用户名: 密码: 验证码:
基于红外热成像的温度场测量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着非制冷红外探测器技术的发展,基于红外热成像的测温技术得到了越来越广泛的应用。红外热成像测温技术逐渐成为研究的热点。本文根据航天应用需求,在研究了红外测温的原理的基础上,分析了影响测温精度的因素,针对这些因素,提出了一系列的解决措施,并应用于实践,研制出一套红外温度场测量系统,取得了较好的效果。
     针对红外成像系统应用于测温的特殊需求,本文采用FPGA单处理器的架构方法,设计了一种能够对环境自适应的长波非制冷红外成像系统。红外成像系统输出采用模拟输出和数字输出两种方式,模拟视频输出为图像增强后输出,便于人眼观察,数字输出为12bit量化原始输出,可用于测量,系统可同时满足监视和测量的要求。针对红外成像系统非均匀性随环境变化的问题,提出了基于动态参考温度场的非均匀性校正技术,实现了红外图像的实时校正,并有效补偿了外部环境的影响。针对红外探测器输出随自身温度变化的问题,采用ADN8830集成温控电路进行控温,使探测器工作在最佳工作温度点,保证了探测器的成像性能。
     针对定标时数据处理对测温精度的影响,本文研究了数据拟合产生的误差,确定了分段拟合的方法,可以有效减少拟合误差。
     针对红外温度测量时受镜筒及壳体辐射、环境辐射的影响,本文提出了基于合作定标的测温技术,利用合作黑体有效补偿了镜筒及壳体辐射、环境辐射的影响。使测温精度得到很大提高。
     针对发射率对测温精度的影响问题,本文分析了物体发射率的影响因素,并对典型材料的发射率进行了测量,研究了表面粗糙度、表面处理工艺对发射率的影响,为提高测温精度奠定了基础。
     针对图像压缩对测温精度的影响问题,本文通过分析选择了12bit的JPEG压缩方法,并通过试验分析了压缩对测温精度的影响,确定了合适的压缩比例,为红外图像的压缩奠定了基础。
With the development of the Uncooled Infrared Focal Plane Array(UFPA)technology,Infrared Imager has been widely used in temperature measurementsystem.
     The technology of temperature measurement based on Infrared Imager isbecoming a new research hot issue. In this paper, we discuss the key technologies oftemperature measurement based on practical requirements. By analyzing theprinciple of infrared temperature measurement, this paper emphatically gives theprimary influential factors which affect the temperature precision. This paperproposes a series of solutions to eliminate and compensate these factors. The methodderived in this paper has been successfully applied to practice. The temperaturemeasurement system based on Infrared Imager has been developed and has achieveda good result.
     In view of the imaging system will be used to measure temperature, along-wave infrared uncooled imaging system which has adaptive correction functionwas designed. The system is based on FPGA, in which FPGA performs systemcontrol and image processing. The system has both analog and digital video output,in which analog video can be used to watch, while digital video with12bit precisioncan be used to measure. In order to correct non-uniform responses of the detector’sindividual elements, this paper proposed an adaptive non-uniformity correctionalgorithm based on dynamic reference temperature field, which can compensate theresponse drift according to ambient temperature. In order to eliminate the effects ofthe temperature change of the detector, a temperature control circuit based onADN8830was introduced, which can set temperature of the detector to a fixed point.
     Based on studies of calibration method,this paper studies the error introducedby data fitting. The data processing software adopted the curve segmented fittingmethod to build up a mathematic model of temperature and gray.
     IR sensor is receiving not only infrared radiation from surface of object whichtemperature is measured, but radiation from the drawtube, radiation from the shell of the camera, radiation from the environment. If nothing is done to compensate theradiation that not from the object, it is difficult to measure the real surfacetemperature. In this paper, a method that base on cooperation calibration wasintroduced. The experiment show the method has high precision.
     Since the emissivity of the object is an important factor influencing theaccuracy of measuring temperature, the factors that affect the emissivity werestudied. This paper presents an experimental study on the factors affect theemissivity. The factors include material,surface roughness and surface treatmenttechnology. The results of the experiment give basis to increase the temperaturemeasurement accuracy.
     How infrared image compression affects the temperature measurementaccuracy was studied. After analyzing the commonly used image or videocompression methods, the jpeg compression (12bit) is selected. The effects of imagecompression on the temperature measure accuracy are analyzed based on experiment.According to the analysis results, appropriate compression ratio is ascertained. Thestudy provides a good foundation for infrared image compression.
引文
[1]孙鹏.红外测温物理模型的建立及论证[D].吉林:吉林大学.2007.
    [2] X.Q Pan,P.F Barker, J.H.Grinstead. Temperature measurement by coherent Rayleighscattering[J]. Laser Focus World,2002,27:161.
    [3]戴景民.多光谱辐射测温技术研究[D].哈尔滨:哈尔滨工业大学.1995.
    [4]王德安.热成像测试技术及其现状与发展趋势[J].红外技术.2005,26(3):253~255.
    [5]张杰.红外热成像测温技术及应用研究[D].成都:电子科技大学.2011.
    [6]姜华.非制冷红外凝视成像系统研究[D].西安:西安电子科技大学.2009.
    [7]姚松伯.半视场目标测温方法研究[D].长春:长春理工大学.2008.
    [8]李云红.基于红外热像仪的温度测量技术及其应用研究[D].哈尔滨:哈尔滨工业大学.2010.
    [9]李操.测温红外热像仪测温精度与外界环境影响的关系研究[D].长春:长春理工大学.2008.
    [10] ThermalTMP640新产品发布[J].中国仪器仪表.2006,7:89.
    [11]杨立.红外热像仪测温计算与误差分析[J].红外技术.1999,21(4):20~24.
    [12]刘慧开,杨立.太阳辐射对红外热像仪测温误差的影响[J].红外技术.2002,24(1):34~37.
    [13]寇蔚,杨立.热测量中误差的影响因素分析[J].红外技术.2001,23(3):32~34.
    [14]杨立,寇蔚等.热像仪测量物体表面辐射率及误差分析[J].激光与红外.2002,32(1):43~45.
    [15]李军,刘梅冬等.非接触式红外测温的研究[J].压电与声光.2001,23(3):202~205.
    [16]孙丽.距离对红外热像仪测温精度的影响研究[D].长春:长春理工大学.2008.
    [17]张健,杨立等.环境高温物体对红外热像仪测温误差的影响[J].红外技术.2005,27(5):419~422.
    [18]李军,刘梅冬等.非接触式红外测温的研究[J].压电与声光.2001,23(3):202~205.
    [19]陆子凤.红外热像仪的辐射定标和误差分析[D].长春:中科院长春光学精密机械与物理研究所.2009.
    [20]邢素霞.非制冷红外热成像系统研究[D].南京:南京理工大学.2005.
    [21]张俊举.微测辐射热计焦平面阵列的成像系统研究[D].南京:南京理工大学.2006.
    [22]钱进.红外热成像整机关键技术研究[D].南京:南京理工大学.2006.
    [23]胡旭峰.非制冷红外焦平面热成像系统硬件电路设计与实现[D].长沙:国防科学技术大学.2006.
    [24]蔡良峰.非制冷红外热成像系统的小型化改进[D].南京:南京理工大学.2008.
    [25]姜华.非制冷红外凝视成像系统研究[D].西安:西安电子科技大学.2009.
    [26]应文涛.半视场红外目标的测温精度分析[D].长春:长春理工大学.2008.
    [27]陈衡.红外热像仪在电力设备故障诊断中应用概况[J].激光与红外.1994,24(3):8~11.
    [28]程玉兰.红外测温仪在电力工业中的应用[J].华北电力技术.1989,1:41~44.
    [29]林晋.基于红外测温技术的设备缺陷诊断方法研究[D].太原:华北电力大学.2010.
    [30]邓建平,王国林等.用于高温测量的红外热成像技术[J].流体力学实验与测量.2001,15(1):43~47.
    [31]张冠华,黄炜.红外热成像测温技术在金属机械加工方面的应用[J].红外与激光工程.2001,30(1):74~78.
    [32]杨红,何建宏等.红外热像仪及其在建筑节能检测中的应用[J].保温材料与建筑节能.2003,4:50~51.
    [33]王杨洋,方修睦等.用红外热像仪测量建筑物表面温度的实验研究.暖通空调.2006,36(2):84~88.
    [34]王喜世,伍小平.用红外热成像方法测量火焰温度的实验研究.激光与红外.2001,31(3):169~173.
    [35] Elmahdy,A.H.,Devine,F.Laboratory infrared thermography technique forwindow surfacetemperature measurement[J].ASHRAE Transactions.2005,111(1):561~571.
    [36]李云红.基于红外热像仪的温度测量技术及其应用研究[D].哈尔滨:哈尔滨工业大学.2010.
    [37]陈益松,徐军.红外热像用于服装面料隔热性能的评测.纺织学报.2007,28(12):81~83.
    [38]李保民.基于DM642的视频图像实时处理模块的设计与实现[D].武汉:武汉科技学院.2007.
    [39]倪雪飞.浅谈红外测温及其应用[J].计量与测试技术.2009,36(7):7~8.
    [40]兰梦华.基于DM642的红外测温与图像处理算法研究[D].南京:南京理工大学.2010.
    [41]李保民.基于DM642的视频图像实时处理模块的设计与实现[D].武汉:武汉科技学院.2007.
    [42]各种材料发射率表.http://wenku.baidu.com.
    [43] K.Chrzanowski. Problem of determination of effective emissicity of some material in MIRrange[J]. Infrared Physics&Technology.1995,36:679~684.
    [44] K.Chrzanowski. Influence of measurement conditions and system parameters on accuracyof remote temperature measurement with dual spectral IR systems[J]. Infrared Physics&Technology.1996,37:295~306.
    [45]张才根,刘健.单圆筒法测量发射率的研究[J].红外与毫米波学报,1995,14(2):101~104.
    [46]施德恒,陈玉科.同时精确测碳高温物体温度及发射率的系统[J].光学技术.1999,3:87~90.
    [47]邢春芳,李瑞芬.辐射测温中发射率的补偿方法探讨[J].计量技术.1999,7:19~21.
    [48]叶家福,郭少令.用椭球测斌物体的辐射发射率[J].激光与红外.2000,30(6):370~372.
    [49]齐文娟.发射率对红外测温精度的影响[D].长春:长春理工大学.2006.
    [50]晏敏,彭楚武等.红外测温原理及误差分析[J].湖南大学学报(自然科学版).2004,31(5):110~112.
    [51]牛金星,周仁魁等.红外探测系统自身热辐射杂散光的分析[J].光子学报.2010,30(8):2267~2270.
    [52] Yoonsung Bae, Jongho Lee, and Jong Beom Ra.“Scene-based nonuniformity correction ininfrared videos”.Proc. of the SPIE, Vol.839983990J-8(2012).
    [53] Zhang Wei,Nie Hongbin.“Variable-Step Constant Statistics Algorithm for Removing ResidualFixed Pattern Noise of Infrared Images as Second Non-Uniformity Correction”.Proc. of SPIE,Vol.7513,751328(2009).
    [54] Tingting Wang, Junsheng Yu.Non-uniformity correction for infrared focal plane array withimage based on neural network algorithm[C]. Proc. of SPIE Vol.7658,76584I(2010).
    [55] Schulz M,Caklwell L. Non-uniformity correction and correctability of infrared focalplane arrays[J].Infrared Physics&Technology.1995,36(7):63~77.
    [56]薛慧.红外焦平面阵列非均匀性校正方法研究[D].哈尔滨:哈尔滨工业大学.2007.
    [57]杨国政,唐广.非制冷红外焦平面阵列的非均匀性校正及其实现[J].红外月刊.2004,(8):1~5.
    [58]陈锐,谈新权.红外图像非均匀性校正方法综述.红外技术[J].2001,24(1):1~3.
    [59] M.Schulz,L.Caldwell. Nonuniformity Correction and Correct Ability of Infrared Focal PlaneArrays[J]. Infrared Physics&Technology.1995,36(4):763~777.
    [60]王任,陈钱等.实时红外图像非均匀性校正技术研究[J].红外与毫米波学报.1999,18(2):152~155.
    [61]童央群,郭继昌.一种改进的红外焦平面非均匀性校正算法[J].光电工程,2005.32(5):35~37.
    [62]田丽珍,刘尚乾.红外焦平面阵列非均匀性自适应校正算法研究[J].红外与毫米波学报.2001,20(2):93~94.
    [63]周慧鑫,李庆,刘上乾等.红外焦平面阵列非均匀性及校正分析[J].激光与红外,2003,33(6):446~448.
    [64]陈宝国,郑志伟,黄士科等.利用FPGA实现红外焦平面器件的非均匀性校正[J].红外与激光工程.2000,29(4):55~57.
    [65]杨虎,高昆,倪国强等.基于FPGA的IRFPA联合非均匀性校正的实时实现[J].激光与红外.2007,37(增刊):1027~1030.
    [66]高云,邬鸣敏,周起勃等.凝视红外焦平面CCD非均匀性校正.红外与毫米波学报.1993,12(3):169~176.
    [67]殷世民,刘上乾.基于低次插值的红外焦平面器件非均匀性多点校正算法.光子学报.2002,31(16):715~718.
    [68]杨正兴,谈新权,尚小冬.红外焦平面非均匀性校正算法研究与实现.红外技术[J].2004,26(3):11~14.
    [69] Huixin Zhou,Rui Lai,Shangqian Liu.New Improved Nonuniformity Correction for InfraredFocal Plane Arrays. Optics Communications.2005,245(3):49~53.
    [70] Huixin Zhou,Shangqian Liu,Rui Lai.Solution for the Nonuniformity Correction of InfraredFocal Plane Arrays. Applied Optics.2005,44(15):2928~2932.
    [71]石岩,张天序,王岳环等.红外焦平面非均匀性两点校正法分析及FPGA实现.激光与红外.2005,35(2):100~103.
    [72]刘会通,易新建.红外焦平面阵列非均匀性的两点校正及依据.红外与激光工程.2004,33(1):76~78.
    [73]王跃明,陈建新等.红外焦平面器件两点多段非均匀性校正算法研究[J].红外与毫米波学报.2003,22(6):415~418.
    [74]周金梅,邢廷文,林妩媚.红外焦平面阵列非均匀性校正的精度分析[J].光子学报.2005,34(11):1681~1683.
    [75]黄星明,余国文,王宏远.一种改进的红外焦平面非均匀多点校正方法[J].红外与激光工程.2005,34(1):62~65.
    [76]杨正兴,谈新权等.基于场景的红外图像非均匀性校正方法综述.光电子技术.2003,23(2):135~138.
    [77] A.Scribner,K.A.Sarkady. Nonuniformity Correction for Staring IR Focal Plane ArraysUsing Scene-Based Techniques.SPIE.1990,1308:224~233.
    [78]刘会通,孔令彬.红外焦平面阵列非均匀性校正算法的分析和改进[J].光电技术应用.2003,24(5):360~362.
    [79] E.Vera,S.Torres.Fast Adaptive Nonuniformity Correction for Infrared Focal Plane ArrayDetectors[J].Eurasip Journal on Applied Signal Processing.2005,(13):1994~2004.
    [80] Yaobo Jian, Shuangcheng Ruan, Huixin Zhou,et al. An Improved Nonuniformity CorrectionAlgorithm for Infrared Focal Plane Arrays[C]. Proceedings of the World Congress onIntelligent Control and Automation.2006:10328~10331.
    [81] John.G.Harris,Yuming Chiang. Nonuniformity Correction Using the Constant-StatisticsConstraint Analog and Digital Implementations. Proc. SPIE.1997,3061:895~905.
    [82]张磊.红外焦平面非均匀性校正方法研究与仿真[D].南京:南京理工大学.2009.
    [83] Wang Huawei,Ma Caiwen,et. An Adaptive Two-point Non-uniformity CorrectionAlgorithm Based on shutter And Its Implementation[C].ICMTMA2013.2013,51(1):174~177.
    [84]张俊举,孙恋君等.多工作温度非制冷冷热成像系统的研制[J].兵工学报.2008,29(8):920~924.
    [85]李照洲,郑小兵等.高精度光谱辐射标准探测器的温度特性研究[J].光学学报.2004,24(3):401~407.
    [86]孙恋君,张俊举等.非制冷微测辐射热计探测器工作温度特性研究仁[J].红外与毫米波学报.2007,26(3):22~23.
    [87] ULIS.UL03191384x288LWIR UNCOOLED MICROBOLOMETER.
    [88]黄曦,张建奇等.红外图像盲元自适应检测及补偿算法[J].红外与激光工程.2011,40(2):370~376.
    [89] Dierickx B, Meynants G. Missing pixel correction algorithm for image sensors[C].SPIE,1998,3410:200~203.
    [90]李怀琼,陈钱等.红外焦平面阵列失效元动态检测与校正算法[J].红外与激光工程,2006,35(2):192~196.
    [91] Dudas J, Jung C, Wu L,et al. On-line mapping of in-field defects in image sensor arrays[C].Proceedings of the21stIEEE International Symposium on Defect and Fault-Tolerance inVLSI Systems.2006:439~447.
    [92] Linear. LT1962Series300mA, Low Noise, Micropower LDO Regulators.
    [93] Analog Device. Octal,12-/14-/16-Bit DAC with5ppm/℃On-Chip Reference in14-LeadTSSOP AD5628/AD5648/AD5668.
    [94] Analog Device. Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output OperationalAmplifiers AD8605/AD8606/AD8608.
    [95]徐德胜.半导体制冷与应用技术[M].上海:上海交通大学出版社,1992.
    [96]陈振林,孙中泉.半导体制冷原理与应用[J].微电子技术.1999,27(5).63~65.
    [97]职更辰,王瑞.热电制冷技术的进展与应用[J].制冷学报.2012,31(4).42~48.
    [98]胡韩莹,朱冬生.热电制冷技术的进展与评述[J].制冷学报.2008,29(5):1~7.
    [99] Analog Device. Thermoelectric Cooler Controller ADN8830.
    [100]覃喜庆,曾祥鸿等.基于ADN8830的高性能TEC控制电路[J].光学与光电技术.2004,2(1):20~22.
    [101]张晓鹏,郭经纬.基于ADN8830的非制冷红外焦平面温度控制系统[J].光电技术应用.2011,26(1):1~4.
    [102]周进军,元秀华等.用ADN8830实现半导体激光器的自动温度控制[J].光学与光电技术.2005,3(2):54~57.
    [103] Xilinx. Virtex-4Family Overview.
    [104] Xilinx. Virtex-4FPGA User Guide.
    [105]崔敦杰.成像光谱仪的定标[J].遥感技术与应用.1996,11(3):56~64.
    [106]刘亚侠. TDI CCD相机试验室辐射定标的研究.光电工程,2007,34(5):71~74.
    [107]唐垚.数码相机高速图像压缩处理器的研究与实现[D].西安:中国科院院西安光学精密机械研究所.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700