences,1972,69,258-263.
    [8]Tatsumi, M.; Groshan, K.; Blakely, R.D.; Richelson, E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters [J]. European journal of pharmacology.1997,340,249-258.
    [9]Lutz, W.; Chmielewski, H.; Pawlak, J. Peptide neuroregulators in the central nervous system [J]. Neurol Neurochir Pol.1984,18,43-50.
    [10]Montague, P.R.; Gancayco, CD.; Winn, M.J.; Marchase, R.B.; Friedlander, M.J. Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex [J]. Science.1994,263,973-977.
    [ll]Dackis, C.A.; Gold, M.S. New concepts in cocaine addiction:the dopamine depletion hypothesis [J]. Neuroscience. Biobehavioral. Reviews.1985,9,469-477.
    [12]Kodirov, S.A.; Takizawa, S.; Joseph, J.; Kandel, E.R.; Shumyatsky, G.P.; Bolshakov, V.Y. Synaptically released zinc gates long-term potentiation in fear conditioning pathways [J]. PNAS.2006,103,15218-15223.
    [13]Lowenstein, C.J.; Dinerman, J.L.; Snyder, S.H. Nitric oxide:a physiologic messenger [J]. Annals of internal medicine.1994,120,227-237.
    [14]Li, C.H.; Chung, D.; Doneen, B.A. Isolation, characterization and opiate activity of P-endorphin from human pituitary glands [J]. Biochemical and biophysical research communications.1976,72,1542-1547.
    [15]Fahn, S. The history of dopamine and levodopa in the treatment of Parkinson's disease [J]. Movement Disorders.2008,23,497-508.
    [16]Carlsson, A. The current status of the dopamine hypothesis of schizophrenia [J]. Neuropsychopharmacology.1988,1,179-186.
    [17]Perez, R.G.; Waymire, J.C.; Lin, E.; Liu, J.J.; Guo, F.; Zigmond, M.J. A role for α-synuclein in the regulation of dopamine biosynthesis [J]. The Journal of neuroscience. 2002,22,3090-3099.
    [18]Kimmel, H.L.; Carroll, F.; Kuhar, M.J. Dopamine transporter synthesis and degradation rate in rat striatum and nucleus accumbens using RTI-76 [J]. Neuropharmacology.2000, 39,578-585.
    [19]Yavich, L.; Forsberg, M.M.; Karayiorgou, M.; Gogos, J.A.; Mannisto, P.T. Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum [J]. The Journal of Neuroscience,2007,27,10196-10209.
    [20]Roshchina, V.V. Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells [M]. New York:Springer.2010,17-52.
    [21]Iyer, L.M.; Aravind, L.; Coon, S.L.; Klein, D.C.; Koonin, E.V. Evolution of cell-cell signaling in animals:did late horizontal gene transfer from bacteria have a role? [J]. Trends in Genetics.2004,20,292-299.
    [22]Barron, A.B.; S(?)vik, E.; Cornish, J.L. The roles of dopamine and related compounds in reward-seeking behavior across animal phyla [J]. Frontiers in behavioral neuroscience. 2010,4,163-169.
    [23]Tsai, H.C.; Zhang, F.; Adamantidis, A.; Stuber, G.D.; Bonci, A.; Lecea, L.; Deisseroth, K. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning [J]. Science.2009,324,1080-1084.
    [24]Tye, K.M.; Mirzabekov, J.J.; Warden, M.R.; Ferenczi, E.A.; Tsai, H.C.; Finkelstein, J.; Deisseroth, K. Dopamine neurons modulate neural encoding and expression of depression-related behavior [J]. Nature.2012,493,537-541.
    [25]Adcock, R.A.; Thangavel, A.; Whitfield-Gabrieli, S.; Knutson, B.; Gabrieli, J.D. Reward-motivated learning:mesolimbic activation precedes memory formation [J]. Neuron.2006,50,507-517.
    [26]Geffen, L.B.; Jessell, T.M.; Cuello, A.C.; Iversen, L.L. Release of dopamine from dendrites in rat substantia nigra [J]. Nature.1976,10,258-260.
    [27]Allen, R.P.; Picchietti, D.; Hening, W.A.; Trenkwalder, C.; Walters, A.S.; Montplaisi, J. Restless legs syndrome:diagnostic criteria, special considerations, and epidemiology:a report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health [J]. Sleep medicine.2003,4,101-119.
    [28]Dougherty, D.D.; Bonab, A.A.; Spencer, T.J.; Rauch, S.L.; Madras, B.K.; Fischman, A.J. Dopamine transporter density in patients with attention deficit hyperactivity disorder [J]. The Lancet.1999,354,2132-2133.
    [29]Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia:version Ⅲ-the final common pathway [J]. Schizophrenia bulletin.2009,35,549-562.
    [30]Graeme, E.; Irwin, J.K.; David, S.G. Catecholamine Metabolism:A Contemporary View with Implications for Physiology and Medicine [J]. Pharmacol. Rev.2004,56,331-49.
    [31]Sarkar, C.; Basu, B.; Chakroborty, D.; Dasgupta, P.S.; Basu, S. The immunoregulatory role of dopamine:an update [J]. Brain, behavior, and immunity.2010,24,525-528.
    [32]Carey, R.M. Renal dopamine system paracrine regulator of sodium homeostasis and blood pressure [J]. Hypertension.2001,38,297-302.
    [33]Rubi, B.; Maechler, P. Minireview:new roles for peripheral dopamine on metabolic control and tumor growth:let's seek the balance [J]. Endocrinology.2010,151, 5570-5581.
    [34]Turner, A.; Wilson, G.; Kaube, I. Biosensors:Fundamentals and Applications[M]. Oxford, UK:Oxford University.770.
    [35]陈玲.生物传感器的研究进展综述[J].传感器与微系统.2006,25,4-7.
    [36]李东升.血糖检测装置最新发展动态[J].上海生物医学工程.200,26,33-34.
    [37]吴英才,袁一方,徐艳平.表面等离子共振传感器的研究进展[J].传感器技术.2004,23,1-5.
    [38]Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: recommended definitions and classification [J]. Biosensors and Bioelectronics.2001,16, 121-131.
    [39]陈声培,孙世刚,黄泰山.碳载铂电极的表面结构与性能[J].应用化学,1995,3,61-63.
    [40]卢小泉,吕宝强,薛中华,康敬万.4-筑基吡啶自组装修饰金电极的电化学性质及对抗坏血酸的测定[J].分析化学.2003,31,686-688.
    [41]Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes [J]. The Journal of chemical physics.1996,104,2089.
    [42]吴锋,徐斌.碳纳米管在超级电容器中的应用研究进展[J].新型炭材料.2006,21,176-184.
    [43]Zhu, Z.G; Garcia, G.L.; Chen, C; Zhu, X.R.; Xie, H.Q.; Flewitt, A.J.; Milne, W.I. Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate [J], Sensors and Actuators B:Chemical,2013,178,586-592.
    [44]Moradi, R.; Sebt, S.A.; Karimi. M.H.; Sadeghi, R.; Karimi, F.; Bahari, A.; Arabi, H. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan [J]. Phys. Chem. Chem. Phys.2013,15,5888-5897.
    [45]Geim, A.K.; Novoselov, K.S. The rise of graphene [J]. Nature materials.2007,6, 183-191.
    [46]Chen, J.H.; Jang, C; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J]. Nature nanotechnology.2008,3, 206-209.
    [47]Li, J.; Guo, S.; Zhai, Y; Wang, E. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film [J]. Analytica chimica acta.2009,649, 196-201.
    [48]Wu, J.F.; Xu, M.Q.; Zhao, G.C. Graphene based modified electrode for the direct electron transfer of cytochrome c and biosensing [J]. Electrochemistry Communications.2010,12, 175-177.
    [49]Shan, C; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on grapheme [J]. Analytical Chemistry. 2009,81,2378-2382.
    [50]Du, D.; Zou, Z.; Shin, Y; Wang, J.; Wu, H.; Engelhard, M.H.; Lin, Y Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres [J]. Analytical chemistry.2010,82,2989-2995.
    [51]邱勇,高鸿锦,宋心琦.有机聚合物薄膜电致发光器件的研究进展[J].化学进展,1996,8,221-229.
    [52]李永舫.导电聚吡咯的研究[J].高分子通报.2005,4,51-57.
    [53]张诚,祝军,马淳安.聚合物/碳纳米管导电复合材料研究进展[J].浙江工业大学学报,2010,38,1-6.
    [54]Su, X.; Ren, J.; Meng, X.; Ren, X.; Tang, F. A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides [J]. Analyst.2013,138,1459-1466.
    [55]Kutluay, A.; Aslanoglu, M. Multi-walled carbon nanotubes/electro-copolymerized cobalt nanoparticles-poly (pivalic acid) composite film coated glassy carbon electrode for the determination of methimazole [J]. Sensors and Actuators B:Chemical.2012,171, 1216-1221.
    [56]Wu, Z.; Yang, S.; Chen, Z.; Zhang, T.; Guo, T.; Wang, Z.; Liao, F. Synthesis of Ag nanoparticles-decorated poly (m-phenylenediamine) hollow spheres and the application for hydrogen peroxide detection [J]. Electrochimica Acta.2013,98,104-108.
    [57]Thomas, T.; Mascarenhas, R.J.; Cotta, F.; Guha, K.S.; Swamy, B.E.; Martis, P.; Mekhalif, Z. Poly (Patton and Reeder's reagent) modified carbon paste electrode for the sensitive detection of Acetaminophen in biological fluid and pharmaceutical formulations [J]. Colloids and Surfaces B:Biointerfaces.2012,101,91-96.
    [58]张锁江,刘晓敏,姚晓倩,董海峰,张香平.离子液体的前沿,进展及应用[J].中国科学:B辑.2009,10,1134-1144.
    [59]Giovanelli, D.; Buzzeo, M.C.; Lawrence, N.S.; Hardacre, C; Seddon, K.R.; Compt on, R.G. Determination of ammonia based on the electro-oxidation of hydroquinon e in dimethylformamide or in the room temperature ionic liquid, l-ethyl-3-methyli midazolium bis (trifluoromethylsulfonyl) imide [J]. Talanta.2004,62,904-911.
    [60]Hu, S.; Zhu, H.; Liu, S.; Xiang, J.; Sun, W.; Zhang, L. Electrochemical detection of rutin with a carbon ionic liquid electrode modified by Nafion, graphene oxide and ionic liquid composite [J]. Microchimica Acta.2012,178,211-219.
    [61]Sun, W.; Liu, J.; Ju, X.; Zhang, L.; Qi, X.; Hui, N. Highly sensitive electrochemical detection of adenine on a graphene-modified carbon ionic liquid electrode [J]. Ionics. 2013,19,657-663.
    [62]Zhang, J.J.; Zheng, T.T.; Cheng, F.F.; Zhang, J.R.; Zhu, J.J. Toward the early evaluation of therapeutic effects:an electrochemical platform for ultrasensitive detection of apoptotic cells [J]. Analytical chemistry.2011,83,7902-7909.
    [63]Keithley, R.B.; Takmakov, P.; Bucher, E.S.; Belle, A.M.; Owesson-White, C.A.; Park, J.; Wightman, R.M. Higher sensitivity dopamine measurements with faster-Scan cyclic voltammetry [J]. Analytical Chemistry.2011,83,3563-3571
    [64]Adams, K.L.; Jena, B.K.; Percival, S.J.; Zhang, Bo. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode[J]. Analytical Chemistry.2011,83,920-927
    [65]刘洋,李敏,侯悦,李可欣.高效液相色谱-电化学法测定大鼠脑微透析液中多巴胺的 方法建立及应用[J].药物分析杂志.2013,33,255-258.
    [66]吕允凤.应用微透析技术和高效液相色谱法测定川芎嗪对大鼠脑内多巴胺释放量的影响[J].药学学报.2013,48,906-910.
    [67]Palanisamy, S.; Ku, S.; Chen, S. M. Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite [J]. MicrochimicaActa.2013,180,1037-1042.
    [68]Salimi, A.; Banks, C.E.; Compton, R.G Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode:application to the detection of epinephrine [J]. Analyst.2004,129,225-228.
    [69]Liu, X.; Cheng, L.; Lei, J.; Ju, H. Dopamine detection based on its quenching effect on the anodic electrochemiluminescence of CdSe quantum dots [J]. Analyst.2008,133, 1113-1284.
    [70]Snejdarkova, M.; Poturnayova, A.; Rybar, P.; Lhotak, P.; Himl, M.; Flidrova, K.; Hianik, T. High sensitive calixarene-based sensor for detection of dopamine by electrochemical and acoustic methods[J]. Bioelectrochemistry.2010,80,55-61.
    [71]Ping, J.; Wu, J.; Ying, Y. Development of an ionic liquid modified screen-printed graphite electrode and its sensing in determination of dopamine [J]. Electrochemistry Communications.2010,12,1738-1741.
    [72]Kan, X.; Zhou, H.; Li, C; Zhu, A.; Xing, Z.; Zhao, Z. Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film [J]. Electrochimica Acta,2012,63,69-75
    [73]Zhang, H.Y.; Zhou, Y.Z.; Zhang, J.; Gou, L.; Zheng, J.B. Highly selective and sensitive dopamine and uric acid electrochemical sensor fabricated with poly (orotic acid) [J]. Journal of Molecular Liquids.2013,184,43-50.
    [74]Yan, J.; Liu, S.; Zhang, Z.; He, G; Zhou, P.; Liang, H.; Jiang, H. Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid Based on Graphene Anchored with Pd-Pt Nanoparticles [J]. Colloids and Surfaces B:Biointerfaces. 2013,111,392-397.
    [75]Ge, P.Y.; Du, Y; Xu, J.J.; Chen, H.Y. Selective detection of dopamine based on the unique property of gold nanofilm [J]. Journal of Electroanalytical Chemistry.2009, 633,182-186.
    [76]Sheng, Z.H.; Zheng, X.Q.; Xu, J.Y.; Bao, W.J.; Wang, F.B.; Xia, X.H. Electrochemical sensor based on nitrogen doped graphene:simultaneous determination of ascorbic acid, dopamine and uric acid [J]. Biosensors and Bioelectronics.2012,34,125-131.
    [1]吴祖望,董振堂,卢圣茂,林莉.近十年活性染料的技术进展-纪念活性染料开发五十年[J].染料与染色.2004,41,1-13.
    [2]莎仁,嘎日迪,塔娜.测定痕量锰的锰(Ⅱ)-锌试剂-重铬酸钾体系催化分光光度法[J].分析测试学报.200221,87-88.
    [3]赵玉霞.铍试剂Ⅲ分光光度法测定水中铝[J].中华预防医学杂志.2002,36,118-120.
    [4]万其进,喻玖宏,王刚,杨年俊.聚茜素红膜修饰电极控制电位扫描法分别测定多巴胺和抗坏血酸[J].高等学校化学学报.2000,11,1651-1654.
    [5]Zhang, R.; Jin, G.D.; Chen, D.; Hu, X.Y. Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly (acid chrome blue K) modified glassy carbon electrode [J]. Sensors and Actuators B:Chemical.2009,138,174-181.
    [6]Zhou, Y.Z.; He, M.F.; Dong, S.Y.; Zheng, J.B. A Biosensor for Sensitive and Selective Determination of Dopamine Based on Poly (methyl red) Film Modified Electrode [J]. Journal of The Electrochemical Society.2011,159,17-22.
    [7]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报(自然科学版).2011,30,53-61.
    [8]Huang, J.; Liu, Y.; Hou, H.; You, T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode [J]. Biosensors and Bioelectronics.2008,24,632-637.
    [9]Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH) x [J]. Journal of the Chemical Society, Chemical Communications.1977,16,578-580.
    [10]Heeger, A.J. Nobel Lecture:Semiconducting and metallic polymers:The fourth generation of polymeric materials [J]. Reviews of Modern Physics.2001,73,681-700.
    [ll]Chiang, C.K.; Fincher, C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E. J.; MacDiarmid, A.G. Electrical conductivity in doped polyacetylene [J]. Physical Review Letters.1977,39,1098-1101.
    [12]聚苯胺,王利祥,王佛松.导电聚合物-聚苯胺的研究进展-Ⅱ:电子现象,导电机理,性质和应用[J].应用化学.1990,6,1-8.
    [13]亢孟强,刘俊峰,郭志新.导电高分子聚噻吩衍生物的研究进展[J].化工新型材料.2004,32,9-12.
    [14]李永舫.导电聚吡咯的研究[J].高分子通报.2005,4,51-57.
    [15]封伟,工辉,韦玮.聚苯乙炔的合成及其性能研究[J].化工新型材料.1999,27,30-32.
    [16]Cao, Y.; Li, S.; Xue, Z.; Guo, D. Spectroscopic and electrical characterization of some aniline oligomers and polyaniline [J]. Synthetic Metals.1986,16,305-315.
    [17]Andreatta, A.; Cao, Y.; Chiang, J.C.; Heeger, A.J.; Smith, P. Electrically-conductive fibers of polyaniline spun from solutions in concentrated sulfuric acid [J]. Synthetic Metals.1988,26,383-389.
    [18]王红敏,唐国强,晋圣松,边成香,韩菲菲,梁旦,徐学诚.聚噻吩制备条件对其结构和导电性能的影响[J].化学学报.2007,65,2454-2458.
    [19]徐琳,王乃岩,霸书红,王云龙.傅里叶变换衰减全反射红外光谱法的应用与进展[J].光谱学与光谱分析.2004,24,317-319.
    [20]高荣强,范世福.现代近红外光谱分析技术的原理及应用[J].分析仪器.2002,3,12.
    [21]徐瑞秋,周政.基础有机化学[M].高等教育出版社.1994,第6版.
    [22]Kumar, S.A.; Tang, C.F.; Chen, S.M. Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine [J]. Talanta.2008, 76,997-1005.
    [23]徐庆中,吴秉亮,徐知三.苯胺电聚合条件研究[J].功能材料.1992,23,270.
    [24]魏守强,陆嘉星,张五昌.苯胺电化学聚合机理的研究[J].合成化学.1994,2,258-262.
    [25]Genies, E.M.; Tsintavis, C. Electrochemical behaviour, chronocoulometric and kinetic study of the redox mechanism of polyaniline deposits [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1986,200,127-145.
    [26]胡宏纹.基础有机化学:下册[M].高等教育出版社.1990,第2版.
    [27]Mohilner, D.M.; Adams, R.N.; Argersinger, W.J. Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode [J]. Journal of the American Chemical Society.1962,84,3618-3622.
    [28]Ravikiran, Y.T.; Lagare, M.T.; Sairam, M.; Mallikarjuna, N.N.; Sreedhar, B.; Manohar, S.; Aminabhavi, T.M. Synthesis, characterization and low frequency AC conduction of polyaniline/niobium pentoxide composites [J]. Synthetic Metals.2006,156,1139-1147.
    [29]Leclerc, M.; Guay, J.; Dao, L.H. Synthesis and characterization of poly (alkylanilines) [J]. Macromolecules.1989,22,649-653.
    [30]Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1979,101,19-28.
    [31]Ma, W.; Sun, D.M. Simultaneous determination of epinephrine and dopamine with poly (L-arginine) modified electrode [J]. Chinese J. Anal. Chem.2007,35,66-70.
    [32]Zen, J.M.; Kumar, A.S.; Chen, H.P. Lead ruthenate pyrochlore formed in clay for sensitive determination of dopamine [J]. Electroanalysis.2003,15,1584-1588.
    [33]Zhou, X.; Zheng, N.; Hou, S.; Li, X.; Yuan, Z. Selective determination of dopamine in the presence of ascorbic acid at a multi-wall carbon nanotube poly(3,5-dihydroxy benzoic acid) film modified electrode [J]. J. Electroanal. Chem.,2010,642,30-34.
    [34]Bath, B.D.; Michael, D.J.; Trafton, B.J.; Joseph, J.D.; Runnels, P.L.; Wightman, R.M. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes [J]. Anal Chem.2000,72,5994-6002.
    [35]袁亚男,陈承瑜,杨滨,小谷明,楠文代.31种黄酮,酚酸类化合物和10种中药清除DPPH能力考察[J].中国中药杂志.2009,34,1695-1700.
    [36]Hawley, M.D.; Tatawawadi, S.V.; Piekarski, S.; Adams, R.N. Electrochemical studies of the oxidation pathways of catecholamines [J]. Journal of the American Chemical Society. 1967,89,447-450.
    [37]Sternson, A.W.; McCreery, R.; Feinberg, B.; Adams, R.N. Electrochemical studies of adrenergic neurotrans-mitters and related compounds [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1973,46,313-321.
    [38]Papouchado, L.; Petrie, G.; Adams, R.N. Anodic oxidation pathways of phenolic compounds:Part I. Anodic hydroxylation reactions [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1972,38,389-395.
    [39]Safavi, A.; Maleki, N.; Moradlou, O.; Tajabadi, F. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode [J]. Analytical biochemistry.2006,359,224-229.
    [40]Thiagarajan, S.; Tsai, T.H.; Chen, S.M. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid [J]. Biosensors and Bioelectronics.2009,24,2712-2715.
    [41]Moghadam, M.R.; Dadfarnia, S.; Shabani, A.M.H.; Shahbazikhah, P. Chemometric-assisted kinetic-spectrophotometric method for simultaneous determination of ascor bic acid, uric acid, and dopamine [J]. Analytical biochemistry.2011,410,289-29 5.
    [42]王大喜,王明俊.取代基咪哗啉分子结构与缓蚀性能的理论研究-咪哗啉分子与铁原子化学吸附位能曲线的量子化学计算[J].石油学报.2000,6,014.
    [43]高延敏,陈家坚,雷良才,杨怀玉,曹殿珍,吴维.有机缓蚀剂分子在金属表面的化学吸附过程和分子设计分析[J].中国腐蚀与防护学报.2000,20,142-148.
    [44]蒋化,陆云.亚甲基蓝化学吸附动力学的SERS研究[J].化学物理学报.1998,11,82-86.
    [45]陈宏善,陈华君.H2在MgO团簇吸附的从头计算研究[J].物理学报.2011,60,249-254.
    [46]张朝阳,舒远杰,赵小东,王新锋.两种氟聚合物在TATB晶体表面吸附的动力学模拟[J].含能材料.2005,13,238-241.
    [47]Yang, Q.; Zhong, C. Understanding hydrogen adsorption in metal-organic frameworks with open metal sites:A computational study [J]. The Journal of Physical Chemistry B. 2006,110,655-658.
    [48]Yazaydin, A.O.; Benin, A.I.; Faheem, S.A.; Jakubczak, P.; Low, J.J.; Willis, R.R.; Snurr, R.Q. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules [J]. Chemistry of Materials.2009,21, 1425-1430.
    [49]Liu, D.; Zheng, C; Yang, Q.; Zhong, C. Understanding the adsorption and diffusion of carbon dioxide in zeolitic imidazolate frameworks:a molecular simulation study [J]. The Journal of Physical Chemistry C.2009,113,5004-5009.
    [50]Ojala, W.H.; Ojala, C.R.; Gleason, W.B. The x-ray crystal structure of the sulfonated azo dye Congo red, a non-peptidic inhibitor of HIV-1 protease which also binds to reverse transcriptase and amyloid proteins [J]. Antiviral chemistry& chemotherapy.1995,6, 25-33.
    [51]Khaled, K.F. Experimental, density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions [J]. Applied Surface Science.2010,256,6753-6763.
    [52]赵新新,宓一鸣.Cu(001)表面CO吸附单层结构和电子态的第一性原理研究[J].物理化学学报.2008,24,127-132.
    [53]Thiagarajan, S.; Chen, S.M. Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid [J]. Talanta.2007,74,212-222.
    [54]Li, Y.; Lin, X. Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode [J]. Sensors and Actuators B:Chemical.2006,115,134-139.
    [55]Liu, Y.; Huang, J.; Hou, H.; You, T. Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode [J]. Electrochemistry Communications.2008,10,1431-1434.
    [56]Sheng, Z.H.; Zheng, X.Q.; Xu, J.Y.; Bao, W.J.; Wang, F.B.; Xia, X.H. Electrochemical sensor based on nitrogen doped graphene:simultaneous determination of ascorbic acid, dopamine and uric acid [J]. Biosensors and Bioelectronics.2012,34,125-131.
    [57]Gilbert, O.K.S.; Chandra, U.; Sherigara, B.S.; Simultaneous detection of dopamine and ascorbic acid using polyglycine modified carbon paste electrode:a cyclic voltammetric study [J]. J. Electroanal. Chem.2009,636,80-85.
    [58]Ghoreishi, S.M.; Behpour, M.; Fard, M.H.M. Electrochemical methods for simultaneous determination of trace amounts of dopamine and uric acid using a carbon paste electrode incorporated with multi-wall carbon nanotubes and modified with a-cyclodextrine [J]. Journal of Solid State Electrochemistry.2012,16,179-189.
    [59]Ernst, H.; Knoll, M. Electrochemical characterisation of uric acid and ascorbic acid at a platinum electrode [J]. Analytica Chimica Acta.2001,449,129-134.
    [60]Silva, R.P.; Lima, A.W.O.; Serrano, S.H. Simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrode modified into dopamine solution [J]. Analytica Chimica Acta.2008,612,89-98.
    [61]Shang, G.X.; Zhang, H.; Zheng, J. Electrochemical behavior and differential pulse voltammetric determination of paracetamol at a carbon ionic liquid electrode [J]. Analytical and Bioanalytical Chemistry.2008,391,1049-1055.
    [62]Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S.; Hatami, M. Simultaneous determi nation of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4-dihydroxyphenethyl)-3,5-dinitrobenzamide modified multiwall carbon nanotubes p aste electrode [J]. Sensors and Actuators B:Chemical.2011,155,464-472.
    [63]Zhao, G.; Qi, Y.; Tian, Y. Simultaneous and direct determination of tryptophan and tyrosine at boron-doped diamond electrode [J]. Electroanalysis.2006,18,830-834.
    [64]Shahrokhian, S.; Fotouhi, L. Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan [J]. Sensors and Actuators B:Chemical.2007,123,942-949.
    [65]Fiorucci, A.R.; Cavalheiro, E.T.G. The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations [J]. Journal of Pharmaceutical and Biomedical Analysis.2002,28,909-915.
    [1]Fitzer, E.; Kochling, K. H.; Boehm, H. P.; Marsh, H. Recommended terminology for the description of carbon as a solid [J]. Pure Appl. Chem.1995,67,473-506
    [2]Kochmann, S.; Hirsch, T.; Wolfbeis, O. S. Graphenes in chemical sensors and biosensors [J]. Trac-Trend. Anal. Chem.2012,39,87-113.
    [3]Choi, E.Y.; Han, T.H.; Hong, J.H.; Kim, J.E.; Lee, S.H.; Kim, H.W.; Kim, S.O. Noncovalent functionalization of graphene with end-functional polymers [J]. J. Mater. Chem.2010,20,1907-1912.
    [4]Qi, X.; Pu, K.Y.; Li, H.; Zhou, X.; Wu, S.; Fan, Q.L.; Liu, B.; Boey, F.; Huang, W.; Huang, W. Amphiphilic graphene composites [J]. Angew. Chem.2010,49,9426-9429o
    [5]Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc 1958,80,1339-1339.
    [6]马文石,周俊文,程顺喜.石墨烯的制备与表征[J].高校化学工程学报.2010,24,719-722.
    [7]Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J. H. Chemical functionalization of graphene and its applications [J]. Progress in Materials Science.2012, 57,1061-1105.
    [8]Si, P.; Ding, S. J.; Lou, X. W.; Kim, D. H. An electrochemically formed three-di mensional structure of polypyrrole/graphene nanoplatelets for high-performance sup ercapacitors [J]. RSC. Adv.2011,1,1271-1278.
    [9]Shao, Y. Y.; Wang, J.; Engelhard, M.; Wang, C; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications [J]. J. Mater. Chem. 2010,20,743-748.
    [10]扈显琦,梁成浩.交流阻抗技术的发展与应用[J].腐蚀与防护.2004,25,57-60.
    [ll]Huang, J.; Liu, Y.; Hou, H.; You, T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode [J]. Biosens. Bioelectron.2008,24,632-637.
    [12]Brownson, D.A.C.; Foster, C.W.; Banks, C.E. Graphene electrochemistry:fundamental concepts through to prominent applications [J]. Analyst.2012,137,1815-1823.
    [13]Davies, T.J.; Hyde, M.E.; Compton, R.G. Nanotrench arrays reveal insight into graphite electrochemistry [J]. Angew. Chem.2005,117,5251-5256.
    [14]Li, X.; Magnuson, C.W.; Venugopal, A.; Tromp, R.M.; Hannon, J.B.; Vogel, E.M.; Ruoff, R.S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper [J]. J. Am. Chem. Soc,2011,133,2816-2819.
    [15]McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry [J]. Chem. Rev.2008,108,2646-2687.
    [16]Nissim, R.; Batchelor M.C.; Henstridge, M. C; Compton, R.G. Electrode kinetics at carbon electrodes and the density of electronic states [J]. Chem. Commun,2012,48, 3294-3296.
    [17]Jiang, D.E.; Sumpter, B.G.; Dai, S. Unique chemical reactivity of a graphene nanoribbon's zigzag edge [J]. J. Chem. Phys.2007,126,134701.
    [18]Henstridge, M.C.; Laborda, E.; Rees, N.V.; Compton, R.G. Marcus-Hush-Chidsey theory of electron transfer applied to voltammetry:A review [J]. Electrochim. Acta.2012, 84,12-20.
    [19]McCreery, R.L.; McDermott, M.T. Comment on electrochemical kinetics at ordered graphite electrodes [J]. Analytical chemistry,84(5),2602-2605.
    [20]Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural defects in graphene [J]. ACS Nano.2011,5,26-41.
    [21]Robinson, R.S.; Sternitzke, K.; McDermott, M.T.; McCreery, R.L. Morphology and electrochemical effects of defects on highly oriented pyrolytic graphite [J]. J. Electrochem. Soc.1991,138,2412-2418.
    [22]Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy [J]. Physical Chemistry Chemical Physics.2007,9,1276-1290.
    [23]Dimiev, A.M.; Alemany, L.B.; Tour, J.M. Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model [J]. ACS nano.2012,7, 576-588.
    [24]Brownson, D.A.C.; Munro, L.J.; Kampouris, D.K.; Banks, C.E. Electrochemistry of graphene:not such a beneficial electrode material? [J]. RSC. Adv.2011,1,978-988.
    [25]Pumera, M.; Scipioni, R.; Iwai, H.; Ohno, T.; Miyahara, Y.; Boero, M. A Mechanism of Adsorption ofβ-Nicotinamide Adenine Dinucleotide on Graphene Sheets:Experiment and Theory [J]. Chem.-Eur. J.2009,15,10851-10856.
    [26]An, X. H.; Simmons, T.; Shah, R.; Wolfe, C; Lewis, K. M.; Washington, M. Nayak, S. K.; Talapatra, S.; Kar, S. S. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications [J]. Nano. Lett.2010,10,4295-4301.
    [27]Sun, W.; Wang, Y.; Zhang, Y.; Ju, X.; Li, G.; Sun, Z. Poly (methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine [J]. Analytica Chimica Acta.2012,752,59-65.
    [28]Wang, Z.; Xia, J.; Zhu, L.; Zhang, F.; Guo, X.; Li, Y.; Xia, Y. The fabrication of poly (acridine orange)/graphene modified electrode with electrolysis micelle disruption method for selective determination of uric acid [J]. Sensors and Actuators B:Chemical. 2012,161,131-136.
    [29]席海涛,孙小强,孟启,潘毅,胡宏纹.缺电子联吡啶环蕃的研究[J].化学进展.2008,20,87-97.
    [30]陈虹,丁俊杰,丁晓琴,陈冀胜,樊启平.从头计算研究水溶液中有机化合物的pKa值[J].计算机与应用化学.2007,24,580-582.
    [31]Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited [J]. J Phys Chem B.1998,102,4477-82.
    [32]Poh, H.L.; Sanek, F.; Ambrosi, A.; Zhao, G.; Sofer, Z.; Pumera, M. Graphenes prepared by Staudenmaier, Hofimann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties [J]. Nanoscale.2012,4,3515-3522.
    [33]Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, structure, and electrochemical properties of reduced graphene sheet films [J]. Advanced Functional Materials.2009,19,2782-2789.
    [34]Bard, A.J.; Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications [M], Wiley, New York,1980.
    [35]Bath, B.D.; Michael, D.J.; Trafton, B.J.; Joseph, J.D.; Runnels, P.L.; Wightman, R.M. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes [J]. Anal Chem.2000,72,5994-6002.
    [36]Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1979,101,19-28.
    [37]王一非,张旭,吕忠华,朱玉平.微分脉冲伏安法测定硫酸锌溶液中铊[J].中国无机分析化学.2013,3,12-16.
    [38]Wang, Y.; Li, Y.M.; Tang, L.H.; Lu, J.; Li, J.H. Application of graphene-modified electrode for selective detection of dopamine [J]. Electrochem. Commun.2009,11, 889-892.
    [39]Han, D.X.; Han, T.T.; Shan, C.S.; Ivaska, A.; Niu, L. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan-Graphene Modified Electrode [J]. Electroanalysis.2010,22,2001-2008.
    [40]Sheng, Z.H.; Zheng, X.Q.; Xu, J.Y.; Bao, W.J.; Wang, F.B.; Xia, X.H. Electrochemical sensor based on nitrogen doped graphene:simultaneous determination of ascorbic acid, dopamine and uric acid [J]. Biosens. Bioelectron.2012,34,125-131.
    [41]Sun, W.; Wang, X.Z.; Wang, Y.H.; Ju, X.M.; Xu, L.; Li, G.J.; Sun, Z.F. Application of grapheme-SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine [J]. Electrochim. Acta.2013,87,317-322.
    [42]Xu, C.X.; Huang, K.J.; Fan, Y.; Wu, Z.W.; Li, J.; Gan, T. Simultaneous electroc hemical determination of dopamine and tryptophan using a TiO2-graphene/poly(4-a minobenzenesulfonic acid) composite film based platform [J]. Mater. Sci. Eng. C. 2012,32,969-974.
    [43]Ling, Y.Y.; Huang, Q.A.; Zhu, M.S.; Feng, D.X.; Li, X.Z.; Wei, Y. A facile one-step electrochemical fabrication of reduced graphene oxide-mutilwall carbon nanotu bes-phospotungstic acid composite for dopamine sensing [J]. J. Electroanal. Chem. 2013,693,9-15.
    [44]Liu, X.; Xie, L.; Li, H. Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol-gel hybrid membranes for determination of dopamine and uric acid [J]. J. Electroanal. Chem.2012,682,158-163.
    [1]李静,马欣,臧伟进.丹参素异丙酯对大鼠肺动脉的舒张作用及机制[J].中草药.2009,40,82-86.
    [2]李静,马欣,臧伟进.丹参素异丙酯对大鼠肺动脉平滑肌的作用[J].中国中药杂志2008,33,2942-2945.
    [3]程亮星,岳云宵,王世祥,南叶飞,郑晓晖,戚敏,付润芳.丹参素异丙酯对离体大鼠缺血/再灌注损伤心肌的影响[J].中国药理学通报.2010,26,1045-1049.
    [4]唐云安.丹参素异丙酯对人肠系膜小动脉平滑肌细胞膜钙激活钾通道影响的研究[J].四川医学.2010,31,1058-1060.
    [5]王世祥,沈德良,程亮星,岳云宵,汪宝军,海国军,郑晓晖.丹参素异丙酯对外源性自由基致心律失常的影响[J].中华中医药杂志.2011,26,1734-1736.
    [6]张群正,董岩,南叶飞,蔡雪刁,郑晓晖.β-(3,4-二羟基苯基)-α-羟基丙酸异丙酯/冰片酯合成研究[J].有机化学.2009,29,15-18.
    [7]张群正,李仲瑾,王世祥,南叶飞,于洁 郑晓晖HPLC-MS法测定兔血浆和组织中丹参素异丙酯的含量[J].西安交通大学学报.2009,5,30-34.
    [8]Anson, F.电化学和电分析化学[M].北京:北京大学.1983.
    [9]Bard, A.J.; Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications [M], Wiley, New York,1980.
    [10]Bath, B.D.; Michael, D.J.; Trafton, B.J.; Joseph, J.D.; Runnels, P.L.; Wightman, R.M. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes [J]. Anal Chem.2000,72,5994-6002.
    [1 l]Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1979,101,19-28.
    [12]Nagy,E. Diffusion Through a Plane Membrane Layer, Basic Equations of the Mass Transport through a Membrane Layer [M], Elsevier, Oxford,2012.
    [13]Chandra, U.; Kumara Swamy, B.E.; Gilbert, O.; Sherigara, B.S. Voltammetric resolution of dopamine in the presence of ascorbic acid and uric acid at poly (calmagite) film coated carbon paste electrode [J]. Electrochimica Acta.2010,55,7166-7174.
    [14]屈凌波,赵俊宏,李建军,杨冉.木犀草素与DNA相互作用的电化学研究[J].分析测试学报.2008,27,39-83.
    [15]郑新宇,黄建松,郑舒燕,苏妍,林瑞余.水杨酸与DNA相互作用的电化学研究[J].湖南农业大学学报.2012,,226-229
    [16]吴海霞,康敬万,李志峰,董树清,苏碧泉,卢小泉.亚甲基蓝与DNA相互作用的电化学研究[J].分析测试学报.2006;25;1-5.
    [17]徐慧,牟保畏,吕菊波,柳全文.烟酰胺与DNA相相互作用的电化学研究[J].化学通报,2009,72,534-539.
    [18]Yang, Z.; Zhang, D.; Long, H.; Liu, Y. Electrochemical behavior of gallic acid interaction with DNA and detection of damage to DNA [J]. Journal of Electroanalytical Chemistry.2008,624,91-96.
    [19]Zhou, H.; Shen, Q.; Zhang, S.; Ye, B. Combination of Methotrexate and Emodin Interacting with DNA [J]. Analytical Letters.2009,42,1418-1429.
    [20]Lin, X.H.; Wan, H.Y.; Zhang, Y.F.; Chen, J.H.; Studies of the interaction between Aloe-emodin and DNA and preparation of DNA biosensor for detection of PML-RARa fusion gene in acute promyelocytic leukemia [J]. Talanta.2008,74,944-950.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700