用户名: 密码: 验证码:
基于γ-CT/ECT的多相管流可视化测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射线层析成像(Computed tomography,CT)和电容层析成像(Electricalcapacitance tomography,ECT)作为两种比较成熟的过程层析成像(Processtomography,PT)技术,具有广阔的工业应用前景。而多相流的动力学复杂性和随机多变性对PT技术提出了重大挑战,为提高多相管流可视化测量的准确性与实时性,本论文对L-CT与ECT技术在多相流测量中的应用进行了系统研究。
     首先,讨论了L-CT和ECT的系统设计,构建适用于多相流检测的成像系统,为算法和应用研究提供了性能良好的硬件平台。
     其次,研究了基于凸优化的图像重建算法,并利用仿真数据和L-CT、ECT系统的实测数据进行图像重建,以证明算法的有效性。采用l1范数、核范数正则化求解不适定逆问题,分别基于对偶问题、矩阵重建模型将交替方向法(alternating direction method,ADM)、加速的近似梯度奇异值阈值(acceleratedproximal gradient singular value thresholding,APG)法等引入CT/ECT图像重建,在可接受的重建时间内明显提高了成像质量。
     然后,针对低能L-CT系统,基于迭代重建法的不动点模型描述,通过构造有效的约束算子和投影算子改善传统迭代算法的成像质量;提出局部重建法,对成像目标进行分区重建,在不增加算法复杂度的前提下明显提高了图像的空间分辨率。针对双截面ECT系统,研究常用时延估计算法,并将现代信号处理方法引入双截面ECT系统测速模块。为改善传统互相关法测速的可靠性,提出三种新的测速方法:基于突变点检测的流速测量方法、带自适应时间窗的互相关法以及动力学相关因子指数法。通过粉煤灰气力输运实验证明了上述方法的有效性。
     最后,通过双模态融合,实现L-CT与ECT技术的优势互补。静态和动态实验结果表明,双模态系统提高了多相流测量的准确性,拓宽了测量范围。
As two relatively mature process tomography (PT) techniques, computed tomography (CT) and electrical capacitance tomography (ECT) are endowed with broad prospects of industrial application. However, the dynamical complexity and random variability of multiphase flow have put forward a severe chanllenge to PT techniques, to improve the accuracy and real-time performance of visualized measurement of multiphase flow, the application of y-CT and ECT in multiphase flow measurement has been investigated systematically in this dissertation.
     Firstly, the design of y-CT and ECT systems is discussed, and imaging systems suitable for multiphase flow detection are bulit to provide quality hardware platforms for algorithm and application research.
     Secondly, image reconstruction algorithms based on convex optimization are studied, and both simulation and experimental data measured with our γ-CT and ECT systems are utilized to testify the validity of the algorithms,l1-norm regulization and nuclear norm regulization are adopted respectively to address the ill-posed inverse problem, and alternating direction method (ADM) and accelerated proximal gradient singular value thresholding (APG) algorithm are introduced into image reconstruction based on the dual problem and matrix reconstruction problem respectively, which obviously improved the imaging qulity in acceptable reconstruction time.
     Thirdly, to improve the imaging quality of the conventional iterative reconstruction algorthms for the low energy y-CT system, effective constraint and projection operators are constructed based on the fixed point model of the iterative algorithms; a local reconstruction technique is also proposed, which reconstructs image of the object locally and improves the space resolution without increasing algorithm complexity. For the dual-plane ECT system, commonly used time delay estimation algorithms are discussed and modern signal processing methods are introduce into the flow velocity measuring module of the ECT system. In order to improve the reliability of the conventional cross-correlation method, three new methods of estimating flow velocity are proposed:change point detection based method, cross-correlation method with adaptive time window and dynamical lag correlation exponent based method. Experimental results of coal ash measurement in a pneumatic pipeline demonstrate the effectiveness of the proposed methods.
     Eventually, dual-modality fusion is studied for combining the merits of y-CT and ECT. Results of both static and dynamic experiments demonstrate that the dual-modality system is capable of increasing the accuracy and scope of multiphase flow measurement.
引文
[1]郭烈锦,两相与多相流动力学,西安:西安交通大学出版社,2002.
    [2]陈学俊,迅速发展中的一门新兴交叉学科—多相流热物理的进展,西安交通大学学报,1996,30(4):9-17.
    [3]李海青,两相流参数检测及应用,杭州:浙江大学出版社,1991.
    [4]李海青,乔贺堂,多相流检测技术进展,北京:石油工业出版社,1996,33-42.
    [5]陈喜龙,李际平,王义强等,我国燃煤锅炉改用木质颗粒燃料效益分析,中南林学院学报,2006,26(6):115~118.
    [6]Chaouki J, Larachi F, Dudukovic M P, Noninvasive tomographic and velocimetric monitoring of multiphase flows, Industrial and Engineering Chemistry Research,1997,36:44-76.
    [7]Baker R C, Response of bulk flowmeters to multiphase flows, P. I. Mech. Eng. C-J. Mec.,1991,205(C4):217-229.
    [8]吴锡令,流动成像测井研究进展,地球物理学进展,2002,17(2):272~276.
    [9]李海青,黄志尧,软测量技术原理及应用,北京:化学工业出版社,2000.
    [10]赵鑫,金宁德,李伟波,油水两相流相含率的软测量方法,化工学报,2005,6(10):1-6.
    [11]Shollenberger K A, Torczynski J R, Adkins D R, et al., Gamma-densitometry tomography of gas holdup spatial distribution in industrial-scale bubble columns, Chem. Eng. Sci.,1997,52(13):2037-2048.
    [12]Schmit C E, Cartmel D B, Eldridge R B, The experimental application of X-ray tomography to a vapor-liquid contactor, Chem. Eng. Sci.,2001,56(11):3443-3453.
    [13]沈熊,彭涛,魏乃龙等,激光散射粒子动态相位多普勒分析系统,仪器仪表学报,2001,22(4):344~348,353.
    [14]徐苓安,杨惠连,张涛等,夹钳式超声相关流量计及其在液固两相流测量中的应用,仪器仪表学报,1993,14(3):257~262.
    [15]Dyakowski T, Process tomography applied to multi-phase flow measurement, Meas.Sci.Technol.,1996,7(3):343-353.
    [16]Williams R A, Beck M S, Process Tomography-Principles Techniques and Application, Oxford:Butterworth-Heinemann,1995.
    [17]Ismail I, Gamio J C, Bukhari S F A, et al., Tomography for multi-phase flow measurement in the oil industry, Flow Measurement and Instrumentation,2005,16:145-155.
    [18]Industrial Process Gamma Tomography, IAEA-TecDoc-1589,2008.
    [19]Bartholomew R N, Casagrande R M, Measuring solids concentration in fluidized systems by Gamma-ray absorption, Industrial and Engineering Chemistry,1957,49:428-433.
    [20]Weinstein H, Shao M, Wasserzug L, Radial solid density variation in a fast fluidized bed, A.I.Ch.E. Symposium Series,1984,80:117-123.
    [21]Thorn R, Hamme E A, Johansen G A, Recent developments in three-phase flow measurement, Measurement Science Technology,1997,8(7):691-701.
    [22]Johansen G. A., Froystein T., Hjertake B. T., The development of a dual mode tomograph for three-component flow imaging, The Chemical Engineering Journal,1995,4(56):175-182.
    [23]Grassier T, Wirth K E, X-ray computer tomography-potential and limitation for the measurement of local solids distribution in circulating fluidized beds, Chemical Engineering Journal,2000,77:65-73.
    [24]Harvel G D, Hori K, Kawanishi K, et al., Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques, Flow Measurement and Instrumentation,1999,10(4):259-268.
    [25]Kai T, Misawa M, Takahashi T, et al., Application of fast X-ray CT scanner to visualization of bubbles in fluidized bed, Journal of Chemical Engineering of Japan,2000,33(6):906-913.
    [26]Hjertaker B. T. Static characterization of a dual sensor flow imaging system, Flow Measurement and Instrumentation,1998,9(3):183-191.
    [27]George D L, Shollenberger K A, Torczynski J R, et al., Three-phase material distribution measurements in a vertical flow using gamma-densitometry tomography and electrical-impedance tomography, International Journal of Multiphase Flow,2001,12(27):1903-1930.
    [28]Luo G P, Al-Dahhan M H, Local gas holdup in a draft tube airlift bioreactor, Chemical Engineering Science,2010,65(15):4503-4510.
    [29]Khorsandi M, Feghhi S A H, Design and constructin of a prototype gamma-ray densitometer for petroleum products monitoring applications, Measurement Journal of the International Measurement Confederation,2011,44(9):1512-1515.
    [30]徐苓安,两相流测量技术的现状及发展趋势,南京:第二届全国多相流检测技术学术会议论文集,1988.
    [31]Xie C G. Mass flow measurement of solid in a gravity drop conveyor using capacitance transducer:[Ph. D. Thesis], Manchester, U.K.:UMIST,1988.
    [32]Jiang Hsieh,计算机断层成像技术—原理,设计,伪相和进展,北京:科学出版社,2006,38~54.
    [33]叶云长,计算机层析成像检测,北京:机械工业出版社,2006,27~48.
    [34]G.T. Herman, Image Reconstruction from Projection:The fundamentals of Computerized Tomography, New York:Academic Press,1980,33-36.
    [35]庄天戈,CT原理与算法,上海:上海交通大学出版社,1992,67~68.
    [36]Xie C G, Plaskowski A,8-electrode capacitance system for two-component flow identification:flow regime identification, IEE Proceedings A.,1989,136(4):173-190.
    [37]Xie C G, Huang S M, Holy B S, et al., Electrical capacitance tomography for flow imaging:system model for development of image reconstruction algorithms and design of primary sensors, IEE Proc.G.,1992,139(1):89-98.
    [38]Isaksen O, Nordtvedt J E, A new reconstruction algorithm for process tomography,Measurement Science and Technology,1993,4(12):1464-1475.
    [39]IsaksenΦ, Dico A S, Hammer E A, A capacitance-based tomography system for interface measurement in separation vessels, Meas. Sci. Technol.,1994,5(10):1262-1271.
    [40]Yang W Q, Beck M S, Byars M, Electrical capacitance tomography-from design to applications, Measurement and Control,1995,28(9):261-266.
    [41]Nooralahiyan A Y, Hoyle B S, Three-component tomographic flow imaging using artificial neural network reconstruction, Chemical Engineering Science,1997,52(13):2139-2148.
    [42]Warsito W, Fan L S, Measurement of real-time flow structures in gas-liquid and gas-liquid-solid flow systems using electrical capacitance tomography (ECT), Chemical Engineering Science,2001,56(21-22):6455-6462.
    [43]Warsito W, Fan L S, Real time and quasi-3D imaging of gas-liquid flow using electrical capacitance tomography, Proceedings of the ASME/JSME Joint Fluids Engineering Conference, Honolulu, HI, USA,2003,2B:1749-1756.
    [44]Yang W Q, Chondronasios A, Nattrass S, et al, Adaptive calibration of a capacitance tomography system for imaging water droplet distribution, Flow Measurement and Instrumentation,2004,15(5-6)249-258.
    [45]Gamio J C, Castor J, Rivera L,et al, Visualization of gas-oil two-phase flows in pressurized pipes using electrical capacitance tomography, Flow Measurement and Instrumentation,2005,16(2-3):129-134.
    [46]Hasan N M, Azzopardi B, Imaging satisfying liquid-liquid flow by capacitance tomography, Flow Measurement and Instrumentation,2007,18(5-6):241-246.
    [47]Yang W Q, Li Y, Wu Z P, et al, Multiphase flow measurement by electrical capacitance tomography,2011Proceedings of IEEE International Conference on Imaging Systems and Techniques(IST2011), Penang, Malaysia,2011:108-111.
    [48]Fasching G E, Smith N S, A capacitive system for three-dimensional imaging of fluidized beds, Review of Science Instruments,1991,62(9):2243-2251.
    [49]Wang S J, Dyakowski T, Xie CG, Real time capacitance imaging of bubble formation at the distributor of a fluidized bed, Chemical Engineering Journal,1995,56(3):95-100.
    [50]Dyakowski T, Luke S P, Ostrowski K L, On-line monitoring of dense phase flow using real time dielectric imaging, Power Technology,1999,104(3):287-295.
    [51]Scott D M, Gutsche O W, ECT studies of bead fluidization in vertical mills. Proceedings of1st World Congress on Industrial Process Tomography, UK,1999,90-95.
    [52]White R B, Using electrical capacitance tomography to investigate gas solid contacting, Proceedings of3rd World Congress on Industrial Process Tomography, Canada,2003:39-46.
    [53]Warsito W, Fan L S, ECT imaging of three-phase fluidized bed based onthree-phase capacitance model, Chemical Engineering Science,2003,58(3-6):823-832.
    [54]Liu S, Wang H G, Jiang F, et al, A new image reconstruction method for tomographic investigation of fluidized beds, AlChE Journal,2002,48(8):1631-1638.
    [55]Makkawi Y T, Wright P C, Optimization of experiment span and data acquisition rate for reliable electrical capacitance tomography measurement in fluidization studies-a case study, Measurement Science and Technology,2002,13(12):1831-1841.
    [56]王海刚,旋风分离中气-固两相流数值模拟与实验研究:[博士学位论文],北京:中国科学院工程热物理研究所,2003.
    [57]Wang H G, Yang W Q, Dyakowski, Study of bubbling and slugging fluidized beds by simulation and ECT, AlChE Journal,2006,52(9):3078-3087.
    [58]Wang H G, Yang W Q, Proctor L,et al, Online monitoring and flow regime identification of fluidized bed drying and granulation processes,2009IEEE International Workshop on Imaging Systems and Techniques (1ST2009), Hong Kong, China,2009:253-257.
    [59]Liu S, Chen Q, Wang H X, et al, Electrical capacitance tomography for gas-solids flow measurement for circulating fluidized beds, Flow Measurement and Instrumentation,2005,16(2-3):135-144.
    [60]Matusiak B, Da Silva M J, Hampel U, et al, Measurement of dynamic liquid distributions in a fixed bed using electrical capacitance tomography and capacitance wire-mesh sensor, Industrial and Engineering Chemistry Research,2010,49(5):2070-2077.
    [61]Wang H G, Yang W Q, Measurement of fluidised bed dryer by different frequency and different normalisation methods with electrical capacitance tomography, Powder Technology,2010,199(1):60-69.
    [62]Wang H, Yang W Q, Scale-up of an electrical capacitance tomography sensor for imaging pharmaceutical fluidized beds and validation by computational fluid dynamics, Measurement Science and Technology,2011,22(10):104015(llpp).
    [63]Ostrowski K, Luke S P, Bennett M A, et al, Real time visualization and analysis of dense phase powder conveying, Power Technology,1999,102(1):1-13.
    [64]Jaworski A J, Dyakowski T, Investigations of flow instabilities within the dense pneumatic conveying system, Powder Technology,2002,125(2-3):279-291.
    [65]Zhu K, Madhusudana R S, Wang C H, et al, Electrical capacitance tomography measurements on vertical and inclined pneumatic conveying of granular solids, Chemical Engineering Science,2003,58(18):4225-4245.
    [66]Fuchs A, Zangl H, A capacitive single-layer approach for particle velocity estimation in pneumatic dilute phase conveying, IEEE Sensors Journal,2006,6(6):1722-1727.
    [67]Fuchs A, Zangl H, Measurement of slug length and slug velocity in pneumatic conveying using capacitive sensing, Particle and Particle systems Characterization,2007,24(3):201-209.
    [68]Razzak S A, Barghi S, Zhu X J, Electrical resistance tomography for flow characterization of a gas-liquid-solid three-phase circulating fluidized bed, Chemical Engineering Science,2007,62:7253-7263.
    [69]Azzopardi B J, Jackson K, Robinson J P, et al, Fluctuations in dense phase pneumatic conveying of pulverized coal measured using electrical capacitance tomography, Chemical Engineering Science,2008,63(9):2008.
    [70]孙猛,刘石,雷兢,等,电厂送粉系统浓度和速度的在线测量技术研究,热能动力工程,2009,24(2):211~215.
    [71]Yang D Y, Zhou B, Xu C L, et al, Dense-phase pneumatic conveying under pressure in horizontal pipeline,Particuology,2011,9(4):432-440.
    [72]董向元,郭淑青,电容成像技术及其应用,郑州:黄河水利出版社,2008.
    [73]毕德显,电磁场理论,北京:电子工业出版社,1985.
    [74]倪光正,钱秀英,电磁场数值计算,北京:高等教育出版社,1996.
    [75]郝魁红,基于低能射线多相管流检测技术研究:[博士学位论文],天津:天津大学,2004.
    [76]M. Mayer, L.A. Hamel, O. Tousignant, et al., Signal Formation in a CdZnTe Imaging Detector with Coplanar Pixel and Control Electrodes, Nuclear Instruments and Methods in Physics Research A,1999,422:190-194.
    [77]Johansen G A, Nuclear tomography methods in industry, Nuclear Physics A,2005,752:696c-705c.
    [78]苏吉,王化祥,薛倩,郝魁红,基于Geant4的γ-CT系统优化设计,核技术,2011,34(8):575~580.
    [79]辛山,基于γ射线CT及ECT的气液两相流成像系统:[博士学位论文],天津:天津大学,2011.
    [80]薛倩,多相流CT系统成像算法研究及软件设计:[硕士学位论文],天津:天津大学,2010.
    [81]Beck M S, Williams R A, Process tomography:a European innovation and its applications, Meas. Sci. Technol.,1996,7:215-24.
    [82]Beck M S, Byars M, Dyakowski T, et al., Principles and industrial applications of electrical capacitance tomography, Meas. Control,1997,30:197-200.
    [83]Hammer E A, Johansen G A, Process tomography in the oil industry-state of the art and future possibilities, Meas. Control,1997,30:212-16.
    [84]Reinecke N, Petritsch G, Schmitz D, et al., Tomographic measurement techniques-visualization of multiphase flows, Chem. Eng. Technol.,1998,21:7-18.
    [85]York T A, Status of electrical tomography in industrial applications, J. Electron. Imaging,2001,10:608-19.
    [86]Jaworski A J, Bolton G T, The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity, Meas. Sci. Technol.2000,11:743-757.
    [87]许燕斌,基于电阻成像技术的水平管气液两相流研究:[博士学位论文],天津:天津大学,2008.
    [88]Ziqiang Cui, Huaxiang Wang, Chenyi Yang, et al., Application of a digital ECT system for measurements of dense-phase gas-solids flows,2012IEEE I2MTC-International Instrumentation and Measurement Technology Conference, Proceedings,2012,2410-2413.
    [89]Yang W Q, Charge injection compensation for charge/discharge capacitance measuring circuits used in tomography systems, Measurement Science and Technology,1996,7(7):1073-1078.
    [90]Yang W Q, Further developments in an ac-based capacitance tomography system, Review of Scientific Instruments,2001,72(10):3902-3902.
    [91]Yang W Q, Hardware design of electrical capacitance tomography systems, Measurement Science and Technology,1996,7(3):225-232.
    [92]Yang W Q, York T A, New AC-based capacitance tomography system, IEE Proceedings:Science, Measurement and Technology,1999,146(1):47-53.
    [93]崔自强,双模态电学层析成像技术研究:[博士学位论文],天津:天津大学,2009.
    [94]Maad R, Johansen G A, Experimental analysis of high-speed gamma-ray tomography performance, Meas. Sci. Technol.,2008,19:085502(lOpp).
    [95]Sidky E Y, Jorgensen J H, Pan X C, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm, Phys. Med. Biol.,2012,57:3065-3091.
    [96]Li M, Yang H, Kudo H, An accurate iterative reconstruction algorithm for sparse objects:application to3D blood vessel reconstruction from a limited number of projections, Phys. Med. Biol.,2002,47:2599-609.
    [97]Sidky E Y, Anastasio M A, Pan X, Image reconstruction exploiting object sparsity in boundary-enhanced x-ray phase-contrast tomography, Opt. Express,2010,18:10404-22.
    [98]Chen G H, Tang J and Leng S, Prior image constrained compressed sensing (PICCS):a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets, Med. Phys.,2008,35:660-663.
    [99]Ritschl L, Bergner F, Fleischmann C, et al., Improved total variation-based CT image reconstruction applied to clinical data, Phys. Med. Biol.,2011,56:1545-62.
    [100]Defrise M, Vanhove C, Liu X, An algorithm for total variation regularization in high-dimensional linear problems, Inverse Problems,2011,27:065002.
    [101]Ramani S, Fessler J, A splitting-based iterative algorithm for accelerated statistical x-ray CT reconstruction, IEEE Trans. Med. Imag.,2011,31:677-88.
    [102]Herman G T, ART:Mathematics and applications, J. Theor. Biol.1973,42:1-32.
    [103]王化祥,薛倩,基于扩充投影矩阵与盲去卷积的代数重建算法,天津大学学报,2011,44(5):385-390.
    [104]Geselowitz D B, An application of electrocardiographic lead theory to impedance plethysmography, IEEE Trans. Biomed. Eng.,1971,18(1):38-41.
    [105]Lehr J, A vector derivation useful in impedance plethysmographic field calculations, IEEE Trans. Biomed. Eng.,1972,19(2):156-157.
    [106]Kim J H, Choi B Y, Kim K Y. Novel iterative image reconstruction algorithm for electrical capacitance tomography:directional algebraic reconstruction technique, IEICE Trans. Fundamentals,2006, E89-A(6):1578-1584.
    [107]Murai T, Kagawa Y, Electrical impedance computed tomography based on a finite element model, IEEE Trans. Biomed. Eng.,1985,32(3):177-184.
    [108]Dickin F J, Wang M, Electrical resistance tomography for process applications, Meas. Sci. Technol.,1996,7(3):247-260.
    [109]L F Zhang, H X Wang, A new normalization method based on electrical field lines for electrical capacitance tomography, Meas. Sci. Technol.,2009,20104028(7pp).
    [110]Xie C G, Huang S M, Hoyle B S, et al., Electrical capacitance tomography for flow imaging-system model for development of image reconstruction algorithms and design of primary sensors, IEE Proc. G,1992,139:89-98.
    [111]Li Y, Yang W Q, Image reconstruction by nonlinear Landweber iteration for complicated distributions, Meas. Sci. Technol.,2008,19:094014(8pp).
    [112]Smolik W T, Radomski D, Performance evaluation of an iterative image reconstruction algorithm with sensitivity matrix updating based on real measurements for electrical capacitance tomography, Meas. Sci. Technol.2009,20:115502(12pp).
    [113]Maad R, Johansen G A, Experimental analysis of high-speed gamma-ray tomography performance, Meas. Sci. Technol.,2008,19:085502(lOpp).
    [114]Yang W Q, Peng L H, Image reconstruction algorithms for electrical capacitance tomography, Meas. Sci. Technol.,2003,14:R1.
    [115]刘继军,不适定问题的正则化方法及应用,北京:科学出版社,2005.
    [116]Engl H W, Gfrerer H, A posteriori parameter choice for general regularization methods for solving linear ill-posed problems, Appl. Numer. Math.,1988,4:395-417.
    [117]Golub G, Heath M, Wahba G, Generalized cross-validation as a method for choosing a good ridge parameter, Techno. Metrics.,1979,21:215-23.
    [118]Hansen P C, O'Leary D P, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput,1993,14:1487-503.
    [119]Byrne C, Iterative Algorithms in Tomography University of Massachusetts Lowell, Department of Mathematical Sciences.,2005, URL:http://faculty.uml.edu/cbyrne/nlat.pdf.
    [120]Kak A, Slaney M, Principles of Computerized Tomographic Imaging (Philadelphia, PA:SIAM),2001.
    [121]Guan H, Gordon R, A projection access order for speedy convergence of ART (algebraic reconstruction technique):a multilevel scheme for computed tomography, Phys. Med. Biol.,1994,39:2005-2022.
    [122]Fessler J A, Iterative Methods for Image Reconstruction University of Michigan, EECS Department URL:http://www.eecs.umich.edu/~essler/papers/files/talk/06/isbi, p1, note.pdf,2006.
    [123]Yin W, Osher S, Goldfarb D and Darbon J2008Bregman iterative algorithms for l1-minimization with applications to compressed sensing SIAM J. Imag. Sci.1143-68
    [124]Combettes P L, Pesquet J C, A proximal decomposition method for solving convex variational inverse problems, Inverse Problems,2008,24:065014.
    [125]Beck A, Teboulle M, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process.,2009,18:2419-34.
    [126]Becker S R, Candes E J, Grant M, Templates for convex cone problems with applications to sparse signal recovery, Math. Prog. Comp.,2011,3:165-218.
    [127]Chambolle A, Pock T, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imag. Vis.,2011,40:1-26.
    [128]Choi K, Wang J, Zhu L, et al., Compressed sensing based cone-beam computed tomography reconstruction with a first-order method, Med. Phys.,2010,37:5113-25.
    [129]Jensen T L, J(?)rgensen J H, Hansen P C, et al., Implementation of an optimal first-order method for strongly convex total variation regularization BIT at press (online http://www.springerlink.com/index/10.1007/s10543-011-0359-8),2011.
    [130]J(?)rgensen J H, Hansen P C, Sidky E Y, et al. Toward optimal x-ray flux utilization in breast CT, Proc.11th Int. Meeting on Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine,2011b,359-62.
    [131]Chambolle A, Pock T, A first-order primal-dual algorithm for convex problems with applications to imaging, J Math Imaging Vis,2011,40:120-145.
    [132]Lange K, Carson R, EM reconstruction algorithms for emission and transmission tomography, Journal of Computer Assisted Tomography,1984,8(2):306-16.
    [133]O'Sullivan J A, Benac J, Alternating minimization algorithms for transmission tomography, IEEE Transactions on Medical Imaging,2007,26(3):283-297.
    [134]Rudin L I, Osher S, Fatemi E, Nonlinear total variation based noise removal algorithms, Physica D,1992,60:259-268.
    [135]Fang W F, A nonlinear image reconstruction algorithm for electrical capacitance tomography, Meas. Sci. Technol.,2004,15(10):2124-2132.
    [136]Soleimani M, Lionheart W R B, Nonlinear image reconstruction for electrical capacitance tomography using experimental data, Meas. Sci. Technol.,2005,16:1987-1996.
    [137]Wang H X, Tang L, Cao Z, An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT, Flow Meas. Instrum.,2007,18(5-6):262-267.
    [138]Wang Y, Yang J, Yin W, et al., A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imag. Sci.,2008,1:948-951.
    [139]Yang J, Zhang Y, Yin W, A fast alternating direction method for TV L1-L2signal reconstruction from partial Fourier data, IEEE Journal of selected topics in signal processing,2010,4(2):288-297.
    [140]Lionheart W R B, Polydorides N, Borsic A, The Reconstruction Problem, Part1of Electrical Impedance Tomography:Methods, History and Applications Beograd:Institute of Physics,2004,3-64.
    [141]Yang J F, Zhang Y, Alternating direction algorithms for/1-problems in compressive sensing, SIAM Journal on Scientific Computing,2011,33(1):250-278.
    [142]Glowinski R, Numerical methods for nonlinear variational problems, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo,1984.
    [143]Glowinski R, Tallec P L, Augmented Lagrangian and operator splitting methods in nonlinear mechanics, SIAM,1989.
    [144]Pan X C, Sidky E Y, Michael Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems,2009,25:123009(36pp).
    [145]Fazel M, Matrix rank minimization with applications:[PhD thesis], California: Stanford University,2002.
    [146]Toh K C, Yun S, Pac J, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, Optim.2010,6(3):615-640.
    [147]Hori K, Fujimoto T, Kawanishi K, Development of an ultra fast X-ray computed tomography scanner system:application for measurement of instantaneous void distribution of gas-liquid two-phase flow, Heat Trans Asian Res,2000,29:155-165.
    [148]Wu C N, Cheng Y, Ding Y L, et al, A novel X-ray computed tomography method for fast measurement of multiphase flow, Chemical Engineering Science,2007,62:4325-4335.
    [149]Hampel U, Bieberle A, Hoppe D, et al, High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications, Rev. Sci. Instrum.2007,78(10):103704.
    [150]Johansen G A, Fraystein T, Hjertaker B T, et al, A dual sensor flow imaging tomographic system, Meas. Sci. Technol.,1996,7:297.
    [151]Maad R, Hjertaker B T, Johansen G A, et al, Dynamic characterization of a high speed gamma-ray tomography, Flow Meas. Instrum.2010,21:538.
    [152]Duan X H, Zhang L, Xing Y X, Few-view projection reconstruction with an iterative reconstruct on-reprojecti on algorithm and TV constraint, IEEE Transactions on Nuclear Science,2009,56(3):1377-1382.
    [153]Gerchberg R, Super-resolution through error energy reduction, J. Mod. Opt.1974,21(9):709-720.
    [154]Papoulis A, A new algorithm in spectral analysis and band-limited extrapolation, IEEE Trans. Circuits Syst.1975,22(9):735-742.
    [155]Daubechies I, Defrise M, De Mol C, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure. Appl. Math.2004,57:1413-1457.
    [156]Yu H Y, Wang G A, Soft-threshold filtering approach for reconstruction from a limited number of projections, Phys. Med. Biol.2010,55:3905-3916.
    [157]Wang G, Snyder D L, Vannier M W, Local computed tomography via iterative deblurring, Scanning,1996,18:582.
    [158]Deng J, Yu H Y, Ni J, et al, Parallelism of iterative CT reconstruction based on local reconstruction algorithm, J. Supercomput.2009,48:1.
    [159]Wang G, Snyder D L, O'Sullivan J A, et al, Iterative deblurring for CT metal artifact reduction, IEEE T. Med. Imaging,1996,15:657.
    [160]Tapp H S, Peyton A J, Kemsley E K, Chemical engineering applications of electrical process tomography, Sensors Actuators B,2003,92:17-24.
    [161]Gamio J C, Castro J, Rivera L, et al, Visualization of gas-oil two-phase flows in pressurized pipes using electrical capacitance tomography Flow Meas. Instrum.2005,16:129-34.
    [162]Jaworski A J, Dyakowski T, Measurements of oil-water separation dynamics in the primary separation systems, Flow Meas. Instrum.2005,16:113-27.
    [163]Jaworski A J, Meng G, On-line measurement of separation dynamics in primary gas/oil/water separators:challenges and technical solutions-a review, J. Pet. Sci. Eng.2009,68:47-59.
    [164]McKenzie G, Record P, Prognostic monitoring of aircraft wiring using electrical capacitive tomography, Rev. Sci. Instrum.2011,82:124705.
    [165]Yang W Q, Stott A L, Beck M S, et al, Development of capacitance tomographic imaging systems for oil pipeline measurements, Rev. Sci. Instrum.,1995,66:4326-32.
    [166]Hayes D G, Tomographic flow measurement by combining component distribution and velocity profile measurements in2-phase oil/gas flows:[PhD Thesis UMIST], Manchester:Manchester University,1994.
    [167]Beck M S, Campogrande E, Morris M, et al, Tomographic Techniques for Process Design and Operation, Southampton:Computational Mechanics,1993.
    [168]Yang W Q, Liu S, Role of tomography in gas/solids flow measurement Flow Meas. Instrum.2000,11:237-44.
    [169]Bolton G T, Hooper C W, Mann R, et al, Flow distribution and velocity measurement in a radial flow fixed bed reactor using electrical resistance tomography, Chem. Eng. Sci.,2004,59:1989-97.
    [170]2000PTL300System—Users Manual (Wilmslow:Process Tomography Ltd).
    [171]Jaworski A J, Dyakowski T, Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system, Meas. Sci. Technol.,2001,12:1109-19.
    [172]Dyakowski T, Jaworski A J, Non-invasive process imaging-principles and applications of industrial process tomography, Chem. Eng. Technol.,2003,26:697-706.
    [173]2009Tomoflow R5000system—Users Manual (Wilmslow:Tomoflow Ltd).
    [174]Sun M, Liu S, Lei J, et al, Mass flow measurement of pneumatically conveyed solids using electrical capacitance tomography, Meas. Sci. Technol.,2008,19:045503.
    [175]Hamidipour M, Larachi F, Characterizing the liquid dynamics in cocurrent gas-liquid flows in porous media using twin-plane electrical capacitance tomography, Chem. Eng. J.2010,165:310-23.
    [176]Beck M S, Correlation ininstruments:cross correlation flowmeters, J. Phys. E: Sci. Instrum.,1981,14:7-19.
    [177]Deng X, Chen D, Yang W Q, Study on electrodynamic sensor of multi-modality system for multiphase flow measurement, Rev. Sci. Instrum.,2011,82:124701.
    [178]Mosorov V, A method of transit time measurement using twin plane electrical tomography, Meas. Sci. Technol.2006,17:753-60.
    [179]Mosorov V, Flow pattern tracing for mass flow rate measurement in pneumatic conveying using twin plane electrical capacitance tomography, Part. Part. Syst. Charact,2008,25:259-65.
    [180]Bendat J, Piersol A, Random data analysis and measurement procedures, New York:John Wiley&Sons, Inc.,2000.
    [181]Carter G, Coherence and Time Delay Estimation:An Applied Tutorial for Research, Development, Test, and Evaluation Engineers, New York:Institute of Electrical and Electronics Engineers,1993.
    [182]M. Jakubowski, Fonck R, Fenzi C, et al, Wavelet-based time-delay estimation for time-resolved turbulent flow analysis, Rev. Sci. Instrum.,2001,729(1):996-999.
    [183]许燕斌,基于独立成分分析和互相关技术的水平管弹状流参数测量方法,中国专利,200910067892.6,2009.07.29.
    [184]季瑞,被动声探测系统及应用研究,西安:西北工业大学,2007.
    [185]行鸿彦,唐娟,时延估计方法的分析,声学技术,2008,27(1):110-114.
    [186]孙进才,朱维杰,信号相位匹配原理及其应用,西安:西北工业大学出版社,2005.
    [187]张贤达,现代信号处理,北京:清华大学出版社,2002:179-193.
    [188]殷恒刚,基于小波变换二次相关时延估计算法的声定位技术及试验研究:[硕士学位论文],南京:南京理工大学,2009.
    [189]Zhao J, Zou Y, Wan B, Experimental comparison of cross correlation-based time-delay algorithms for acoustic source localization in real environment, IEEE Conference on Industrial Electronics and Applications,2008,1:2517-2520.
    [190]行鸿彦,唐娟,时延估计方法的分析,声学技术,2008,27(1):110~114.
    [191]Jiang B, Chen F, High precision time delay estimation using generalized MVDR cross spectrum, Electronics Letters,2007,43(2):130-131.
    [192]Nikias C L, Pan R L, Time delay estimation in unknown Gaussian spatially correlated noise, IEEE transactions on acoustics, speech, and signal processing,1988,36:1706-1714.
    [193]Zhang W, Raghuveer M, Nonparametric bispectrum-based time-delay estimators for multiple sensor data, IEEE Transactions on Signal Processing,1991,39(3):770-774.
    [194]行鸿彦,刘照泉,万明习,基于小波变换的广义相关时延估计算法,声学学报,2002,27(1):88~93.
    [195]Ghasemi M, Kajani M, Numerical solution of time-varying delay systems by Chebyshev wavelets, Applied Mathematical Modeling,2011,35(11):5235-5244.
    [196]杜运成,基于电容层析成像技术的气液两相流特性分析:[博士学位论文],天津:天津大学,2011.
    [197]葛学哲,陈仲生,Matlab时频分析技术及其应用,北京:人民邮电出版社,2006.
    [198]龚志强,封国林,董文杰,等,非线性时间序列的动力结构突变检测的研究,物理学报,2006,55(6):3180~3187.
    [199]Yamamoto R, Iwashima T, Sanga N K, An analysis of climatic jump, Journal of the Meteorology Society-Japan,1986,64:273-281.
    [200]Zhao F F, Xu Z X, Huang J X, Long-term trend and abrupt change for major climate variables in the upper Yellow river basin, Acta Meteorologica Sinica,2007,21:204-214.
    [201]尹云鹤,吴绍洪,陈刚,1961—2006年我国气候变化趋势与突变的区域差异,自然资源学报,24(12):2147-2157,2009
    [202]Fraedrich K, Jiang J, Gerstengarbe F W, Werner P C, Multiscale detection of abrupt climate changes:Application to river Nile flood levels, International Journal of Climatology,1997,17:1301-1315.
    [203]Yan M H, Deng W, Chen P Q, Climate change in the Sanjiang Plain disturbed by large-scale reclamation, Journal of Geographical Sciences,2002,12(4):405-412.
    [204]Yan M H, Deng W, Chen P Q, Analysis of climate jumps in the Sanjiang Plain, Scientia Geographica Sinica,2003,23(6):661-667.
    [205]Wan S Q, Feng G L, Dong W J, et al, From regional to global dynamics structure of the climatic proxy, Acta Phys. Sin.2005,54:5487-93.
    [206]Gong Z Q, Feng G L, Dong W J, et al, The research of dynamic structure abrupt change of nonlinear time series, Acta Phys. Sin.2006,55:3180-7.
    [207]Gong Z Q, Wang X J, Zhi R, et al, Regional characteristics of temperature changes in China during the past58years and its probable correlation with abrupt temperature change, Acta Phys. Sin.2009,58:4342-53.
    [208]Grassberger P, Measuring the strangeness of strange attractors, Physica D,1983,9D(1-2):189-208.
    [209]Kantz H, Quantifying the closeness of fractal measures, Physical Review E,1994,49(6):5091-7.
    [210]Provenzale A, Smith L A, Vio R, et al, Distinguishing between low-dimensional dynamics and randomness in measured time series, Physica D,1992,58(1-4):31-49.
    [211]Grassberger P, An optimized box-assisted algorithm for fractal dimensions, Physics Letters A,1990,148(1-2):63-68.
    [212]West R M, Williams R A, Opportunities for data fusion in multi-modality tomography,1st world congress on industrial process tomography, Buxton, Greater Manchester,1999:195-200.
    [213]Hjertaker B T, Tjugum S A, Erling A, et al, Multimodality tomography for multiphase hydrocarbon flow measurements, IEEE SENSORS JOURNAL,2005,5(2):153.
    [214]Dyakowski T, Johansen G A, Hjertaker B T, et al. A dual modality tomography system for imaging gas/solids flows, Particle and Particle Systems Characterization,2006,23(3-4):260-265.
    [215]Hoyle B S, Jia X, Podd F J W, et al. Design and application of a multi-modal process tomography system, Measurement Science and Technology,2001,12(8):157-1165.
    [216]Liu S, Fu L, Yang W Q, Optimization of iterative image reconstruction process for electrical capacitance tomography, Meas. Sci. Technol.,1999,10:L37-9.
    [217]Hjertaker B T, Maad R, Johansen G A, Dual-mode capacitance and gamma-ray tomography using the Landweber reconstruction algorithm, Meas. Sci. Technol.,2011,22:104002(7pp).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700